Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 117081, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971008

RESUMEN

The discovery of an inhibitor for acyl-CoA synthetase long-chain family member 4 (ACSL4), a protein involved in the process of cell injury through ferroptosis, has the potential to ameliorate cell damage. In this study, we aimed to investigate the potential of berberine (BBR) as an inhibitor of ACSL4 in order to suppress endothelial ferroptosis and provide protection against atherosclerosis. An atherosclerosis model was created in ApoE-/- mice by feeding a high fat diet for 16 weeks. Additionally, a mouse model with endothelium-specific overexpression of ACSL4 was established. BBR was administered orally to assess its potential therapeutic effects on atherosclerosis. Human umbilical vein endothelial cells (HUVECs) were exposed to oxidized low density lipoprotein (ox-LDL) to simulate atherosclerotic endothelial damage in vitro. The interaction between ACSL4 and BBR has been confirmed, with BBR playing a role in inhibiting erastin-induced ferroptosis by regulating ACSL4. Additionally, BBR has been found to inhibit lipid deposition, plaque formation, and collagen deposition in the aorta, thereby delaying the progression of atherosclerosis. It also restored the abnormal expression of ferroptosis-related proteins in atherosclerotic vascular endothelial cells both in vivo and in vitro. In conclusion, BBR, acting as an ACSL4 inhibitor, can improve atherosclerosis by inhibiting ferroptosis in endothelial cells. This highlights the potential of targeted inhibition of vascular endothelial ACSL4 as a strategy for treating atherosclerosis, with BBR being a candidate for this purpose.


Asunto(s)
Aterosclerosis , Berberina , Coenzima A Ligasas , Ferroptosis , Células Endoteliales de la Vena Umbilical Humana , Ratones Endogámicos C57BL , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/metabolismo , Ferroptosis/efectos de los fármacos , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/antagonistas & inhibidores , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Berberina/farmacología , Ratones , Masculino , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad
2.
PLoS Pathog ; 20(7): e1012376, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39008531

RESUMEN

Antimicrobial resistance is an ongoing "one health" challenge of global concern. The acyl-ACP synthetase (termed AasS) of the zoonotic pathogen Vibrio harveyi recycles exogenous fatty acid (eFA), bypassing the requirement of type II fatty acid synthesis (FAS II), a druggable pathway. A growing body of bacterial AasS-type isoenzymes compromises the clinical efficacy of FAS II-directed antimicrobials, like cerulenin. Very recently, an acyl adenylate mimic, C10-AMS, was proposed as a lead compound against AasS activity. However, the underlying mechanism remains poorly understood. Here we present two high-resolution cryo-EM structures of AasS liganded with C10-AMS inhibitor (2.33 Å) and C10-AMP intermediate (2.19 Å) in addition to its apo form (2.53 Å). Apart from our measurements for C10-AMS' Ki value of around 0.6 µM, structural and functional analyses explained how this inhibitor interacts with AasS enzyme. Unlike an open state of AasS, ready for C10-AMP formation, a closed conformation is trapped by the C10-AMS inhibitor. Tight binding of C10-AMS blocks fatty acyl substrate entry, and therefore inhibits AasS action. Additionally, this intermediate analog C10-AMS appears to be a mixed-type AasS inhibitor. In summary, our results provide the proof of principle that inhibiting salvage of eFA by AasS reverses the FAS II bypass. This facilitates the development of next-generation anti-bacterial therapeutics, esp. the dual therapy consisting of C10-AMS scaffold derivatives combined with certain FAS II inhibitors.


Asunto(s)
Ácidos Grasos , Vibrio , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Vibrio/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Antibacterianos/farmacología , Microscopía por Crioelectrón , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/metabolismo , Acido Graso Sintasa Tipo II/antagonistas & inhibidores
3.
Biochem Pharmacol ; 225: 116257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705532

