Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621978

RESUMEN

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Metionina/metabolismo , Metionina/farmacología , Interleucina-10/genética , Colina/metabolismo , Colina/farmacología , Colina/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Hígado , Racemetionina/metabolismo , Racemetionina/farmacología , Dieta , ARN Mensajero/metabolismo
2.
Res Vet Sci ; 171: 105205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479101

RESUMEN

Sepsis/endotoxemia associates with coagulation abnormalities. We showed previously that exogenous choline treatment reversed the changes in platelet count and function as well as prevented disseminated intravascular coagulation (DIC) in endotoxemic dogs. The aim of this follow-up study was to evaluate the effect of treatment with choline or cytidine-5'-diphosphocholine (CDP-choline), a choline donor, on endotoxin-induced hemostatic alterations using thromboelastography (TEG). Dogs were randomized to six groups and received intravenously (iv) saline, choline (20 mg/kg) or CDP-choline (70 mg/kg) in the control groups, whereas endotoxin (0.1 mg/kg, iv) was used alone or in combination with choline or CDP-choline at the same doses in the treatment groups. TEG variables including R- and K-time (clot formation), maximum amplitude (MA) and α-angle (clot stability), G value (clot elasticity), and EPL, A, and LY30 (fibrinolysis), as well as overall assessment of coagulation (coagulation index - CI), were measured before and at 0.5-48 h after the treatments. TEG parameters did not change significantly in the control groups, except for CI parameter after choline administration. Endotoxemia resulted in increased R-time and A value (P < 0.05), decreased K-time (P < 0.05), α-angle (P < 0.001) and CI values (P < 0.01) at different time points. Treatment with either choline or CDP-choline attenuated or prevented completely the alterations in TEG parameters in endotoxemic dogs with CDP-choline being more effective. These results confirm and extend the effectiveness of choline or CDP-choline in endotoxemia by further demonstrating their efficacy in attenuating or preventing the altered viscoelastic properties of blood clot measured by TEG.


Asunto(s)
Colina , Citidina Difosfato Colina , Enfermedades de los Perros , Endotoxemia , Animales , Perros , Colina/uso terapéutico , Citidina Difosfato Colina/uso terapéutico , Enfermedades de los Perros/tratamiento farmacológico , Endotoxemia/tratamiento farmacológico , Endotoxemia/veterinaria , Endotoxinas/efectos adversos , Estudios de Seguimiento , Hemostáticos , Tromboelastografía/veterinaria , Tromboelastografía/métodos
3.
Int J Dev Neurosci ; 84(2): 109-121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311365

RESUMEN

The mother's thyroid hormone status during gestation and the first few months after delivery can play a crucial role in maturation during the brain development of the child. Transient abnormalities in thyroid function at birth indicate developmental and cognitive disorders in adulthood. Choline supplementation during gestation and the perinatal period in rats causes long-lasting memory improvement in the offspring. However, it remains unclear whether choline is able to restore the deficits in rats with maternal hypothyroidism. The aim of this study was to evaluate the effects of choline supplementation on the alteration of cognitive-behavioral function, long-term potentiation (LTP), and morphological changes as well as apoptosis in pre-pubertal offspring rats. To induce hypothyroidism, 6-propyl-2-thiouracil was added to the drinking water from the 6th day of gestation to the 21st postnatal day (PND). Choline treatment was started twice a day on the first day of the gestation until PND 21 via gavage. LTP recording and Morris water maze (MWM) test were conducted at PND 28. Then, the rats were sacrificed to assess their brains. The results revealed that developmental thyroid hormone deficiency impaired spatial learning and memory and reduced LTP (both: P < 0.001). Choline treatment alleviated LTP (P < 0.001), as well as learning and memory deficits (P < 0.01) in both male and female hypothyroid rats. However, no significant changes were observed in the number of caspase-3 stained cells in choline-receiving hypothyroid groups. The results revealed that developmental thyroid hormone deficiency impaired spatial learning and memory and reduced LTP. Choline treatment alleviated LTP, as well as learning and memory deficits in both male and female hypothyroid rats.


