Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(33): e2401133121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102538

RESUMEN

The hierarchic assembly of fibrillar collagen into an extensive and ordered supramolecular protein fibril is critical for extracellular matrix function and tissue mechanics. Despite decades of study, we still know very little about the complex process of fibrillogenesis, particularly at the earliest stages where observation of rapidly forming, nanoscale intermediates challenges the spatial and temporal resolution of most existing microscopy methods. Using video rate scanning atomic force microscopy (VRS-AFM), we can observe details of the first few minutes of collagen fibril formation and growth on a mica surface in solution. A defining feature of fibrillar collagens is a 67-nm periodic banding along the fibril driven by the organized assembly of individual monomers over multiple length scales. VRS-AFM videos show the concurrent growth and maturation of small fibrils from an initial uniform height to structures that display the canonical banding within seconds. Fibrils grow in a primarily unidirectional manner, with frayed ends of the growing tip latching onto adjacent fibrils. We find that, even at extremely early time points, remodeling of growing fibrils proceeds through bird-caging intermediates and propose that these dynamics may provide a pathway to mature hierarchic assembly. VRS-AFM provides a unique glimpse into the early emergence of banding and pathways for remodeling of the supramolecular assembly of collagen during the inception of fibrillogenesis.


Asunto(s)
Microscopía de Fuerza Atómica , Imagen Individual de Molécula , Microscopía de Fuerza Atómica/métodos , Imagen Individual de Molécula/métodos , Animales , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/química , Colágeno/metabolismo , Colágeno/química , Silicatos de Aluminio
2.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38920105

RESUMEN

Fibroblasts embedded in a 3D matrix microenvironment can remodel the matrix to regulate cell adhesion and function. Collagen hydrogels are a useful in vitro system to study cell-matrix interactions in a 3D microenvironment. While major matrix reorganizations are easily recognizable, subtle changes in response to environmental or biochemical cues are challenging to discern in 3D hydrogels. Three-dimensional collagen gels at 1.0 mg/ml vs 1.5 mg/ml were labelled with DQ-collagen and imaged by confocal reflectance microscopy to evaluate these small changes. An image analysis pipeline was developed, hydrogel area and number of crosssections analysed were optimized, and fibrillar collagen properties (number of branches, number of junctions, and average branch length) were quantified. While no significant changes were seen in fibrillar collagen organization between 1.0 mg/ml and 1.5 mg/ml collagen hydrogels, embedded mouse fibroblasts caused a significant increase in collagen branching and organization. Using the phalloidin-labelled cells, this change was quantitated in immediate proximity of the cell. A distinct increase in branch and junction numbers was observed, significantly altered by small changes in collagen concentration (1.0 mg/ml vs 1.5 mg/ml). Together, this analysis gives a quantitative evaluation of how cells respond to and modify their immediate microenvironment in a 3D collagen hydrogel.


Asunto(s)
Fibroblastos , Hidrogeles , Hidrogeles/química , Animales , Fibroblastos/metabolismo , Fibroblastos/citología , Ratones , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Colágenos Fibrilares/química , Colágenos Fibrilares/ultraestructura , Microscopía Confocal , Colágeno/química , Adhesión Celular
3.
J Mol Biol ; 436(16): 168667, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38901640

RESUMEN

The excessive deposition of fibrillar collagens is a hallmark of fibrosis. Collagen fibril formation requires proteolytic maturations by Procollagen N- and C-proteinases (PNPs and PCPs) to remove the N- and C-propeptides which maintain procollagens in the soluble form. Procollagen C-Proteinase Enhancer-1 (PCPE-1, a glycoprotein composed of two CUB domains and one NTR domain) is a regulatory protein that activates the C-terminal processing of procollagens by the main PCPs. It is often up-regulated in fibrotic diseases and represents a promising target for the development of novel anti-fibrotic strategies. Here, our objective was to develop the first antagonists of PCPE-1, based on the nanobody scaffold. Using both an in vivo selection through the immunization of a llama and an in vitro selection with a synthetic library, we generated 18 nanobodies directed against the CUB domains of PCPE1, which carry its enhancing activity. Among them, I5 from the immune library and H4 from the synthetic library have a high affinity for PCPE-1 and inhibit its interaction with procollagens. The crystal structure of the complex formed by PCPE-1, H4 and I5 showed that they have distinct epitopes and enabled the design of a biparatopic fusion, the diabody diab-D1. Diab-D1 has a sub-nanomolar affinity for PCPE-1 and is a potent antagonist of its activity, preventing the stimulation of procollagen cleavage in vitro. Moreover, Diab-D1 is also effective in reducing the proteolytic maturation of procollagen I in cultures of human dermal fibroblasts and hence holds great promise as a tool to modulate collagen deposition in fibrotic conditions.