RESUMEN

Gastric cancer remains among the deadliest neoplasms worldwide, with limited therapeutic options. Since efficacies of targeted therapies are unsatisfactory, drugs with broader mechanisms of action rather than a single oncogene inhibition are needed. Preclinical studies have identified histone deacetylases (HDAC) as potential therapeutic targets in gastric cancer. However, the mechanism(s) of action of HDAC inhibitors (HDACi) are only partially understood. This is particularly true with regard to ferroptosis as an emerging concept of cell death. In a panel of gastric cancer cell lines with different molecular characteristics, tumor cell inhibitory effects of different HDACi were studied. Lipid peroxidation levels were measured and proteome analysis was performed for the in-depth characterization of molecular alterations upon HDAC inhibition. HDACi effects on important ferroptosis genes were validated on the mRNA and protein level. Upon HDACi treatment, lipid peroxidation was found increased in all cell lines. Class I HDACi (VK1, entinostat) showed the same toxicity profile as the pan-HDACi vorinostat. Proteome analysis revealed significant and concordant alterations in the expression of proteins related to ferroptosis induction. Key enzymes like ACSL4, POR or SLC7A11 showed distinct alterations in their expression patterns, providing an explanation for the increased lipid peroxidation. Results were also confirmed in primary human gastric cancer tissue cultures as a relevant ex vivo model. We identify the induction of ferroptosis as new mechanism of action of class I HDACi in gastric cancer. Notably, these findings were independent of the genetic background of the cell lines, thus introducing HDAC inhibition as a more general therapeutic principle.


Asunto(s)
Ferroptosis , Inhibidores de Histona Desacetilasas , Peroxidación de Lípido , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Peroxidación de Lípido/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Línea Celular Tumoral , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga
4.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685023

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Asunto(s)
Ferroptosis , Hipocampo , Peroxidación de Lípido , Proteínas de Unión a Fosfatidiletanolamina , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Encefalopatía Asociada a la Sepsis , Ferroptosis/efectos de los fármacos , Animales , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Peroxidación de Lípido/efectos de los fármacos , Ratones , Masculino , Femenino , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/genética , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/antagonistas & inhibidores , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Modelos Animales de Enfermedad , Preescolar , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Niño , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Malondialdehído/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/tratamiento farmacológico , Lactante
5.
Life Sci ; 294: 120371, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35122795

RESUMEN

BACKGROUND: Neonatal hearts have considerable regenerative potential within 7 days post birth (P7), but the rate of regeneration is extremely low after P7. Interestingly, lipid metabolism increases dramatically after P7. The similarities in these age profiles suggests a possible link between cardiac regeneration and lipid metabolism. Acyl CoA synthase long chain family member 1 (ACSL1) is the key enzyme that regulates lipid metabolism. The aim of this study was to identify the role of ACSL1 in the regeneration of cardiomyocytes. METHODS AND RESULTS: The uptake of fatty acids in hearts increased after P7; however, myocardial regeneration was decreased. We profiled an RNA-sequence array of hearts from mice of different ages, including E10.5 (embryonic stage)-, 3-, 7-, 21-, 30-, and 60-day-old mice, and found that the expression of ACSL1 was significantly increased after P7. By establishing ACSL1 knockdown mice with adeno-associated virus (AAV9). Then, we verified that knockdown of ACSL1 enhanced the capacity for myocardial regeneration both in mice and in primary cardiomyocytes. Indeed, ACSL1 knockdown in primary cardiomyocytes promoted the cell cycle progression from G0 to G2 phase by regulating specific factors, which may correlate with the activation of AKT by ACSL1 and withdrawal of FOXO1 from the nucleus. In vivo, knockdown of ACSL1 effectively restored cardiac function and myocardial regeneration in adult mice with myocardial infarction (MI). CONCLUSIONS: ACSL1 possibly induces the loss of the myocardial regenerative potential beginning at P7 in mice, and inhibition of ACSL1 effectively promoted myocardial repair after MI in mice.