Asunto(s)
Hipotiroidismo , Potenciación a Largo Plazo , Humanos , Embarazo , Niño , Ratas , Animales , Masculino , Femenino , Madres , Hipotiroidismo/complicaciones , Hipotiroidismo/tratamiento farmacológico , Hormonas Tiroideas/farmacología , Hipocampo , Trastornos de la Memoria/etiología , Cognición , Apoptosis , Colina/uso terapéutico , Colina/farmacología , Suplementos Dietéticos , Aprendizaje por Laberinto
4.
Phytomedicine ; 125: 155337, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241915

RESUMEN

(Background): Cadmium is an environmental pollutant associated with several liver diseases. Baicalin and N-Acetylcysteine have antioxidant and hepatoprotective effects. (Purpose): However, it is unclear whether baicalin and N-Acetylcysteine can alleviate Cadmium -induced liver fibrosis by regulating metabolism, or whether they exert a synergistic effect. (Study design): We treated Cadmium-poisoned mice with baicalin, N-Acetylcysteine, or baicalin+ N-Acetylcysteine. We studied the effects of baicalin and N-Acetylcysteine on Cadmium-induced liver fibers and their specific mechanisms. (Methods): We used C57BL/6 J mice, and AML12, and HSC-6T cells to establish in vitro assays and in vivo models. (Results): Metabolomics was used to detect the effect of baicalin and N-Acetylcysteine on liver metabolism, which showed that compared with the control group, the Cadmium group had increased fatty acid and amino acid levels, with significantly reduced choline and acetylcholine contents. Baicalin and N-Acetylcysteine alleviated these Cadmium-induced metabolic changes. We further showed that choline alleviated Cadmium -induced liver inflammation and fibrosis. In addition, cadmium significantly promoted extracellular leakage of lactic acid, while choline alleviated the cadmium -induced destruction of the cell membrane structure and lactic acid leakage. Western blotting showed that cadmium significantly reduced mitochondrial transcription factor A (TFAM) and Choline Kinase α(CHKα2) levels, and baicalin and N-Acetylcysteine reversed this effect. Overexpression of Tfam in mouse liver and AML12 cells increased the expression of CHKα2 and the choline content, alleviating and cadmium-induced lactic acid leakage, liver inflammation, and fibrosis. (Conclusion): Overall, baicalin and N-Acetylcysteine alleviated cadmium-induced liver damage, inflammation, and fibrosis to a greater extent than either drug alone. TFAM represents a target for baicalin and N-Acetylcysteine, and alleviated cadmium-induced liver inflammation and fibrosis by regulating hepatic choline metabolism.


Asunto(s)
Acetilcisteína , Cadmio , Flavonoides , Ratones , Animales , Acetilcisteína/farmacología , Cadmio/toxicidad , Ratones Endogámicos C57BL , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado , Inflamación/metabolismo , Colina/metabolismo , Colina/farmacología , Colina/uso terapéutico , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Ácido Láctico/uso terapéutico
5.
Semergen ; 50(1): 102089, 2024.
Artículo en Español | MEDLINE | ID: mdl-37862810

RESUMEN

Pregnancy is one of the most important and difficult moments that a woman goes through throughout her life. It is a period of great need for macro and micronutrients to meet the demands of the developing fetus and avoid deficiencies, in order to obtain the best possible result. Nowadays, most women who are pregnant or planning to become pregnant know the importance of getting the required amount of certain types of nutrients (proteins, fats, folate, etc.), as well as avoiding certain compounds (alcohol, tobacco, drugs, etc.) to avoid possible complications during pregnancy. In recent years, with the greatest scientific evidence available, it has been shown how some of these nutrients could have a more relevant role than previously believed in the optimal outcome of pregnancy. One of these nutrients being choline. Choline supplementation during pregnancy has been shown to be a non-pharmacological treatment capable of improving both physical (growth) and mental (memory) qualities of the new individual. Choline has been known as an essential nutrient since 1998 and several studies have shown its effectiveness in rodent models. The existence of recent publications that deal with its application in humans makes it necessary to carry out a systematic review. In this systematic review of the scientific evidence available from 2012 to the present that deals with the application of a higher intake of choline through supplementation as a treatment to improve pregnancy outcomes, its main objetive is to determine the effects that a nutritional intervention through choline supplementation in pregnant mothers can have on children's cognition. For this, 9studies have been analyzed where the treatment given to pregnant women is revealed, this being choline supplementation in different modalities (choline chloride, choline bitartrate, and phosphatidylcholine) and the different effects produced in the children of these mothers who have resulted from these treatment modalities. We conclude by stating that choline supplementation during pregnancy appears to be effective in improving or increasing cognition in children.