Asunto(s)
Proteolisis , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/inmunología , Animales , Humanos , Camélidos del Nuevo Mundo , Procolágeno/metabolismo , Procolágeno/química , Dominios Proteicos , Modelos Moleculares , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/química , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/química , Cristalografía por Rayos X
4.
Int J Biol Macromol ; 256(Pt 2): 128489, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043667

RESUMEN

Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.


Asunto(s)
Colágeno Tipo I , Pepsina A , Caballos , Animales , Pepsina A/metabolismo , Colágeno/química , Colágenos Fibrilares/química , Tendones/química
5.
Methods Mol Biol ; 2614: 187-235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587127

RESUMEN

With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Colágenos Fibrilares/química , Diagnóstico por Imagen , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo
6.
Subcell Biochem ; 99: 495-521, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151387

RESUMEN

The diverse and complex functions of collagen during the development of an organism are closely related to the polymorphism of its supramolecular structures in the extracellular matrix. SLS (segment-long-spacing) is one of the best understood alternative structures of collagen. SLS played an instrumental role in the original studies of collagen more than half a century ago that laid the foundation of nearly everything we know about collagen today. Despite being used mostly under in vitro conditions, the natural occurrence of SLS in tissues has also been reported. Here we will provide a brief overview of the major findings of the SLS and other structures of collagen based on a wealth of work published starting from the 1940s. We will discuss the factors that determine the stability and the structural specificity of the different molecular assemblies of collagen in light of the new studies using designed fibril forming collagen peptides. At the end of the chapter, we will summarize some recent discoveries of the alternative structures of collagen in tissues, especially those involved in pathogenic states. A revisit of SLS will likely inspire new understandings concerning the range of critical roles of fibrillar collagen in terms of its organizational diversity in the extracellular matrix.


Asunto(s)
Colágeno , Colágenos Fibrilares , Colágeno/química , Matriz Extracelular , Colágenos Fibrilares/química
7.
Genes (Basel) ; 13(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35885981

RESUMEN

The fibrillar collagen family is comprised of the quantitatively major types I, II and III collagens and the quantitatively minor types V and XI. These form heterotypic collagen fibrils (composed of more than a single collagen type) where the minor collagens have a regulatory role in controlling fibril formation and diameter. The structural pre-requisites for normal collagen biosynthesis and fibrillogenesis result in many places where this process can be disrupted, and consequently a wide variety of phenotypes result when pathogenic changes occur in these fibrillar collagen genes. Another contributing factor is alternative splicing, both naturally occurring and as the result of pathogenic DNA alterations. This article will discuss how these factors should be taken into account when assessing DNA sequencing results from a patient.


Asunto(s)
Colágeno , Colágenos Fibrilares , Colágeno/genética , Matriz Extracelular , Colágenos Fibrilares/química , Colágenos Fibrilares/genética
8.
Biochim Biophys Acta Proteins Proteom ; 1870(5): 140771, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35306228