Asunto(s)
Proliferación Celular , Coenzima A Ligasas/antagonistas & inhibidores , Metabolismo de los Lípidos , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Regeneración , Factores de Edad , Animales , Animales Recién Nacidos , Ratones , Ratones Endogámicos ICR , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Ratas
6.
Hepatology ; 75(1): 140-153, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34510514

RESUMEN

BACKGROUND AND AIMS: Globally, NAFLD is one of the most common liver disorders, with an estimated prevalence rate of more than 30% in men and 15% in women and an even higher prevalence in people with type 2 diabetes mellitus. Optimal pharmacologic therapeutic approaches for NAFLD are an urgent necessity. APPROACH AND RESULTS: In this study, we showed that compared with healthy controls, hepatic ACSL4 levels in patients with NAFLD were found to be elevated. Suppression of ACSL4 expression promoted mitochondrial respiration, thereby enhancing the capacity of hepatocytes to mediate ß-oxidation of fatty acids and to minimize lipid accumulation by up-regulating peroxisome proliferator-activated receptor coactivator-1 alpha. Moreover, we found that abemaciclib is a potent and selective ACSL4 inhibitor, and low dose of abemaciclib significantly ameliorated most of the NAFLD symptoms in multiple NAFLD mice models. CONCLUSIONS: Therefore, inhibition of ACSL4 is a potential alternative therapeutic approach for NAFLD.


Asunto(s)
Aminopiridinas/uso terapéutico , Bencimidazoles/uso terapéutico , Coenzima A Ligasas/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Aminopiridinas/farmacología , Animales , Bencimidazoles/farmacología , Biopsia , Coenzima A Ligasas/análisis , Coenzima A Ligasas/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción/efectos de los fármacos
7.
Viruses ; 13(12)2021 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-34960652

RESUMEN

Murine hepatitis virus strain A59 (MHV-A59) was shown to induce pyroptosis, apoptosis, and necroptosis of infected cells, especially in the murine macrophages. However, whether ferroptosis, a recently identified form of lytic cell death, was involved in the pathogenicity of MHV-A59 is unknown. We utilized murine macrophages and a C57BL/6 mice intranasal infection model to address this. In primary macrophages, the ferroptosis inhibitor inhibited viral propagation, inflammatory cytokines released, and cell syncytia formed after MHV-A59 infection. In the mouse model, we found that in vivo administration of liproxstatin-1 ameliorated lung inflammation and tissue injuries caused by MHV-A59 infection. To find how MHV-A59 infection influenced the expression of ferroptosis-related genes, we performed RNA-seq in primary macrophages and found that MHV-A59 infection upregulates the expression of the acyl-CoA synthetase long-chain family member 1 (ACSL1), a novel ferroptosis inducer. Using ferroptosis inhibitors and a TLR4 inhibitor, we showed that MHV-A59 resulted in the NF-kB-dependent, TLR4-independent ACSL1 upregulation. Accordingly, ACSL1 inhibitor Triacsin C suppressed MHV-A59-infection-induced syncytia formation and viral propagation in primary macrophages. Collectively, our study indicates that ferroptosis inhibition protects hosts from MHV-A59 infection. Targeting ferroptosis may serve as a potential treatment approach for dealing with hyper-inflammation induced by coronavirus infection.


Asunto(s)
Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/metabolismo , Infecciones por Coronavirus/terapia , Ferroptosis , Animales , Coenzima A Ligasas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Genes Virales , Lesión Pulmonar/patología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Virus de la Hepatitis Murina , Quinoxalinas , Células RAW 264.7 , Compuestos de Espiro , Receptor Toll-Like 4 , Replicación Viral/genética
8.
Biochem Pharmacol ; 192: 114718, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358518