Asunto(s)
Colina , Suplementos Dietéticos , Niño , Femenino , Humanos , Embarazo , Colina/farmacología , Colina/uso terapéutico , Mujeres Embarazadas , Lactancia , Micronutrientes
6.
Biomed Pharmacother ; 170: 116093, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159378

RESUMEN

Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine and metabolic disorder that is closely associated with the proliferation and apoptosis of ovarian granulosa cells (GCs). Ampelopsis japonica (AJ) is the dried tuberous root of Ampelopsis japonica (Thunb.) Makino (A. japonica), with anti-inflammatory, antioxidant, antibacterial, antiviral, wound-healing, and antitumor properties; however, it is unclear whether this herb has a therapeutic effect on PCOS. Therefore, this study aimed to investigate the pharmacological effect of AJ on PCOS and reveal its potential mechanism of action. A PCOS rat model was established using letrozole. After establishing the PCOS model, the rats received oral treatment of AJ and Diane-35 (Positive drug: ethinylestradiol + cyproterone tablets) for 2 weeks. Lipidomics was conducted using liquid-phase mass spectrometry and chromatography. AJ significantly regulated serum hormone levels and attenuated pathological variants in the ovaries of rats with PCOS. Furthermore, AJ significantly reduced the apoptotic rate of ovarian GCs. Lipidomic analysis revealed that AJ modulated glycerolipid and glycerophospholipid metabolic pathways mediated by lipoprotein lipase (Lpl), diacylglycerol choline phosphotransferase (Chpt1), and choline/ethanolamine phosphotransferase (Cept1). Therefore, we established that AJ may reduce ovarian GC apoptosis by modulating lipid metabolism, ultimately improving ovulatory dysfunction in PCOS. Therefore, AJ is a novel candidate for PCOS treatment.


Asunto(s)
Ampelopsis , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ratas , Animales , Síndrome del Ovario Poliquístico/metabolismo , Ampelopsis/metabolismo , Metabolismo de los Lípidos , Fosfotransferasas/metabolismo , Fosfotransferasas/uso terapéutico , Colina/uso terapéutico
7.
Mol Pharmacol ; 104(5): 214-229, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37595967

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a severe liver metabolic disorder, however, there are still no effective and safe drugs for its treatment. Previous clinical trials used various therapeutic approaches to target individual pathologic mechanisms, but these approaches were unsuccessful because of the complex pathologic causes of NASH. Combinatory therapy in which two or more drugs are administered simultaneously to patients with NASH, however, carries the risk of side effects associated with each individual drug. To solve this problem, we identified gossypetin as an effective dual-targeting agent that activates AMP-activated protein kinase (AMPK) and decreases oxidative stress. Administration of gossypetin decreased hepatic steatosis, lobular inflammation and liver fibrosis in the liver tissue of mice with choline-deficient high-fat diet and methionine-choline deficient diet (MCD) diet-induced NASH. Gossypetin functioned directly as an antioxidant agent, decreasing hydrogen peroxide and palmitate-induced oxidative stress in the AML12 cells and liver tissue of MCD diet-fed mice without regulating the antioxidant response factors. In addition, gossypetin acted as a novel AMPK activator by binding to the allosteric drug and metabolite site, which stabilizes the activated structure of AMPK. Our findings demonstrate that gossypetin has the potential to serve as a novel therapeutic agent for nonalcoholic fatty liver disease /NASH. SIGNIFICANCE STATEMENT: This study demonstrates that gossypetin has preventive effect to progression of nonalcoholic steatohepatitis (NASH) as a novel AMP-activated protein kinase (AMPK) activator and antioxidants. Our findings indicate that simultaneous activation of AMPK and oxidative stress using gossypetin has the potential to serve as a novel therapeutic approach for nonalcoholic fatty liver disease /NASH patients.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Colina/metabolismo , Colina/farmacología , Colina/uso terapéutico , Metionina/metabolismo , Metionina/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
8.
Nutrients ; 15(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375574

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.