RESUMEN

Dermatopontin (DPT), a small extracellular matrix protein that stimulates collagen fibrillogenesis, contains sulfotyrosine residues but neither its level of sulfation nor its binding sites on fibrillar collagens are known. Here, we discovered that DPT is present in a relatively high mass concentration (~ 0.02%) in porcine corneal stroma, from which we purified five DPT charge variants (A-E) containing up to six sulfations. The major variant (C), containing four sulfotyrosine residues, was used to locate binding sites for DPT on triple-helical collagens II and III using the Collagen Toolkits. DPT-binding loci included the triple helix crosslinking sites and collagenase cleavage site. We find that strong DPT-binding sites on triple-helical collagen comprise an arginine-rich, positively-charged sequence that also contains hydrophobic residues. This collagen-binding signature of DPT is similar to that of the chaperone HSP47. Thus, we propose that DPT assumes the role of HSP47 as a collagen chaperone during and after the secretion. Peptide II-44, harbouring the conserved collagenase cleavage site, shows the strongest DPT-binding of the Collagen Toolkit II peptides. Substituting any of the three arginine residues (R) with alanine in the sequence GLAGQRGIVGLOGQRGER of II-44 resulted in almost complete loss of DPT binding. Since osteogenesis imperfecta, spondyloepiphyseal dysplasia, and spondyloepimetaphyseal dysplasia congenita are associated with missense mutations that substitute the corresponding arginine residues in collagens alpha-1(I) and alpha-1(II), we suggest that disrupted DPT binding to fibrillar collagens may contribute to these connective tissue disorders. In conclusion, the present work provides a cornerstone for further elucidation of the role of DPT.


Asunto(s)
Colágeno , Tirosina , Animales , Arginina , Sitios de Unión , Adhesión Celular , Colágeno/química , Colágeno/metabolismo , Colágeno Tipo I , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Péptidos/química , Porcinos , Tirosina/análogos & derivados
9.
Int J Biol Macromol ; 189: 380-390, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34428491

RESUMEN

Recently, the collagen-keratin (CK) composites have received much attention for the purpose of biomedical applications due to the intrinsic biocompatibility and biodegradability of these two proteins. However, few studies have reported the CK composites developed by the self-assembly approach and the influence of the keratin on the collagen self-assembly in vitro was still unknown. In this study, the keratin nanoparticles (KNPs) were successfully prepared by the reduction method, and we focused on investigating the effect of the varying concentrations of KNPs on the mechanism of the fibrillogenesis process of collagen. The intermolecular interaction between the two proteins revealed by the ultraviolet spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy and circular dichromatic (CD) spectroscopy showed that KNPs would interact with the collagen, and keratin significantly influenced the hydrogen bonding interaction existed in collagen molecules. The SEM images exhibited the formation of exquisite fibrillar networks after incorporating the KNPs into collagen, and it was conspicuous that the KNPs could uniformly distribute on the surface of collagen fibrils via electrostatic interaction, for both of the two proteins possessed many charged moieties. In addition, the AFM images confirmed the presence of the characteristic D-periodicity of collagen fibrils, indicating that the introduction of KNPs did not disrupt the self-assembly nature of the native collagen. The cell adhesion, proliferation and migration experiments on the CK fibrils were also performed in this study. The results demonstrated that the CK composites showed a better cellular affinity compared with the collagen, thus it might be a promising candidate for the biomedical applications.


Asunto(s)
Colágenos Fibrilares/química , Fibroblastos/citología , Queratinas/química , Nanopartículas/química , Animales , Bovinos , Adhesión Celular , Muerte Celular , Movimiento Celular , Proliferación Celular , Dispersión Dinámica de Luz , Colágenos Fibrilares/ultraestructura , Humanos , Queratinas/ultraestructura , Cinética , Ratones , Microscopía de Fuerza Atómica , Células 3T3 NIH , Nanopartículas/ultraestructura , Nefelometría y Turbidimetría , Tamaño de la Partícula , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
10.
Biomolecules ; 11(7)2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34356642

RESUMEN

Collagen and proteoglycans work in unison in the ECM to bear loads, store elastic energy and then dissipate excess energy to avoid tissue fatigue and premature mechanical failure. While collagen fibers store elastic energy by stretching the flexible regions in the triple helix, they do so by lowering their free energy through a reduction in the entropy and a decrease in charge-charge repulsion. Entropic increases occur when the load is released that drive the reversibility of the process and transmission of excess energy. Energy is dissipated by sliding of collagen fibrils by each other with the aid of decorin molecules that reside on the d and e bands of the native D repeat pattern. Fluid flow from the hydration layer associated with the decorin and collagen fibrils hydraulically dissipates energy during sliding. The deformation is reversed by osmotic forces that cause fluid to reform a hydration shell around the collagen fibrils when the loads are removed. In this paper a model is presented describing the organization of collagen fibers in the skin and cell-collagen mechanical relationships that exist based on non-invasive measurements made using vibrational optical coherence tomography. It is proposed that under external stress, collagen fibers form a tensional network in the plane of the skin. Collagen fiber tension along with forces generated by fibroblasts exerted on collagen fibers lead to an elastic modulus that is almost uniform throughout the plane of the skin. Tensile forces acting on cells and tissues may provide a baseline for stimulation of normal mechanotransduction. We hypothesize that during aging, changes in cellular metabolism, cell-collagen interactions and light and UV light exposure cause down regulation of mechanotransduction and tissue metabolism leading to tissue atrophy.


Asunto(s)
Matriz Extracelular/química , Colágenos Fibrilares , Proteoglicanos , Piel/citología , Tomografía de Coherencia Óptica/métodos , Adulto , Anciano , Fenómenos Biomecánicos , Módulo de Elasticidad , Femenino , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Humanos , Masculino , Mecanotransducción Celular , Proteoglicanos/química , Proteoglicanos/metabolismo , Fenómenos Fisiológicos de la Piel , Adulto Joven
11.
Biol Chem ; 402(11): 1309-1324, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34392640

RESUMEN

Controlled wound healing requires a temporal and spatial coordination of cellular activities within the surrounding extracellular matrix (ECM). Disruption of cell-cell and cell-matrix communication results in defective repair, like chronic or fibrotic wounds. Activities of macrophages and fibroblasts crucially contribute to the fate of closing wounds. To investigate the influence of the ECM as an active part controlling cellular behavior, coculture models based on fibrillar 3D biopolymers such as collagen have already been successfully used. With well-defined biochemical and biophysical properties such 3D scaffolds enable in vitro studies on cellular processes including infiltration and differentiation in an in vivo like microenvironment. Further, paracrine and autocrine signaling as well as modulation of soluble mediator transport inside the ECM can be modeled using fibrillar 3D scaffolds. Herein, we review the usage of these scaffolds in in vitro coculture models allowing in-depth studies on the crosstalk between macrophages and fibroblasts during different stages of cutaneous wound healing. A more accurate mimicry of the various processes of cellular crosstalk at the different stages of wound healing will contribute to a better understanding of the impact of biochemical and biophysical environmental parameters and help to develop further strategies against diseases such as fibrosis.


Asunto(s)
Biopolímeros/metabolismo , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Macrófagos/metabolismo , Biopolímeros/química , Matriz Extracelular/química , Colágenos Fibrilares/química , Humanos , Macrófagos/química , Cicatrización de Heridas
12.
Int J Biol Macromol ; 185: 739-749, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34216674

RESUMEN

Nature provides rich bionic resources for the construction of advanced materials with excellent mechanical properties. In this work, inspired by animal tendons, a bionic collagen fiber was developed using collagen liquid crystals as the pre-oriented bioink. The texture of liquid crystalline collagen observed from polarized optical microscopy (POM) showed the specific molecular pre-orientation. Meanwhile, the collagen spinning liquids exhibited a minimal rise in viscosity upon increasing concentration from 60 to 120 mg/mL, indicating the feasible processability. The collagen fiber, which was prepared via wet spinning without being denatured, exhibited the favorable orientation of fibrils along its axis as observed with FESEM and AFM. Thanks to the synergistic effects between pre-orientation and shearing orientation, the maximum tensile strength and Young's modulus of collagen fibers reached 9.98 cN/tex (219.29 ± 22.92 MPa) and 43.95 ± 1.11 cN/tex (966.20 ± 24.30 MPa), respectively, which were also analogous to those of tendon. In addition, the collagen fiber possessed a desirable wet strength. Benefiting from the natural tissue affinity of collagen, the as-prepared bionic collagen fiber possessed excellent wound suture performance and biodegradability in vivo, which offers a new perspective for the potential of widespread applications of collagen fibers in biomedical fields.