RESUMEN

The development of radioresistance during radiotherapy is a major cause of tumor recurrence and metastasis. To provide new insights of the mechanisms underlying radioresistance, we established radioresistant cell lines derived from two different subtypes of breast cancer cells, HER2-positive SK-BR-3 and ER-positive MCF-7 breast cancer cells, by exposing cells to 48 ~ 70 Gy of radiation delivered at 4-5 Gy twice weekly over 9 ~ 10 months. The established radioresistant SK-BR-3 (SR) and MCF-7 (MR) cells were resistant not only to a single dose of radiation (2 Gy or 4 Gy) but also to fractionated radiation delivered at 2 Gy/day for 5 days. Furthermore, these cells exhibited tumor-initiating potential in vivo and high CD24-/CD44 + ratio. To identify novel therapeutic molecular targets, we analyzed differentially expressed genes in both radioresistant cell lines and found that the expression of ACSL4 was significantly elevated in both cell lines. Targeting ACSL4 improved response to irradiation and inhibited migration activities. Furthermore, inhibition of ACLS4 using ASCL4 siRNA or triacsin C suppressed FOXM1 expression, whereas inhibition of FOXM1 using thiostrepton did not affect ACSL4 expression. Targeting the ACSL4-FOXM1 signaling axis by inhibiting ASCL4 or FOXM1 overcame the radioresistance by suppressing DNA damage responses and inducing apoptosis. This is the first study to report that ACSL4 plays a crucial role in mediating the radioresistance of breast cancer by regulating FOXM1. We propose the ACSL4-FOXM1 signaling axis be considered a novel therapeutic target in radioresistant breast cancer and suggest treatment strategies targeting this signaling axis might overcome breast cancer radioresistance.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/radioterapia , Coenzima A Ligasas/metabolismo , Proteína Forkhead Box M1/metabolismo , Tolerancia a Radiación/fisiología , Animales , Coenzima A Ligasas/antagonistas & inhibidores , Femenino , Proteína Forkhead Box M1/antagonistas & inhibidores , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
9.
Eur J Pharmacol ; 909: 174397, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34332918

RESUMEN

Accumulating evidence shows that deregulation of fatty acid (FA) metabolism is associated with the development of cancer. Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for activating long-chain FAs and are frequently deregulated in cancers. Among the five mammalian ACSL family members, ACSL1 is involved in the TNFα-mediated pro-inflammatory phenotype and mainly facilitates cancer progression. ACSL3 is an androgen-responsive gene. High ACSL3 expression has been detected in a variety of cancers, including melanoma, triple-negative breast cancer (TNBC) and high-grade non-small cell lung carcinoma (NSCLC), and correlates with worse prognosis of patients with these diseases. ACSL4 can exert opposing roles acting as a tumor suppressor or as an oncogene depending on the specific cancer type and tissue environment. Moreover, ACSL4 behaves as a crucial regulator in ferroptosis that is defined as a cell death process caused by iron-dependent peroxidation of lipids. ACSL5 is nuclear-coded and expressed in the mitochondria and physiologically participates in the pro-apoptotic sensing of cells. ACSL5 mainly acts as a tumor suppressor in cancers. ACSL6 downregulation has been observed in many forms of cancers, except in colorectal cancer (CRC). Here, we address the differential regulatory mechanisms of the ACSL family members as well as their functions in carcinogenesis. Moreover, we enumerate the clinical therapeutic implications of ACSLs, which might serve as valuable biomarkers and therapeutic targets for precision cancer treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Coenzima A Ligasas/metabolismo , Activadores de Enzimas/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/genética , Modelos Animales de Enfermedad , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Oncogénicas/antagonistas & inhibidores , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/agonistas , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Free Radic Res ; 55(7): 853-864, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34323631

RESUMEN

Glioblastoma is one of the most frequent malignant tumors derived from the brain in adults with very poor prognosis. Ferroptosis is implicated in the initiation and progression of various tumors, including the glioblastoma. The present study aims to investigate the function of microRNA (miR)-670-3p in glioblastoma, and tries to demonstrate whether ferroptosis is involved in this process. Human glioblastoma cell lines, U87MG and A172, were transfected with the inhibitor, mimic and matched negative controls of miR-670-3p to manipulate intracellular miR-670-3p level. To validate the involvement of ferroptosis in miR-670-3p inhibitor-mediated tumor suppressive effects, ferrostain-1 and liproxstatin-1 were used to inhibit ferroptosis in the presence of miR-670-3p inhibitor. In addition, the small interfering RNA against acyl-CoA synthase long chain family member 4 (ACSL4) was used to knock down endogenous ACSL4 expression. To validate the combined effects between miR-670-3p inhibitor and temozolomide (TMZ), cells were pretreated with TMZ and then transfected with or without miR-670-3p inhibitor. miR-670-3p level was elevated in human glioblastoma, but decreased upon ferroptotic stimulation. miR-670-3p inhibitor suppressed, while miR-670-3p mimic promoted glioblastoma cell growth through modulating ferroptosis. Mechanistically, ACSL4 was required for the regulation on ferroptosis and growth of glioblastoma cells by miR-670-3p. Moreover, U87MG and A172 cells treated with miR-670-3p inhibitor showed an increased chemosensitivity to TMZ. We prove that miR-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4, and that inhibiting miR-670-3p can be an alternative, at least adjuvant strategy to treat glioblastoma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Coenzima A Ligasas/antagonistas & inhibidores , Ferroptosis , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , MicroARNs/genética , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Células Tumorales Cultivadas
11.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299302

RESUMEN

Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.