Asunto(s)
Isoflavonas , Enfermedad del Hígado Graso no Alcohólico , Probióticos , Humanos , Femenino , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Posmenopausia , Colina/uso terapéutico , Probióticos/uso terapéutico , Isoflavonas/uso terapéutico
9.
Bioorg Chem ; 138: 106615, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37244229

RESUMEN

A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 µM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Antiparasitarios/farmacología , Antiprotozoarios/farmacología , Éteres Fosfolípidos/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Colina/uso terapéutico
10.
Radiother Oncol ; 183: 109665, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024057

RESUMEN

BACKGROUND AND PURPOSE: All glioblastoma subtypes share the hallmark of aggressive invasion, meaning that it is crucial to identify their different components if we are to ensure effective treatment and improve survival. Proton MR spectroscopic imaging (MRSI) is a noninvasive technique that yields metabolic information and is able to identify pathological tissue with high accuracy. The aim of the present study was to identify clusters of metabolic heterogeneity, using a large MRSI dataset, and determine which of these clusters are predictive of progression-free survival (PFS). MATERIALS AND METHODS: MRSI data of 180 patients acquired in a pre-radiotherapy examination were included in the prospective SPECTRO-GLIO trial. Eight features were extracted for each spectrum: Cho/NAA, NAA/Cr, Cho/Cr, Lac/NAA, and the ratio of each metabolite to the sum of all the metabolites. Clustering of data was performed using a mini-batch k-means algorithm. The Cox model and logrank test were used for PFS analysis. RESULTS: Five clusters were identified as sharing similar metabolic information and being predictive of PFS. Two clusters revealed metabolic abnormalities. PFS was lower when Cluster 2 was the dominant cluster in patients' MRSI data. Among the metabolites, lactate (present in this cluster and in Cluster 5) was the most statistically significant predictor of poor outcome. CONCLUSION: Results showed that pre-radiotherapy MRSI can be used to reveal tumor heterogeneity. Groups of spectra, which have the same metabolic information, reflect the different tissue components representative of tumor burden proliferation and hypoxia. Clusters with metabolic abnormalities and high lactate are predictive of PFS.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Supervivencia sin Progresión , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Lactatos/uso terapéutico , Colina/metabolismo , Colina/uso terapéutico , Ácido Aspártico/metabolismo , Ácido Aspártico/uso terapéutico
11.
In Vivo ; 37(3): 1037-1046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37103096

RESUMEN

BACKGROUND/AIM: Non-alcoholic fatty liver disease is a major cause of liver-related morbidity and mortality. Metformin is a widely used medication and may have additional benefits beyond glycemic control. Liraglutide, a novel treatment for diabetes and obesity, also has beneficial effects on non-alcoholic steatohepatitis (NASH). Metformin and liraglutide have both benefited NASH treatment. However, no study has reported the effects of combination therapy with liraglutide and metformin on NASH. MATERIALS AND METHODS: We investigated the in vivo effects of metformin and liraglutide on NASH in a methionine/choline-deficient (MCD) diet-fed C57BL/6JNarl mouse model. Serum triglyceride, alanine aminotransferase and alanine aminotransferase levels were documented. Histological analysis was performed according to the NASH activity grade. RESULTS: After treatment with liraglutide and metformin, body weight loss improved, and the liver/body weight ratio decreased. The metabolic effects and liver injury improved. Liraglutide and metformin alleviated MCD-induced hepatic steatosis and injury. Histological analysis revealed that NASH activity was reduced. CONCLUSION: Our results provide evidence for the anti-NASH activity of liraglutide in combination with metformin. Liraglutide with metformin may offer the potential for a disease-modifying intervention for NASH.


Asunto(s)
Metformina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Liraglutida/farmacología , Liraglutida/metabolismo , Liraglutida/uso terapéutico , Metformina/farmacología , Alanina Transaminasa , Ratones Endogámicos C57BL , Hígado/patología , Colina/metabolismo , Colina/farmacología , Colina/uso terapéutico , Metionina/metabolismo , Modelos Animales de Enfermedad
12.
J Exp Clin Cancer Res ; 42(1): 25, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670508

RESUMEN

BACKGROUND: Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored. METHODS: EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo. RESULTS: In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3ß, and transcription factors, including HIF1α, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo. CONCLUSIONS: Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasas , Línea Celular Tumoral , Colina/metabolismo , Colina/uso terapéutico , ARN Interferente Pequeño , Receptor ErbB-2/metabolismo , Resistencia a Antineoplásicos/genética , Fosfolipasas/genética
13.
Biomed Pharmacother ; 159: 114300, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36696803