Asunto(s)
Colágenos Fibrilares/farmacología , Cristales Líquidos/química , Tendones , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Modelos Animales de Enfermedad , Módulo de Elasticidad , Colágenos Fibrilares/química , Ratas , Ratas Sprague-Dawley , Resistencia a la Tracción , Ingeniería de Tejidos , Viscosidad
13.
Nat Commun ; 12(1): 2328, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879793

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a collagen-rich dense extracellular matrix (ECM) that promotes malignancy of cancer cells and presents a barrier for drug delivery. Data analysis of our published mass spectrometry (MS)-based studies on enriched ECM from samples of progressive PDAC stages reveal that the C-terminal prodomains of fibrillar collagens are partially uncleaved in PDAC ECM, suggesting reduced procollagen C-proteinase activity. We further show that the enzyme responsible for procollagen C-proteinase activity, bone morphogenetic protein1 (BMP1), selectively suppresses tumor growth and metastasis in cells expressing high levels of COL1A1. Although BMP1, as a secreted proteinase, promotes fibrillar collagen deposition from both cancer cells and stromal cells, only cancer-cell-derived procollagen cleavage and deposition suppresses tumor malignancy. These studies reveal a role for cancer-cell-derived fibrillar collagen in selectively restraining tumor growth and suggest stratification of patients based on their tumor epithelial collagen I expression when considering treatments related to perturbation of fibrillar collagens.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Colágenos Fibrilares/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Animales , Proteína Morfogenética Ósea 1/metabolismo , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Colágeno Tipo I/química , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Colágenos Fibrilares/química , Colágenos Fibrilares/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mutagénesis , Neoplasias Pancreáticas/genética , Procolágeno/química , Procolágeno/genética , Procolágeno/metabolismo , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Biomech Model Mechanobiol ; 20(1): 223-241, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32809131

RESUMEN

Atrioventricular heart valves (AHVs) regulate the unidirectional flow of blood through the heart by opening and closing of the leaflets, which are supported in their functions by the chordae tendineae (CT). The leaflets and CT are primarily composed of collagen fibers that act as the load-bearing component of the tissue microstructures. At the CT-leaflet insertion, the collagen fiber architecture is complex, and has been of increasing focus in the previous literature. However, these previous studies have not been able to quantify the load-dependent changes in the tissue's collagen fiber orientations and alignments. In the present study, we address this gap in knowledge by quantifying the changes in the collagen fiber architecture of the mitral and tricuspid valve's strut CT-leaflet insertions in response to the applied loads by using a unique approach, which combines polarized spatial frequency domain imaging with uniaxial mechanical testing. Additionally, we characterized these microstructural changes across the same specimen without the need for tissue fixatives. We observed increases in the collagen fiber alignments in the CT-leaflet insertion with increased loading, as described through the degree of optical anisotropy. Furthermore, we used a leaflet-CT-papillary muscle entity method during uniaxial testing to quantify the chordae tendineae mechanics, including the derivation of the Ogden-type constitutive modeling parameters. The results from this study provide a valuable insight into the load-dependent behaviors of the strut CT-leaflet insertion, offering a research avenue to better understand the relationship between tissue mechanics and the microstructure, which will contribute to a deeper understanding of AHV biomechanics.


Asunto(s)
Cuerdas Tendinosas/fisiología , Colágenos Fibrilares/química , Válvulas Cardíacas/fisiología , Animales , Anisotropía , Fenómenos Biomecánicos , Birrefringencia , Femenino , Masculino , Porcinos , Válvula Tricúspide/fisiología , Soporte de Peso
15.
Biomech Model Mechanobiol ; 20(1): 93-106, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32705413

RESUMEN

The artery relies on interlamellar structural components, mainly elastin and collagen fibers, for maintaining its integrity and resisting dissection propagation. In this study, the contribution of arterial elastin and collagen fibers to interlamellar bonding was studied through mechanical testing, multiphoton imaging and finite element modeling. Steady-state peeling experiments were performed on porcine aortic media and the purified elastin network in the circumferential (Circ) and longitudinal (Long) directions. The peeling force and energy release rate associated with mode-I failure are much higher for aortic media than for the elastin network. Also, longitudinal peeling exhibits a higher energy release rate and strength than circumferential peeling for both the aortic media and elastin. Multiphoton imaging shows the recruitment of both elastin and collagen fibers within the interlamellar space and points to in-plane anisotropy of fiber distributions as a potential mechanism for the direction-dependent phenomena of peeling tests. Three-dimensional finite element models based on cohesive zone model (CZM) of fracture were created to simulate the peeling tests with the interlamellar energy release rate and separation distance at damage initiation obtained directly from peeling test. Our experimental results show that the separation distance at damage initiation is 80 µm for aortic media and 40 µm for elastin. The damage initiation stress was estimated from the model for aortic media (Circ: 60 kPa; Long: 95 kPa) and elastin (Circ: 9 kPa; Long: 14 kPa). The interlamellar separation distance at complete failure was estimated to be 3 - 4 mm for both media and elastin. Furthermore, elastin and collagen fibers both play an important role in bonding of the arterial wall, while collagen has a higher contribution than elastin to interlamellar stiffness, strength and toughness. These results on microstructural interlamellar failure shed light on the pathological development and progression of aortic dissection.


Asunto(s)
Arterias/fisiología , Elastina/química , Elastina/metabolismo , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Animales , Anisotropía , Aorta/fisiología , Fenómenos Biomecánicos , Simulación por Computador , Elasticidad , Análisis de Elementos Finitos , Microscopía de Fluorescencia por Excitación Multifotónica , Porcinos
16.
J Vis Exp ; (165)2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33252107

RESUMEN

Fibrillar collagens are prominent extracellular matrix (ECM) components, and their topology changes have been shown to be associated with the progression of a wide range of diseases including breast, ovarian, kidney, and pancreatic cancers. Freely available fiber quantification software tools are mainly focused on the calculation of fiber alignment or orientation, and they are subject to limitations such as the requirement of manual steps, inaccuracy in detection of the fiber edge in noisy background, or lack of localized feature characterization. The collagen fiber quantitation tool described in this protocol is characterized by using an optimal multiscale image representation enabled by curvelet transform (CT). This algorithmic approach allows for the removal of noise from fibrillar collagen images and the enhancement of fiber edges to provide location and orientation information directly from a fiber, rather than using the indirect pixel-wise or window-wise information obtained from other tools. This CT-based framework contains two separate, but linked, packages named "CT-FIRE" and "CurveAlign" that can quantify fiber organization on a global, region of interest (ROI), or individual fiber basis. This quantification framework has been developed for more than ten years and has now evolved into a comprehensive and user-driven collagen quantification platform. Using this platform, one can measure up to about thirty fiber features including individual fiber properties such as length, angle, width, and straightness, as well as bulk measurements such as density and alignment. Additionally, the user can measure fiber angle relative to manually or automatically segmented boundaries. This platform also provides several additional modules including ones for ROI analysis, automatic boundary creation, and post-processing. Using this platform does not require prior experience of programming or image processing, and it can handle large datasets including hundreds or thousands of images, enabling efficient quantification of collagen fiber organization for biological or biomedical applications.


Asunto(s)
Colágenos Fibrilares/química , Programas Informáticos , Neoplasias de la Mama/patología , Matriz Extracelular/química , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Factores de Tiempo , Análisis de Matrices Tisulares
17.
Int J Biol Macromol ; 163: 2127-2133, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32946937

RESUMEN

Along with advancements in both protein and chemistry science, the chemical modification of proteins is attracting more and more attention. More specifically, the attachment of polymers or reactive moieties into collagen offers a method to add novel functions to this protein. However, the fibrillogenesis of the modified collagen with high grafting density cannot always be achieved. Here, inspired by the hybrid fibrils of xenogeneic collagen, fibrillogenesis of acrylic acid-grafted-collagen (AAc-g-Col) without self-assembly property was achieved by the induction of natural collagen (Col). The step-by-step co-assembly process of AAc-g-Col and Col was confirmed by turbidity assay. The formation of Col/AAc-g-Col hybrid fibrils was verified by TEM since the acryloyl groups of the hybrid fibrils were labelled using HS-AuNPs based on the Michael addition. Moreover, rheology, SEM, and MTT assays revealed that the fibrillary structures and biocompatibility of the Col/AAc-g-Col hydrogel were comparable to that of the Col hydrogel, although they presented a lower viscoelasticity.


Asunto(s)
Acrilatos/química , Colágenos Fibrilares/química , Hidrogeles/química , Nanopartículas del Metal/química , Colágeno/química , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Colágenos Fibrilares/ultraestructura , Oro/química , Ensayo de Materiales , Microscopía de Fuerza Atómica , Polímeros/química
18.
Mar Drugs ; 18(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796603

RESUMEN

Scaffold material is essential in providing mechanical support to tissue, allowing stem cells to improve their function in the healing and repair of trauma sites and tissue regeneration. The scaffold aids cell organization in the damaged tissue. It serves and allows bio mimicking the mechanical and biological properties of the target tissue and facilitates cell proliferation and differentiation at the regeneration site. In this study, the developed and assayed bio-composite made of unique collagen fibers and alginate hydrogel supports the function of cells around the implanted material. We used an in vivo rat model to study the scaffold effects when transplanted subcutaneously and as an augment for tendon repair. Animals' well-being was measured by their weight and daily activity post scaffold transplantation during their recovery. At the end of the experiment, the bio-composite was histologically examined, and the surrounding tissues around the implant were evaluated for inflammation reaction and scarring tissue. In the histology, the formation of granulation tissue and fibroblasts that were part of the inclusion process of the implanted material were noted. At the transplanted sites, inflammatory cells, such as plasma cells, macrophages, and giant cells, were also observed as expected at this time point post transplantation. This study demonstrated not only the collagen-alginate device biocompatibility, with no cytotoxic effects on the analyzed rats, but also that the 3D structure enables cell migration and new blood vessel formation needed for tissue repair. Overall, the results of the current study proved for the first time that the implantable scaffold for long-term confirms the well-being of these rats and is correspondence to biocompatibility ISO standards and can be further developed for medical devices application.


Asunto(s)
Antozoos/química , Materiales Biocompatibles , Colágenos Fibrilares/química , Implantes Experimentales , Procedimientos Ortopédicos/instrumentación , Lesiones del Manguito de los Rotadores/cirugía , Manguito de los Rotadores/cirugía , Andamios del Tejido , Alginatos/química , Animales , Materiales Biocompatibles/toxicidad , Modelos Animales de Enfermedad , Colágenos Fibrilares/aislamiento & purificación , Colágenos Fibrilares/toxicidad , Reacción a Cuerpo Extraño/etiología , Reacción a Cuerpo Extraño/patología , Hidrogeles , Implantes Experimentales/efectos adversos , Masculino , Procedimientos Ortopédicos/efectos adversos , Diseño de Prótesis , Ratas Wistar , Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/patología , Factores de Tiempo , Andamios del Tejido/efectos adversos , Cicatrización de Heridas
19.
Mar Drugs ; 18(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781644

RESUMEN

Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine.


Asunto(s)
Colágenos Fibrilares/farmacología , Fibroblastos/fisiología , Medicina Regenerativa , Erizos de Mar/química , Alimentos Marinos , Piel Artificial , Andamios del Tejido , Residuos , Animales , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Supervivencia Celular , Cricetinae , Colágenos Fibrilares/química , Colágenos Fibrilares/aislamiento & purificación , Fibroblastos/metabolismo , Manipulación de Alimentos
20.
Proc Natl Acad Sci U S A ; 117(22): 11947-11953, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424103

RESUMEN

Living tissues, heterogeneous at the microscale, usually scatter light. Strong scattering is responsible for the whiteness of bones, teeth, and brain and is known to limit severely the performances of biomedical optical imaging. Transparency is also found within collagen-based extracellular tissues such as decalcified ivory, fish scales, or cornea. However, its physical origin is still poorly understood. Here, we unveil the presence of a gap of transparency in scattering fibrillar collagen matrices within a narrow range of concentration in the phase diagram. This precholesteric phase presents a three-dimensional (3D) orientational order biomimetic of that in natural tissues. By quantitatively studying the relation between the 3D fibrillar network and the optical and mechanical properties of the macroscopic matrices, we show that transparency results from structural partial order inhibiting light scattering, while preserving mechanical stability, stiffness, and nonlinearity. The striking similarities between synthetic and natural materials provide insights for better understanding the occurring transparency.


Asunto(s)
Materiales Biomiméticos , Colágenos Fibrilares , Animales , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Biomimética/métodos , Córnea/química , Colágenos Fibrilares/síntesis química , Colágenos Fibrilares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...