Asunto(s)
Acetatos/farmacología , Quimiocina CCL2/biosíntesis , Ácidos Grasos Volátiles/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Acetatos/administración & dosificación , Quimiocina CCL2/genética , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/metabolismo , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Volátiles/administración & dosificación , Humanos , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Monocitos/inmunología , FN-kappa B/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células THP-1 , Triazenos/farmacología , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/farmacología
12.
ASN Neuro ; 13: 17590914211010647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33906483

RESUMEN

Intracerebral haemorrhage (ICH) is a devastating subtype of stroke with high morbidity and mortality. It has been reported that paeonol (PAN) inhibits the progression of ICH. However, the mechanism by which paeonol mediates the progression of ICH remains unclear. To mimic ICH in vitro, neuronal cells were treated with hemin. An in vivo model of ICH was established to detect the effect of paeonol on ferroptosis in neurons during ICH. Cell viability was tested by MTT assay. Furthermore, cell injury was detected by GSH, MDA and ROS assays. Ferroptosis was examined by iron assay. RT-qPCR and western blotting were used to detect gene and protein expression, respectively. The correlation among HOTAIR, UPF1 and ACSL4 was explored by FISH, RNA pull-down and RIP assays. Paeonol significantly inhibited the ferroptosis of neurons in ICH mice. In addition, paeonol significantly reversed hemin-induced injury and ferroptosis in neurons, while this phenomenon was notably reversed by HOTAIR overexpression. Moreover, paeonol notably inhibited ferroptosis in hemin-treated neuronal cells via inhibition of ACSL4. Additionally, HOTAIR bound to UPF1, and UPF1 promoted the degradation of ACSL4 by binding to ACSL4. Furthermore, HOTAIR overexpression reversed paeonol-induced inhibition of ferroptosis by mediating the UPF1/ACSL4 axis. Paeonol inhibits the progression of ICH by mediating the HOTAIR/UPF1/ACSL4 axis. Therefore, paeonol might serve as a new agent for the treatment of ICH.


Asunto(s)
Acetofenonas/uso terapéutico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/prevención & control , Coenzima A Ligasas/metabolismo , ARN Largo no Codificante/metabolismo , Transactivadores/metabolismo , Acetofenonas/farmacología , Animales , Coenzima A Ligasas/antagonistas & inhibidores , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo
13.
Sci Rep ; 11(1): 7290, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790399

RESUMEN

Cancer can develop into a recurrent metastatic disease with latency periods of years to decades. Dormant cancer cells, which represent a major cause of recurrent cancer, are relatively insensitive to most chemotherapeutic drugs and radiation. We previously demonstrated that cancer cells exhibited dormancy in a cell density-dependent manner. Dormant cancer cells exhibited increased porphyrin metabolism and sensitivity to 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT). However, the metabolic changes in dormant cancer cells or the factors that enhance porphyrin metabolism have not been fully clarified. In this study, we revealed that lipid metabolism was increased in dormant cancer cells, leading to ALA-PDT sensitivity. We performed microarray analysis in non-dormant and dormant cancer cells and revealed that lipid metabolism was remarkably enhanced in dormant cancer cells. In addition, triacsin C, a potent inhibitor of acyl-CoA synthetases (ACSs), reduced protoporphyrin IX (PpIX) accumulation and decreased ALA-PDT sensitivity. We demonstrated that lipid metabolism including ACS expression was positively associated with PpIX accumulation. This research suggested that the enhancement of lipid metabolism in cancer cells induces PpIX accumulation and ALA-PDT sensitivity.


Asunto(s)
Ácido Aminolevulínico/farmacología , Metabolismo de los Lípidos , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Neoplasias de la Próstata/metabolismo , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/metabolismo , Humanos , Masculino , Células PC-3 , Porfirinas/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Triazenos/farmacología
14.
Biochem Biophys Res Commun ; 545: 81-88, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33548628

RESUMEN

Cervical cancer remains the leading cause of cancerous death among women worldwide. Oleanolic acid (OA) is a substance that occurs naturally in the leaves, fruits, and rhizomes of plants and has anti-cancer activity. In this study, tumor-bearing mice were used as the animal model and Hela cells were used as cellular model. In vivo experiments have showed that OA significantly reduced the size and mass of cervical cancer tumors in mice. In vitro experiments have showed that OA significantly reduced the viability and proliferative capacity of Hela cells. In both in vivo and in vitro assays, OA increased the oxidative stress levels and Fe2+ content, and increased the expression of ferroptosis-related proteins. We found that ACSL4 was highly expressed in both xenograft models and cervical carcinoma cells with OA treatment. Further use of siRNA to interfere with ACSL4 expression in cervical cancer cells revealed that the inhibitory effect of OA on cell viability and proliferative capacity was counteracted, while a decrease in ROS levels and GPX4 was detected, suggesting that OA activated ferroptosis in Hela cells by promoting ACSL4 expression, thereby reducing the survival rate of Hela cells. Therefore, promotion of ACSL4-dependent ferroptosis by OA may be a potential approach for the treatment of cervical cancer.


Asunto(s)
Coenzima A Ligasas/metabolismo , Ácido Oleanólico/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/genética , Femenino , Ferroptosis/efectos de los fármacos , Células HeLa , Humanos , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cell Mol Life Sci ; 78(6): 2893-2910, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33068124

RESUMEN

Acyl-CoA synthetase 4 (ACSL4) is an isoenzyme of the fatty acid ligase-coenzyme-A family taking part in arachidonic acid metabolism and steroidogenesis. ACSL4 is involved in the development of tumor aggressiveness in breast and prostate tumors through the regulation of various signal transduction pathways. Here, a bioinformatics analysis shows that the ACSL4 gene expression and proteomic signatures obtained using a cell model was also observed in tumor samples from breast and cancer patients. A well-validated ACSL4 inhibitor, however, has not been reported hindering the full exploration of this promising target and its therapeutic application on cancer and steroidogenesis inhibition. In this study, ACSL4 inhibitor PRGL493 was identified using a homology model for ACSL4 and docking based virtual screening. PRGL493 was then chemically characterized through nuclear magnetic resonance and mass spectroscopy. The inhibitory activity was demonstrated through the inhibition of arachidonic acid transformation into arachidonoyl-CoA using the recombinant enzyme and cellular models. The compound blocked cell proliferation and tumor growth in both breast and prostate cellular and animal models and sensitized tumor cells to chemotherapeutic and hormonal treatment. Moreover, PGRL493 inhibited de novo steroid synthesis in testis and adrenal cells, in a mouse model and in prostate tumor cells. This work provides proof of concept for the potential application of PGRL493 in clinical practice. Also, these findings may prove key to therapies aiming at the control of tumor growth and drug resistance in tumors which express ACSL4 and depend on steroid synthesis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Coenzima A Ligasas/metabolismo , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Animales , Sitios de Unión , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Coenzima A Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Próstata/citología , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Esteroides/sangre , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Bioorg Med Chem Lett ; 33: 127722, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33285268

RESUMEN

Long-chain acyl-CoA synthetase-1 (ACSL1), an enzyme that catalyzes the synthesis of long-chain acyl-CoA from the corresponding fatty acids, is believed to play essential roles in lipid metabolism. Structure activity relationship studies based on HTS hit compound 1 delivered the benzimidazole series as the first selective and highly potent ACSL1 inhibitors. Representative compound 13 exhibited not only remarkable inhibitory activity against ACSL1 (IC50 = 0.042 µM) but also excellent selectivity for the other ACSL isoforms. In addition, compound 13 demonstrated an in vivo suppression effect against the production of long-chain acyl-CoAs in mouse.


Asunto(s)
Bencimidazoles/farmacología , Coenzima A Ligasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Animales , Bencimidazoles/síntesis química , Bencimidazoles/química , Coenzima A Ligasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ratones , Ratones Noqueados , Estructura Molecular , Relación Estructura-Actividad
17.
FASEB J ; 34(12): 16262-16275, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33070393

RESUMEN

Lung ischemia-reperfusion (IR) injury is a common clinical pathology associated with high mortality. Ferroptosis, a novel mode of cell death elicited by iron-dependent phospholipid peroxidation, has been implicated in ischemic events. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is one of the main enzymes in pro-ferroptotic lipid metabolism. In this study, the involvement of ferroptotic death in different durations of reperfusion was evaluated by assessing the iron content, malondialdehyde, and glutathione levels, ferroptosis-related protein expression, and mitochondria morphology. The roles of ferroptosis-specific inhibitor, liproxastin-1 (Lip-1), and ACSL4 modulation in a preventive regimen were assessed in vivo and in vitro. The hallmarks of pulmonary function, such as histological lung injury score, wet/dry ratio, and oxygenation index, were evaluated as well. Results showed that lung IR increased the tissue iron content and lipid peroxidation accumulation, along with key protein (GPX4 and ACSL4) expression alteration during reperfusion. Pretreatment with Lip-1 inhibited ferroptosis and ameliorated lung IR-induced injury in animal and cell models. In addition, administering ACSL4 inhibitor rosiglitazone before ischemia diminished the ferroptotic damage in IR-injured lung tissue, consistent with the protective effect of ACSL4 knockdown on lung epithelial cells subjected to hypoxia/reoxygenation. Thus, this study delineated that IR-induced ferroptotic cell death in lung tissue and ACSL4 were correlated with this process. Inhibition of ferroptosis and ACSL4 mitigated the ferroptotic damage in IR-induced lung injury by reducing lipid peroxidation and increasing the glutathione and GPX4 levels.


Asunto(s)
Coenzima A Ligasas/antagonistas & inhibidores , Ferroptosis/efectos de los fármacos , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismo , Pulmón/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Rosiglitazona/farmacología , Células A549 , Animales , Muerte Celular/fisiología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glutatión/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Daño por Reperfusión/metabolismo
18.
PLoS One ; 15(10): e0240659, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33057430

RESUMEN

SR-BI binds various lipoproteins, including HDL, LDL as well as VLDL, and mediates selective cholesteryl ester (CE) uptake. HDL derived CE accumulates in cellular lipid droplets (LDs), which also store triacylglycerol (TAG). We hypothesized that SR-BI could significantly facilitate LD formation, in part, by directly transporting LDL derived neutral lipids (NL) such as CE and TAG into LDs without lipolysis and de novo lipid synthesis. SR-BI overexpression greatly increased LDL uptake and LD formation in stably transfected HeLa cells (SR-BI-HeLa). LDs isolated from SR-BI-HeLa contained 4- and 7-times more CE and TAG, respectively, than mock-transfected HeLa (Mock-HeLa). In contrast, LDL receptor overexpression in HeLa (LDLr-HeLa) greatly increased LDL uptake, degradation with moderate 1.5- and 2-fold increases of CE and TAG, respectively. Utilizing CE and TAG analogs, BODIPY-TAG (BP-TAG) and BODIPY-CE (BP-CE), for tracking LDL NL, we found that after initial binding of LDL to SR-BI-HeLa, apoB remained at the cell surface, while BP-CE and BP-TAG were sorted and simultaneously transported together to LDs. Both lipids demonstrated limited internalization to lysosomes or endoplasmic reticulum in SR-BI-HeLa. In LDLr-HeLa, NLs demonstrated clear lysosomal sequestration without their sorting to LDs. An inhibition of TAG and CE de novo synthesis by 90-95% only reduced TAG and CE LD content by 45-50%, and had little effect on BP-CE and BP-TAG transport to LDs in SR-BI HeLa. Furthermore, intravenous infusion of 1-2 mg of LDL increased liver LDs in normal (WT) but not in SR-BI KO mice. Mice transgenic for human SR-BI demonstrated higher liver LD accumulation than WT mice. Finally, Electro Spray Infusion Mass Spectrometry (ESI-MS) using deuterated d-CE found that LDs accumulated up to 40% of unmodified d-CE LDL. We conclude that SR-BI mediates LDL-induced LD formation in vitro and in vivo. In addition to cytosolic NL hydrolysis and de novo lipid synthesis, this process includes selective sorting and transport of LDL NL to LDs with limited lysosomal NL sequestration and the transport of LDL CE, and TAG directly to LDs independently of de novo synthesis.


Asunto(s)
Gotas Lipídicas/metabolismo , Lípidos/química , Lipoproteínas LDL/metabolismo , Receptores Depuradores de Clase B/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Compuestos de Boro/metabolismo , Ésteres del Colesterol/metabolismo , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/metabolismo , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Gotas Lipídicas/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/metabolismo , Triazenos/farmacología , Triglicéridos/metabolismo
19.
Oncol Rep ; 44(6): 2595-2609, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33125108

RESUMEN

Although previous studies have demonstrated that triterpenoids, such as betulinic acid (BA), can inhibit tumor cell growth, their potential targets in colorectal cancer (CRC) metabolism have not been systematically investigated. In the present study, BA­loaded nanoliposomes (BA­NLs) were prepared, and their effects on CRC cell lines were evaluated. The aim of the present study was to determine the anticancer mechanisms of action of BA­NLs in fatty acid metabolism­mediated glycolysis, and investigate the role of key targets, such as acyl­CoA synthetase (ACSL), carnitine palmitoyltransferase (CPT) and acetyl CoA, in promoting glycolysis, which is activated by inducing hexokinase (HK), phosphofructokinase­1 (PFK­1), phosphoenolpyruvate (PEP) and pyruvate kinase (PK) expression. The results demonstrated that BA­NLs significantly suppressed the proliferation and glucose uptake of CRC cells by regulating potential glycolysis and fatty acid metabolism targets and pathways, which forms the basis of the anti­CRC function of BA­NLs. Moreover, the effects of BA­NLs were further validated by demonstrating that the key targets of HK2, PFK­1, PEP and PK isoenzyme M2 (PKM2) in glycolysis, and of ACSL1, CPT1a and PEP in fatty acid metabolism, were blocked by BA­NLs, which play key roles in the inhibition of glycolysis and fatty acid­mediated production of pyruvate and lactate. The results of the present study may provide a deeper understanding supporting the hypothesis that liposomal BA may regulate alternative metabolic pathways implicated in CRC adjuvant therapy.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Nanopartículas/química , Triterpenos Pentacíclicos/administración & dosificación , Efecto Warburg en Oncología/efectos de los fármacos , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/metabolismo , Neoplasias Colorrectales/patología , Ácidos Grasos/metabolismo , Células HCT116 , Humanos , Liposomas , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Transducción de Señal/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Ácido Betulínico , Proteínas de Unión a Hormona Tiroide
20.
Pharmacol Res ; 161: 105228, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33027714

RESUMEN

Fatty acid transport protein 2 (FATP2) is a multifunctional protein whose specific function is determined by the type of located cell, its intracellular location, or organelle-specific interactions. In the different diseases setting, a newfound appreciation for the biological function of FATP2 has come into view. Two main functions of FATP2 are to activate long-chain fatty acids (LCFAs) as a very long-chain acyl-coenzyme A (CoA) synthetase (ACSVL) and to transport LCFAs as a fatty acid transporter. FATP2 is not only involved in the occurrence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), but also plays an important role in lithogenic diet-induced cholelithiasis, the formation of cancer tumor immunity, the progression of chronic kidney disease (CKD), and the regulation of zoledronate-induced nephrotoxicity. Herein, we review the updated information on the role of FATP2 in related diseases. In particular, we discuss the new functions of FATP2 and propose that FATP2 is a potential clinical biomarker and therapeutic target. In conclusion, regulatory strategies for FATP2 may bring new treatment options for cancer and lipid metabolism-related disorders.


Asunto(s)
Antineoplásicos/farmacología , Coenzima A Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hipolipemiantes/farmacología , Enfermedades Renales/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Biomarcadores/metabolismo , Coenzima A Ligasas/metabolismo , Humanos , Enfermedades Renales/enzimología , Enfermedades Renales/patología , Hígado/enzimología , Hígado/patología , Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/patología , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...