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a common liver disease highly associated with metabolic diseases and gut dysbiosis. Several clinical trials have confirmed that fructooligosaccharides (FOSs) are a viable alternative treatment for NAFLD. However, the mechanisms underlying the activities of FOSs remain unclear. METHODS: In this study, the effects of FOSs were investigated with the use of two C57BL/6 J mouse models of NAFLD induced by a high-fat, high-cholesterol (HFHC) diet and a methionine- and choline-deficient (MCD) diet, respectively. The measured metabolic parameters included body, fat, and liver weights; and blood glucose, glucose tolerance, and serum levels of glutamate transaminase, aspartate transaminase, and triglycerides. Liver tissues were collected for histological analysis. In addition, 16 S rRNA sequencing was conducted to investigate the effects of FOSs on the composition of the gut microbiota of mice in the HFHC and MCD groups and treated with FOSs. RESULTS: FOS treatment attenuated severe metabolic changes and hepatic steatosis caused by the HFHC and MCD diets. In addition, FOSs remodeled the structure of gut microbiota in mice fed the HFHC and MCD diets, as demonstrated by increased abundances of Bacteroidetes (phylum level), Klebsiella variicola, Lactobacillus gasseri, and Clostridium perfringens (species level); and decreased abundances of Verrucomicrobia (phylum level) and the Fissicatena group (genus level). Moreover, the expression levels of genes associated with lipid metabolism and inflammation (i.e., ACC1, PPARγ, CD36, MTTP, APOC3, IL-6, and IL-1ß) were down-regulated after FOS treatment. CONCLUSION: FOSs alleviated the pathological phenotype of NAFLD via remodeling of the gut microbiota composition and decreasing hepatic lipid metabolism, suggesting that FOSs as functional dietary supplements can potentially reduce the risk of NAFLD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Hígado , Dieta Alta en Grasa/efectos adversos , Colina/metabolismo , Colina/farmacología , Colina/uso terapéutico , Metionina/metabolismo
14.
Bratisl Lek Listy ; 124(1): 47-52, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36519607

RESUMEN

OBJECTIVES: The purpose of this study is to investigate the effects of cholinergic anti-inflammatory pathway (CAP)-activating drugs, choline and citicoline (Cytidinediphosphate-choline, CDP-choline), on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) parameters and the contribution of NADPH Oxidase4 (NOX4) p22phox. BACKGROUND: Endotoxemia induces a systemic inflammatory response characterized by the production of pro-inflammatory mediators and reactive oxygen species (ROS), which eventually develops acute kidney injury (AKI). NADPH Oxidase4 (NOX4) p22phox pathway contributes to the development of endotoxemia-induced AKI. Inflammatory response can be controlled by CAP. METHODS: Expressions levels of KIM-1, TNF-α, NOX4, p22phox and NFκB in the kidney tissues of rats were analyzed via RT-PCR in experimental groups; 1. Control, 2. LPS (10 mg/kg) + saline, 3. LPS + CDP-choline (375 mg/kg) and 4. LPS + choline (90 mg/kg). Choline and ROS levels in kidney tissues were also measured by a spectrofluorometric assay. RESULTS: LPS-induced elevations of ROS levels were decreased by CDP-choline or choline administration (p < 0.001). LPS-elevated KIM-1, TNFα, NOX4, p22 phox, and NFκB expressions were significantly decreased by choline or CDP-choline treatments (p < 0.001). CONCLUSION: Decreased ROS production in kidney tissues in treatment groups suggests that choline or CDP-choline may have therapeutic potential in endotoxemia-associated AKI via downregulating NOX4 and p22phox expressions (Tab. 1, Fig. 5, Ref. 45). Text in PDF www.elis.sk Keywords: endotoxemia, choline, cytidine diphosphate choline, acute kidney injury, reactive oxygen species.


Asunto(s)
Lesión Renal Aguda , Endotoxemia , Ratas , Animales , Citidina Difosfato Colina/farmacología , Citidina Difosfato Colina/uso terapéutico , Citidina Difosfato Colina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Endotoxemia/tratamiento farmacológico , Endotoxemia/metabolismo , Lipopolisacáridos/farmacología , Colina/metabolismo , Colina/farmacología , Colina/uso terapéutico , NADP/metabolismo , NADP/farmacología , NADP/uso terapéutico , Estrés Oxidativo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/inducido químicamente , FN-kappa B/metabolismo , Riñón
15.
Front Cell Infect Microbiol ; 13: 1277045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38327680

RESUMEN

Introduction: The development of animal models of chronic liver disease via diet modification is a promising avenue for translational research but can lead to unexpected side effects that impact model adoption. While these side effects are well characterized in rodent models of nonalcoholic steatohepatitis (NASH), limited knowledge of these effects exists for novel porcine models of NASH. To close this gap, the present study investigates the side effects of diet-based NASH induction in pigs, with a systematic analysis of the pathologic mechanisms underlying dermatitis development and evaluation of treatment approaches. Method: Twelve pigs (10 large domestic pigs, 2 Goettingen minipigs) were fed a methionine- and choline-deficient, high-fat diet for 8 weeks to induce NASH. A retrospective review of each animal's clinical record was performed to identify the side effects of the diet. Following the identification of diet-associated dermatitis, severity was judged by using a novel gradation system that characterized the individual lesions and body regions resulting in a cumulative evaluation. In addition to this clinical assessment, the etiology of the dermatitis was investigated via histopathologic and microbiologic testing. Furthermore, the success of prophylactic and therapeutic treatment approaches was evaluated by considering dermatitis development and clinical course. Results: All study animals demonstrated unexpected side effects of the methionine- and choline-deficient, high fat diet. In addition to marked dermatitis, study pigs showed impaired weight gain and developed steatorrhea and anemia. Based on the skin gradation system, five animals developed severe dermatitis, four animals moderate dermatitis, and three animals mild diet-associated dermatitis. Histological and microbiological evaluation of the affected skin showed signs of a hypersensitivity reaction with secondary infection by bacteria and fungi. The analysis showed that preemptive bathing extended the lesion-free duration by nearly 20 days. Furthermore, bathing in combination with a targeted antibiotic treatment represented a helpful treatment approach for diet-associated dermatitis. Conclusion: The provision of a methionine- and choline-deficient, high fat diet represents an effective approach for inducing NASH liver disease in pigs but predisposes study animals to multiple side effects. These side effects are universal to animals on study but can be adequately managed and do not represent a significant limitation of this model.


Asunto(s)
Dermatitis , Enfermedad del Hígado Graso no Alcohólico , Porcinos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Hígado/patología , Porcinos Enanos , Dieta/efectos adversos , Metionina/farmacología , Colina/farmacología , Colina/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Roedores , Racemetionina/farmacología , Bacterias , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
16.
J Neurodev Disord ; 14(1): 59, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526961

RESUMEN

BACKGROUND: Fetal alcohol spectrum disorder (FASD) is a lifelong condition. Early interventions targeting core neurocognitive deficits have the potential to confer long-term neurodevelopmental benefits. Time-targeted choline supplementation is one such intervention that has been shown to provide neurodevelopmental benefits that emerge with age during childhood. We present a long-term follow-up study evaluating the neurodevelopmental effects of early choline supplementation in children with FASD approximately 7 years on average after an initial efficacy trial. METHODS: The initial study was a randomized, double-blind, placebo-controlled trial of choline vs. placebo in 2.5 to 5 year olds with FASD. Participants in this long-term follow-up study include 18 children (9 placebo; 9 choline) seen 7 years on average following initial trial completion. The mean age at follow-up was 11.0 years old. Diagnoses were 28% fetal alcohol syndrome (FAS), 28% partial FAS, and 44% alcohol-related neurodevelopmental disorder. The follow-up included measures of executive functioning and an MRI scan. RESULTS: Children who received choline had better performance on several tasks of lower-order executive function (e.g., processing speed) and showed higher white matter microstructure organization (i.e., greater axon coherence) in the splenium of the corpus callosum compared to the placebo group. CONCLUSIONS: These preliminary findings, although exploratory at this stage, highlight potential long-term benefits of choline as a neurodevelopmental intervention for FASD and suggest that choline may affect white matter development, representing a potential target of choline in this population. TRIAL REGISTRATION: Prior to enrollment, this trial was registered with clinicaltrials.gov ( NCT01149538 ) on June 23, 2010.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Sustancia Blanca , Niño , Embarazo , Femenino , Humanos , Preescolar , Trastornos del Espectro Alcohólico Fetal/tratamiento farmacológico , Colina/uso terapéutico , Cuerpo Calloso/diagnóstico por imagen , Estudios de Seguimiento , Sustancia Blanca/diagnóstico por imagen
17.
Ther Umsch ; 79(10): 541-548, 2022.
Artículo en Alemán | MEDLINE | ID: mdl-36415939

RESUMEN

Folate, Choline, and Vitamin B12 Supplementation for Pre-Conceptional and Pregnant Women Abstract. Inadequate maternal folate status is associated with higher risk of neural tube defects. The threshold for a good supply of folate (e.g., folate concentration in erythrocytes) is > 906nmol/L for all women who may become pregnant. This quite high folate concentration should already be reached before the onset of pregnancy, which can hardly be achieved with food. Supplementation with folate or folic acid is therefore strongly recommended for all women planning pregnancy (four to eight weeks before the start of pregnancy until the end of the first trimester). Folate supplementation can significantly reduce the risk of neural tube defects at the population level (approximately 50%), but it cannot prevent all cases. Recent studies show that low maternal choline and vitamin B12 intake during pregnancy is also associated with higher risk of neural tube defects. The role of choline in fetal brain development is biologically plausible based on its function as a source of methyl groups, acetylcholine, and cell membrane phospholipids and is not completely interchangeable with folate. Data on the association between maternal choline intake during preconception and the first trimester and fetal brain development suggest a causal relationship. The intake recommendation for choline is 480mg/day for pregnant women and 550mg/day for lactating women. Choline intake (mainly from animal-based diets) averages about 300mg/day and is thus insufficient for optimal supply during pregnancy. To date, no specific recommendations exist for choline supplementation before and during pregnancy. In Europe, prevention approaches at the population level are generally poorly followed. Therefore, individual counseling of young women planning pregnancy is more relevant than ever.


Asunto(s)
Defectos del Tubo Neural , Vitamina B 12 , Femenino , Humanos , Embarazo , Animales , Vitamina B 12/uso terapéutico , Ácido Fólico/uso terapéutico , Colina/uso terapéutico , Mujeres Embarazadas , Lactancia , Defectos del Tubo Neural/prevención & control , Suplementos Dietéticos
18.
Eur Radiol Exp ; 6(1): 47, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36184731

RESUMEN

BACKGROUND: The aim of this study was to investigate the role of the lipid peak derived from 1H magnetic resonance (MR) spectroscopy in assessing cervical cancer prognosis, particularly in assessing response to neoadjuvant chemotherapy (NACT) of locally advanced cervical cancer (LACC). METHODS: We enrolled 17 patients with histologically proven cervical cancer who underwent 3-T MR imaging at baseline. In addition to conventional imaging sequences for pelvic assessment, the protocol included a single-voxel point-resolved spectroscopy (PRESS) sequence, with repetition time of 1,500 ms and echo times of 28 and 144 ms. Spectra were analysed using the LCModel fitting routine, thus extracting multiple metabolites, including lipids (Lip) and total choline (tCho). Patients with LACC were treated with NACT and reassessed by MRI at term. Based on tumour volume reduction, patients were classified as good responder (GR; tumour volume reduction > 50%) and poor responder or nonresponder (PR-or-NR; tumour volume reduction ≤ 50%). RESULTS: Of 17 patients, 11 were LACC. Of these 11, only 6 had both completed NACT and had good-quality 1H-MR spectra; 3 GR and 3 PR-or-NR. A significant difference in lipid values was observed in the two groups of patients, particularly with higher Lip values and higher Lip/tCho ratio in PR-NR patients (p =0.040). A significant difference was also observed in choline distribution (tCho), with higher values in GR patients (p = 0.040). CONCLUSIONS: Assessment of lipid peak at 1H-MR spectroscopy could be an additional quantitative parameter in predicting the response to NACT in patients with LACC.


Asunto(s)
Neoplasias del Cuello Uterino , Colina/metabolismo , Colina/uso terapéutico , Femenino , Humanos , Lípidos/uso terapéutico , Imagen por Resonancia Magnética/métodos , Espectroscopía de Protones por Resonancia Magnética , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología
19.
Front Endocrinol (Lausanne) ; 13: 885039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937847

RESUMEN

Recent studies have revealed the pivotal role of gut microbiota in the progress of liver diseases including non-alcoholic steatohepatitis (NASH). Many natural herbs, such as Gynostemma pentaphyllum (GP), have been extensively applied in the prevention of NASH, while the bioactive components and underlying mechanism remain unclear. The aim of this study was to investigate whether the polysaccharides of GP (GPP) have a protective effect on NASH and to explore the potential mechanism underlying these effects. C57BL/6 male mice were fed with a methionine-choline-deficient (MCD) diet for 4 weeks to induce NASH and administered daily oral gavage of sodium carboxymethylcellulose (CMC-Na), low dose of GPP (LGPP), high dose of GPP (HGPP), and polyene phosphatidylcholine capsules (PPC), compared with the methionine-choline-sufficient (MCS) group. Our results showed that the symptoms of hepatic steatosis, hepatocyte ballooning, liver fibrosis, and oxidative stress could be partially recovered through the intervention of GPP with a dose-dependent effect. Furthermore, gut microbiome sequencing revealed that HGPP altered the composition of gut microbiota, mainly characterized by the enrichment of genera including Akkermansia, Lactobacillus, and A2. Moreover, hepatic transcriptome analysis indicated that the anti-inflammatory effect of HGPP might be associated with toll-like receptor (TLR) and nod-like receptor (NLR) signaling pathways. HGPP could inhibit the expression of TLR2 and downregulate the expression of the NLRP3 inflammasome, as well as the pro-inflammatory cytokine tumor necrosis factor (TNF)-α and interleukin (IL)-1ß. In summary, GPP could ameliorate NASH possibly mediated via the modulation of gut microbiota and the TLR2/NLRP3 signaling pathway, indicating that GPP could be tested as a prebiotic agent in the prevention of NASH.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Colina/farmacología , Colina/uso terapéutico , Gynostemma/metabolismo , Masculino , Metionina , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Receptor Toll-Like 2/genética
20.
J Immunother Cancer ; 10(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705312

RESUMEN

BACKGROUND: Recent studies have demonstrated that T cells can induce vasodilation in a choline-acetyltransferase dependent manner, leading to an increase in T cell migration to infected tissues in response to viral infection, but its role in cancer is unclear. Choline acetyltransferase catalyzes the production of acetylcholine from choline and acetyl-CoA, however, acetylcholine is challenging to quantify due to its extremely short half-life while choline is stable. This study aims to correlate serum choline levels in patients with advanced solid tumors receiving pembrolizumab with treatment outcomes. METHODS: Blood samples were collected at baseline and at week 7 (pre-cycle 3) in patients treated with pembrolizumab in the INvestigator-initiated Phase 2 Study of Pembrolizumab Immunological Response Evaluation phase II trial (NCT02644369). Samples were analyzed for choline and circulating tumor DNA (ctDNA). Multivariable Cox models were used to assess the association between choline and overall survival (OS) and progression-free survival (PFS) when including ΔctDNAC3 (the change in ctDNA from baseline to cycle 3), cohort, PD-L1 expression and tumor mutation burden (TMB). An independent validation cohort from the LIBERATE study (NCT03702309) included patients on early phase trials treated with a PD-1 inhibitor. RESULTS: A total of 106 pts were included in the analysis. With a median follow-up of 12.6 months, median PFS and OS were 1.9 and 13.7 months, respectively. An increase in serum choline level at week 7 compared with baseline (ΔcholineC3) in 81 pts was significantly associated with a better PFS (aHR 0.48, 95% CI 0.28 to 0.83, p=0.009), and a trend toward a better OS (aHR 0.64, 95% CI 0.37 to 1.12, p=0.119). A combination of ΔctDNAC3 and ΔcholineC3 was prognostic for both OS and PFS. Multivariable analyses show ΔcholineC3 was a prognostic factor for PFS independent of ΔctDNAC3, cohort, PD-L1 and TMB. In the independent validation cohort (n=51), an increase in serum choline at cycle 2 was associated with a trend to improved PFS. CONCLUSIONS: This is the first exploratory report of serum choline levels in pan-cancer patients receiving pembrolizumab. The association between improved PFS and ΔcholineC3 suggests a possible role for the cholinergic system in the regulation of antitumor immunity. Further pre-clinical and clinical studies are required to validate this finding. TRIAL REGISTRATION NUMBER: NCT03702309.


Asunto(s)
Antineoplásicos Inmunológicos , ADN Tumoral Circulante , Neoplasias , Acetilcolina/uso terapéutico , Anticuerpos Monoclonales Humanizados , Antineoplásicos Inmunológicos/efectos adversos , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/genética , Colina/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Supervivencia sin Progresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA