Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.376
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 538-543, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38952094

RESUMEN

Objective To investigate the expression levels of lncRNA H19 in ulcerative colitis (UC) patients and its role in UC. Methods Colonic mucosa and serum samples were collected from 25 UC patients and 25 healthy individuals at the General Hospital of Xizang Military Region. The expression levels of lncRNA H19 were detected, and the receiver operating characteristic (ROC) curve analysis was performed using serum samples. An in vitro inflammatory model was established in HT29 colorectal cells under lipopolysaccharide (LPS) stimulation, and the expression levels of lncRNA H19 were observed in HT29 cells through fluorescence quantitative PCR. HT29 cells with downregulated lncRNA H19 was constructed using lentivirus-mediated shRNA. The effect of lncRNA H19 on cell survival was analyzed through MTT assay. Cell apoptosis was detected by flow cytometry, and the protein expression levels of apoptosis and autophagy markers were analyzed through Western blot. After treatment with rapamycin, the survival of HT29 cells was observed by MTT assay. Results lncRNA H19 was highly expressed in the colonic mucosa and serum samples of UC patients with the ROC area being 0.786. Following LPS stimulation, the expression levels of lncRNA H19 was significantly increased in a time-dependent manner. Downregulation of lncRNA H19 can promote cell survival, inhibit cell apoptosis and increase autophagy level in HT29 cells. Treatment with rapamycin significantly increased the cell survival rate. Conclusion Knock-down of lncRNA H19 increases autophagy levels, inhibits LPS-induced apoptosis and promotes the survival of colon cells.


Asunto(s)
Apoptosis , Autofagia , Colitis Ulcerosa , Lipopolisacáridos , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Lipopolisacáridos/farmacología , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Células HT29 , Masculino , Femenino , Persona de Mediana Edad , Adulto , Técnicas de Silenciamiento del Gen
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 334-340, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38953257

RESUMEN

Objective To explore the relationship between the expression levels of microRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) in the colonic mucosal tissue of patients with ulcerative colitis (UC) and the severity of the disease.Methods A total of 130 UC patients admitted to the Second Affiliated Hospital of Hebei North University from September 2021 to June 2023 were selected.According to the modified Mayo score system,the patients were assigned into an active stage group (n=85) and a remission stage group (n=45).According to the modified Truelove and Witts classification criteria,the UC patients at the active stage were assigned into a mild group (n=35),a moderate group (n=30),and a severe group (n=20).A total of 90 healthy individuals who underwent colonoscopy for physical examination or those who had normal colonoscopy results after single polypectomy and excluded other diseases were selected as the control group.The colonic mucosal tissues of UC patients with obvious lesions and the colonic mucosal tissue 20 cm away from the anus of the control group were collected.The levels of miR-155 and SOCS1 mRNA in tissues were determined by fluorescence quantitative PCR,and the expression of SOCS1 protein in tissues was determined by immunohistochemistry.The correlations of the levels of miR-155 and SOCS1 mRNA in the colonic mucosal tissue with the modified Mayo score of UC patients were analyzed.The values of the levels of miR-155 and SOCS1 mRNA in predicting the occurrence of severe illness in the UC patients at the active stage were evaluated.Results Compared with the control group and the remission stage group,the active stage group showed up-regulated expression level of miR-155,down-regulated level of SOCS1 mRNA,and decreased positive rate of SOCS1 protein in the colonic mucosal tissue (all P<0.001).The expression level of miR-155 and modified Mayo score in colonic mucosal tissues of UC patients at the active stage increased,while the mRNA level of SOCS1 was down-regulated as the disease evolved from being mild to severe (all P<0.001).The modified Mayo score was positively correlated with the miR-155 level and negative correlated with the mRNA level of SOCS1 in colonic mucosal tissues of UC patients (all P<0.001).The high miR-155 level (OR=2.762,95%CI=1.284-5.944,P=0.009),low mRNA level of SOCS1 (OR=2.617,95%CI=1.302-5.258,P=0.007),and modified Mayo score≥12 points (OR=3.232,95%CI=1.450-7.204,P=0.004) were all risk factors for severe disease in the UC patients at the active stage.The area under curve of miR-155 combined with SOCS1 mRNA in predicting severe illness in the UC patients at the active stage was 0.920.Conclusions The expression levels of miR-155 and SOCS1 mRNA were correlated with the disease severity in the UC patients at the active stage.The combination of the two indicators demonstrates good performance in predicting the occurrence of severe illness in UC patients at the active stage.


Asunto(s)
Colitis Ulcerosa , Mucosa Intestinal , MicroARNs , Índice de Severidad de la Enfermedad , Proteína 1 Supresora de la Señalización de Citocinas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Colon/metabolismo , Colon/patología , Femenino , Masculino , Persona de Mediana Edad , Adulto
3.
Sci Rep ; 14(1): 15705, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977802

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory condition of the intestinal tract. Various programmed cell death pathways in the intestinal mucosa are crucial to the pathogenesis of UC. Disulfidptosis, a recently identified form of programmed cell death, has not been extensively reported in the context of UC. This study evaluated the expression of disulfidptosis-related genes (DRGs) in UC through public databases and assessed disulfide accumulation in the intestinal mucosal tissues of UC patients and dextran sulfate sodium (DSS)-induced colitis mice via targeted metabolomics. We utilized various bioinformatics techniques to identify UC-specific disulfidptosis signature genes, analyze their potential functions, and investigate their association with immune cell infiltration in UC. The mRNA and protein expression levels of these signature genes were confirmed in the intestinal mucosa of DSS-induced colitis mice and UC patients. A total of 24 DRGs showed differential expression in UC. Our findings underscore the role of disulfide stress in UC. Four UC-related disulfidptosis signature genes-SLC7A11, LRPPRC, NDUFS1, and CD2AP-were identified. Their relationships with immune infiltration in UC were analyzed using CIBERSORT, and their expression levels were validated by quantitative real-time PCR and western blotting. This study provides further insights into their potential functions and explores their links to immune infiltration in UC. In summary, disulfidptosis, as a type of programmed cell death, may significantly influence the pathogenesis of UC by modulating the homeostasis of the intestinal mucosal barrier.


Asunto(s)
Colitis Ulcerosa , Mucosa Intestinal , Colitis Ulcerosa/genética , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Animales , Humanos , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Sulfato de Dextran , Apoptosis/genética , Masculino , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Biología Computacional/métodos
4.
Drug Des Devel Ther ; 18: 2847-2868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006190

RESUMEN

Purpose: This study aimed to delineate the molecular processes underlying the therapeutic effects of berberine on UC by employing network pharmacology tactics, molecular docking, and dynamic simulations supported by empirical validations both in vivo and in vitro. Patients and Methods: We systematically screened potential targets and relevant pathways affected by berberine for UC treatment from comprehensive databases, including GeneCards, DisGeNET, and GEO. Molecular docking and simulation protocols were used to assess the interaction stability between berberine and its principal targets. The predictions were validated using both a DSS-induced UC mouse model and a lipopolysaccharide (LPS)-stimulated NCM460 cellular inflammation model. Results: Network pharmacology analysis revealed the regulatory effect of the TLR4/NF-κB/HIF-1α pathway in the ameliorative action of berberine in UC. Docking and simulation studies predicted the high-affinity interactions of berberine with pivotal targets: TLR4, NF-κB, HIF-1α, and the HIF inhibitor KC7F2. Moreover, in vivo analyses demonstrated that berberine attenuates clinical severity, as reflected by decreased disease activity index (DAI) scores, reduced weight loss, and mitigated intestinal inflammation in DSS-challenged mice. These outcomes include suppression of the proinflammatory cytokines IL-6 and TNF-α and downregulation of TLR4/NF-κB/HIF-1α mRNA and protein levels. Correspondingly, in vitro findings indicate that berberine decreases cellular inflammatory injury and suppresses TLR4/NF-κB/HIF-1α signaling, with notable effectiveness similar to that of the HIF-1α inhibitor KC7F2. Conclusion: Through network pharmacology analysis and experimental substantiation, this study confirmed that berberine enhances UC treatment outcomes by inhibiting the TLR4/NF-κB/HIF-1α axis, thereby mitigating inflammatory reactions and improving colonic pathology.


Asunto(s)
Berberina , Colitis Ulcerosa , Biología Computacional , Subunidad alfa del Factor 1 Inducible por Hipoxia , FN-kappa B , Receptor Toll-Like 4 , Berberina/farmacología , Berberina/química , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Animales , Ratones , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Simulación del Acoplamiento Molecular , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Masculino , Sulfato de Dextran , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Farmacología en Red
5.
Expert Rev Mol Diagn ; 24(6): 497-508, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38995110

RESUMEN

INTRODUCTION: Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and Ulcerative Colitis (UC), is a relapsing and remitting condition. Noninvasive biomarkers have an increasingly important role in the diagnosis of IBD and in the prediction of future disease course in individuals with IBD. Strategies for the management of IBD increasingly rely upon close monitoring of gastrointestinal inflammation. AREAS COVERED: This review provides an update on the current understanding of established and novel stool-based biomarkers in the diagnosis and management of IBD. It also highlights key gaps, identifies limitations, and advantages of current markers, and examines aspects that require further study and analysis. EXPERT OPINION: Current noninvasive inflammatory markers play an important role in the diagnosis and management of IBD; however, limitations exist. Future work is required to further characterize and validate current and novel markers of inflammation. In addition, it is essential to better understand the roles and characteristics of noninvasive markers to enable the appropriate selection to accurately determine the condition of the intestinal mucosa.


Asunto(s)
Biomarcadores , Heces , Enfermedades Inflamatorias del Intestino , Humanos , Heces/química , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/metabolismo , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/metabolismo
6.
Lipids Health Dis ; 23(1): 216, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003477

RESUMEN

BACKGROUND: The regulation of the circadian clock genes, which coordinate the activity of the immune system, is disturbed in inflammatory bowel disease (IBD). Emerging evidence suggests that butyrate, a short-chain fatty acid produced by the gut microbiota is involved in the regulation of inflammatory responses as well as circadian-clock genes. This study was conducted to investigate the effects of sodium-butyrate supplementation on the expression of circadian-clock genes, inflammation, sleep and life quality in active ulcerative colitis (UC) patients. METHODS: In the current randomized placebo-controlled trial, 36 active UC patients were randomly divided to receive sodium-butyrate (600 mg/kg) or placebo for 12-weeks. In this study the expression of circadian clock genes (CRY1, CRY2, PER1, PER2, BMAl1 and CLOCK) were assessed by real time polymerase chain reaction (qPCR) in whole blood. Gene expression changes were presented as fold changes in expression (2^-ΔΔCT) relative to the baseline. The faecal calprotectin and serum level of high-sensitivity C-reactive protein (hs-CRP) were assessed by enzyme-linked immunosorbent assay method (ELIZA). Moreover, the sleep quality and IBD quality of life (QoL) were assessed by Pittsburgh sleep quality index (PSQI) and inflammatory bowel disease questionnaire-9 (IBDQ-9) respectively before and after the intervention. RESULTS: The results showed that sodium-butyrate supplementation in comparison with placebo significantly decreased the level of calprotectin (-133.82 ± 155.62 vs. 51.58 ± 95.57, P-value < 0.001) and hs-CRP (-0.36 (-1.57, -0.05) vs. 0.48 (-0.09-4.77), P-value < 0.001) and upregulated the fold change expression of CRY1 (2.22 ± 1.59 vs. 0.63 ± 0.49, P-value < 0.001), CRY2 (2.15 ± 1.26 vs. 0.93 ± 0.80, P-value = 0.001), PER1 (1.86 ± 1.77 vs. 0.65 ± 0.48, P-value = 0.005), BMAL1 (1.85 ± 0.97 vs. 0.86 ± 0.63, P-value = 0.003). Also, sodium-butyrate caused an improvement in the sleep quality (PSQI score: -2.94 ± 3.50 vs. 1.16 ± 3.61, P-value < 0.001) and QoL (IBDQ-9: 17.00 ± 11.36 vs. -3.50 ± 6.87, P-value < 0.001). CONCLUSION: Butyrate may be an effective adjunct treatment for active UC patients by reducing biomarkers of inflammation, upregulation of circadian-clock genes and improving sleep quality and QoL.


Asunto(s)
Colitis Ulcerosa , Suplementos Dietéticos , Calidad del Sueño , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Masculino , Femenino , Adulto , Método Doble Ciego , Persona de Mediana Edad , Inflamación/genética , Inflamación/tratamiento farmacológico , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/genética , Calidad de Vida , Relojes Circadianos/genética , Relojes Circadianos/efectos de los fármacos , Complejo de Antígeno L1 de Leucocito/genética , Complejo de Antígeno L1 de Leucocito/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Butiratos , Ácido Butírico
7.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999957

RESUMEN

Abnormalities in mucosal immunity are involved in the onset and progression of ulcerative colitis (UC), resulting in a high incidence of colorectal cancer (CRC). While high-mobility group box-1 (HMGB1) is overexpressed during colorectal carcinogenesis, its role in UC-related carcinogenesis remains unclear. In the present study, we investigated the role of HMGB1 in UC-related carcinogenesis and sporadic CRC. Both the azoxymethane colon carcinogenesis and dextran sulfate sodium colitis carcinogenesis models demonstrated temporal increases in mucosal HMGB1 levels. Activated CD8+ cells initially increased and then decreased, whereas exhausted CD8+ cells increased. Additionally, we observed increased regulatory CD8+ cells, decreased naïve CD8+ cells, and decreased mucosal epithelial differentiation. In the in vitro study, HMGB1 induced energy reprogramming from oxidative phosphorylation to glycolysis in CD8+ cells and intestinal epithelial cells. Furthermore, in UC dysplasia, UC-related CRC, and hyperplastic mucosa surrounding human sporadic CRC, we found increased mucosal HMGB1, decreased activated CD8+ cells, and suppressed mucosal epithelial differentiation. However, we observed increased activated CD8+ cells in active UC mucosa. These findings indicate that HMGB1 plays an important role in modulating mucosal immunity and epithelial dedifferentiation in both UC-related carcinogenesis and sporadic CRC.


Asunto(s)
Linfocitos T CD8-positivos , Diferenciación Celular , Colitis Ulcerosa , Proteína HMGB1 , Inmunidad Mucosa , Mucosa Intestinal , Proteína HMGB1/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Colitis Ulcerosa/patología , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones , Masculino , Células Epiteliales/metabolismo , Células Epiteliales/patología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/inmunología , Ratones Endogámicos C57BL , Carcinogénesis/inmunología , Carcinogénesis/patología , Carcinogénesis/metabolismo
8.
Mediators Inflamm ; 2024: 3282679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962170

RESUMEN

Ulcerative colitis (UC) is a chronic intestinal inflammatory disease with complex etiology. Interleukin-35 (IL-35), as a cytokine with immunomodulatory function, has been shown to have therapeutic effects on UC, but its mechanism is not yet clear. Therefore, we constructed Pichia pastoris stably expressing IL-35 which enables the cytokines to reach the diseased mucosa, and explored whether upregulation of T-cell protein tyrosine phosphatase (TCPTP) in macrophages is involved in the mechanisms of IL-35-mediated attenuation of UC. After the successful construction of engineered bacteria expressing IL-35, a colitis model was successfully induced by giving BALB/c mice a solution containing 3% dextran sulfate sodium (DSS). Mice were treated with Pichia/IL-35, empty plasmid-transformed Pichia (Pichia/0), or PBS by gavage, respectively. The expression of TCPTP in macrophages (RAW264.7, BMDMs) and intestinal tissues after IL-35 treatment was detected. After administration of Pichia/IL-35, the mice showed significant improvement in weight loss, bloody stools, and shortened colon. Colon pathology also showed that the inflammatory condition of mice in the Pichia/IL-35 treatment group was alleviated. Notably, Pichia/IL-35 treatment not only increases local M2 macrophages but also decreases the expression of inflammatory cytokine IL-6 in the colon. With Pichia/IL-35 treatment, the proportion of M1 macrophages, Th17, and Th1 cells in mouse MLNs were markedly decreased, while Tregs were significantly increased. In vitro experiments, IL-35 significantly promoted the expression of TCPTP in macrophages stimulated with LPS. Similarly, the mice in the Pichia/IL-35 group also expressed more TCPTP than that of the untreated group and the Pichia/0 group.


Asunto(s)
Interleucinas , Macrófagos , Ratones Endogámicos BALB C , Animales , Ratones , Interleucinas/metabolismo , Macrófagos/metabolismo , Células RAW 264.7 , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Masculino , Regulación hacia Arriba , Saccharomycetales
9.
Sci Rep ; 14(1): 15949, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987612

RESUMEN

Metabolic-associated steatohepatitis (MASH) and ulcerative colitis (UC) exhibit a complex interconnection with immune dysfunction, dysbiosis of the gut microbiota, and activation of inflammatory pathways. This study aims to identify and validate critical butyrate metabolism-related shared genes between both UC and MASH. Clinical information and gene expression profiles were sourced from the Gene Expression Omnibus (GEO) database. Shared butyrate metabolism-related differentially expressed genes (sBM-DEGs) between UC and MASH were identified via various bioinformatics methods. Functional enrichment analysis was performed, and UC patients were categorized into subtypes using the consensus clustering algorithm based on sBM-DEGs. Key genes within sBM-DEGs were screened through Random Forest, Support Vector Machines-Recursive Feature Elimination, and Light Gradient Boosting. The diagnostic efficacy of these genes was evaluated using receiver operating characteristic (ROC) analysis on independent datasets. Additionally, the expression levels of characteristic genes were validated across multiple independent datasets and human specimens. Forty-nine shared DEGs between UC and MASH were identified, with enrichment analysis highlighting significant involvement in immune, inflammatory, and metabolic pathways. The intersection of butyrate metabolism-related genes with these DEGs produced 10 sBM-DEGs. These genes facilitated the identification of molecular subtypes of UC patients using an unsupervised clustering approach. ANXA5, CD44, and SLC16A1 were pinpointed as hub genes through machine learning algorithms and feature importance rankings. ROC analysis confirmed their diagnostic efficacy in UC and MASH across various datasets. Additionally, the expression levels of these three hub genes showed significant correlations with immune cells. These findings were validated across independent datasets and human specimens, corroborating the bioinformatics analysis results. Integrated bioinformatics identified three significant biomarkers, ANXA5, CD44, and SLC16A1, as DEGs linked to butyrate metabolism. These findings offer new insights into the role of butyrate metabolism in the pathogenesis of UC and MASH, suggesting its potential as a valuable diagnostic biomarker.


Asunto(s)
Butiratos , Colitis Ulcerosa , Biología Computacional , Humanos , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Butiratos/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Curva ROC , Hígado Graso/genética , Hígado Graso/metabolismo , Bases de Datos Genéticas , Transcriptoma , Microbioma Gastrointestinal/genética
10.
Biomed Pharmacother ; 176: 116891, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865850

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.


Asunto(s)
Autofagia , Productos Biológicos , Colitis Ulcerosa , Autofagia/efectos de los fármacos , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Animales , Microbioma Gastrointestinal/efectos de los fármacos
11.
PLoS One ; 19(6): e0305926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913606

RESUMEN

OBJECTIVE: This study aimed to evaluate the effects of trilobatin (TLB) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and further explore the underlying mechanisms from the perspectives of signaling pathway and gut microbiota. METHODS: A mouse model of UC was established using DSS. Trilobatin was administered via oral gavage. Disease severity was assessed based on body weight, disease activity index (DAI), colon length, histological detection, inflammation markers, and colonic mucosal barrier damage. Alternations in the NF-κB and PI3K/Akt pathways were detected by marker proteins. High-throughput 16S rRNA sequencing was performed to investigate the gut microbiota of mice. RESULTS: In the DSS-induced UC mice, TLB (30 µg/g) treatment significantly increased the body weight, reduced the DAI score, alleviated colon length shortening, improved histopathological changes in colon tissue, inhibited the secretion and expression of inflammation factors (TNF-α, IL-1ß, and IL-6), and increased the expression of tight-junction proteins (ZO-1 and occludin). Furthermore, TLB (30 µg/g) treatment significantly suppressed the activation of NF-κB pathway and altered the composition and diversity of the gut microbiota, as observed in the variations of the relative abundances of Proteobacteria, Actinobacteriota, and Bacteroidota, in UC mice. CONCLUSION: TLB effectively alleviates DSS-induced UC in mice. Regulation of the NF-κB pathway and gut microbiota contributes to TLB-mediated therapeutic effects. Our study not only identified a novel drug candidate for the treatment of UC, but also enhanced our understanding of the biological functions of TLB.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Microbioma Gastrointestinal , FN-kappa B , Transducción de Señal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , FN-kappa B/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colon/microbiología , Ratones Endogámicos C57BL
12.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892004

RESUMEN

Vedolizumab (VDZ) is used for treating inflammatory bowel disease (IBD) patients. A study investigating colonic epithelial barrier function ex vivo following VDZ is lacking. This work aims to evaluate ex vivo the colonic epithelial barrier function in IBD patients at baseline and during VDZ treatment, and to investigate the relationships between barrier function and clinical parameters. Colonic specimens were obtained from 23 IBD patients before, and at 24 and 52 weeks after VDZ treatment, and from 26 healthy volunteers (HV). Transepithelial electrical resistance (TEER, permeability to ions) and paracellular permeability were measured in Ussing chambers. IBD patients showed increased epithelial permeability to ions (TEER, 13.80 ± 1.04 Ω × cm2 vs. HV 20.70 ± 1.52 Ω × cm2, p < 0.001) without changes in paracellular permeability of a 4 kDa probe. VDZ increased TEER (18.09 ± 1.44 Ω × cm2, p < 0.001) after 52 weeks. A clinical response was observed in 58% and 25% of patients at week 24, and in 62% and 50% at week 52, in ulcerative colitis and Crohn's disease, respectively. Clinical and endoscopic scores were strongly associated with TEER. TEER < 14.65 Ω × cm2 predicted response to VDZ (OR 11; CI 2-59). VDZ reduces the increased permeability to ions observed in the colonic epithelium of IBD patients before treatment, in parallel to a clinical, histological (inflammatory infiltrate), and endoscopic improvement. A low TEER predicts clinical response to VDZ therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Colon , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Permeabilidad , Humanos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Permeabilidad/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Iones/metabolismo , Fármacos Gastrointestinales/farmacología , Fármacos Gastrointestinales/uso terapéutico , Impedancia Eléctrica , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Anciano
13.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928319

RESUMEN

Matrine (MT) possesses anti-inflammatory, anti-allergic and antioxidative properties. However, the impact and underlying mechanisms of matrine on colitis are unclear. The purpose of this research was to examine the protective impact and regulatory mechanism of matrine on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. MT alleviated DSS-induced UC by inhibiting weight loss, relieving colon shortening and reducing the disease activity index (DAI). Moreover, DSS-induced intestinal injury and the number of goblet cells were reversed by MT, as were alterations in the expression of zonula occludens-1 (ZO-1) and occludin in colon. Simultaneously, matrine not only effectively restored DSS-induced oxidative stress in colonic tissues but also reduced the production of inflammatory cytokines. Furthermore, MT could treat colitis mice by regulating the regulatory T cell (Treg)/T helper 17 (Th17) cell imbalance. We observed further evidence that MT alleviated the decrease in intestinal flora diversity, reduced the proportion of Firmicutes and Bacteroidetes, decreased the proportion of Proteobacteria and increased the relative abundance of Lactobacillus and Akkermansia in colitis mice. In conclusion, these results suggest that MT may mitigate DSS-induced colitis by enhancing the colon barrier integrity, reducing the Treg/Th17 cell imbalance, inhibiting intestinal inflammation, modulating oxidative stress and regulating the gut microbiota. These findings provide strong evidence for the development and application of MT as a dietary treatment for UC.


Asunto(s)
Alcaloides , Sulfato de Dextran , Microbioma Gastrointestinal , Matrinas , Estrés Oxidativo , Quinolizinas , Linfocitos T Reguladores , Animales , Alcaloides/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Quinolizinas/farmacología , Quinolizinas/uso terapéutico , Ratones , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Masculino , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/microbiología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Proteína de la Zonula Occludens-1/metabolismo , Colon/patología , Colon/metabolismo , Colon/efectos de los fármacos , Colon/microbiología , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Células Th17/inmunología , Modelos Animales de Enfermedad , Citocinas/metabolismo , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Ocludina/metabolismo
14.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928402

RESUMEN

The gut microbial and metabolic characteristics of intestinal Behçet's disease (BD), a condition sharing many clinical similarities with ulcerative colitis (UC) and Crohn's disease (CD), are largely unexplored. This study investigated the gut microbial and metabolic characteristics of intestinal BD as well as potential biomarkers, comparing them with those in UC, CD, and healthy controls. Colon tissue and stool samples from 100 patients (35 UC, 30 CD, and 35 intestinal BD) and 41 healthy volunteers were analyzed using 16S ribosomal RNA sequencing to assess microbial diversity, taxonomic composition, and functional profiling. Plasma metabolomic analyses were performed using gas chromatography and ultra-performance liquid chromatography-mass spectrometry. Results indicated reduced microbial diversity in CD but not in intestinal BD, with intestinal BD showing fewer changes compared to controls yet distinct taxonomic features from UC, CD, and controls. Common alterations across all diseases included a reduction in beneficial bacteria producing short-chain fatty acids. Intestinal BD-specific changes featured a decreased abundance of Bacteroides fragilis. Metabolomic profiles in intestinal BD were similar to those in CD but distinct from those in UC, displaying significant changes in energy metabolism and genetic information processing. This integrative analysis revealed both shared and unique profiles in intestinal BD compared with UC, CD, and controls, advancing our understanding of the distinctive features of these diseases.


Asunto(s)
Síndrome de Behçet , Microbioma Gastrointestinal , Metaboloma , Humanos , Síndrome de Behçet/microbiología , Síndrome de Behçet/metabolismo , Masculino , Femenino , Adulto , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/metabolismo , Metabolómica/métodos , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/metabolismo , Biomarcadores , Heces/microbiología , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/metabolismo , Estudios de Casos y Controles
15.
Biomolecules ; 14(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38927037

RESUMEN

Ulcerative colitis (UC) is an autoimmune disease in which the immune system attacks the colon, leading to ulcer development, loss of colon function, and bloody diarrhea. The human gut ecosystem consists of almost 2000 different species of bacteria, forming a bioreactor fueled by dietary micronutrients to produce bioreactive compounds, which are absorbed by our body and signal to distant organs. Studies have shown that the Western diet, with fewer short-chain fatty acids (SCFAs), can alter the gut microbiome composition and cause the host's epigenetic reprogramming. Additionally, overproduction of H2S from the gut microbiome due to changes in diet patterns can further activate pro-inflammatory signaling pathways in UC. This review discusses how the Western diet affects the microbiome's function and alters the host's physiological homeostasis and susceptibility to UC. This article also covers the epidemiology, prognosis, pathophysiology, and current treatment strategies for UC, and how they are linked to colorectal cancer.


Asunto(s)
Colitis Ulcerosa , Neoplasias Colorrectales , Dieta Occidental , Epigénesis Genética , Microbioma Gastrointestinal , Humanos , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/genética , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/metabolismo , Dieta Occidental/efectos adversos , Animales
16.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930963

RESUMEN

Ulcerative colitis (UC) is difficult to cure and easy to relapse, leading to poor quality of life for patients. Oxymatrine (OMT) is one of the main alkaloids of Sophora flavescens Aiton, which has many effects, such as anti-inflammation, anti-oxidative stress, and immunosuppression. This study aimed to investigate whether OMT could attenuate ulcerative colitis by inhibiting the NOD-like receptor family pyrin domain containing three (NLRP3) inflammasome-mediated pyroptosis. In this study, the UC rat models were established by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) in vivo, while RAW264.7 cells and peritoneal macrophages were stimulated with Lipopolysaccharides/Adenosine Triphosphate (LPS/ATP) in vitro to simulate pyroptosis models, and Western blotting (WB) and other detection techniques were applied to analyze proteins involved in the NLRP3 inflammasome pathway. Our results showed that OMT alleviated colitis ulcers and pathological damage in the TNBS-induced UC rats and exhibited an inhibitory effect on pyroptosis at the early stage of UC. In the model group, the pyroptosis reached the peak at 24 h after modeling with the contents of active-cysteine-aspartic proteases-1 (caspase-1), Gasdermin D (GSDMD)-N, and cleaved-interleukin-1 beta (IL-1ß) to the highest expression level. Meanwhile, we found that OMT (80 mg kg-1) remarkably decreased the expression levels of NLRP3, active-caspase-1, and cleaved-IL-1ß at 24 h in the lesion tissue from UC rats. Further experiments on cells demonstrated that OMT at concentrations of 100 and 250 µM significantly inhibited cell death caused by NLRP3 inflammasome activation (p < 0.05), downregulated caspase-1, GSDMD, and decreased the levels of active-caspase-1, GSDMD-N, cleaved-IL-1ß in RAW326.7 cells, and peritoneal macrophages. In summary, these results indicated that OMT could attenuate ulcerative colitis through inhibiting pyroptosis mediated by the NLRP3 inflammasome. The inhibition of the NLRP3 inflammasome may be a potential strategy for UC.


Asunto(s)
Alcaloides , Colitis Ulcerosa , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Quinolizinas , Animales , Quinolizinas/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Alcaloides/farmacología , Piroptosis/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Ratas , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Células RAW 264.7 , Masculino , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Ácido Trinitrobencenosulfónico , Lipopolisacáridos , Matrinas
17.
Chem Biol Interact ; 398: 111074, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844255

RESUMEN

5-Aminosalicylic acid (5-ASA) is a first-line agent in both remission and maintenance therapy for ulcerative colitis (UC). However, the mucosal concentration of 5-ASA was significantly lower in patients with severe histological inflammation, which further led to a poor response to 5-ASA treatment. Our study aimed to clarify the mechanism of 5-ASA uptake into colonic epithelial cells and to further explore the reason for the decreased colonic mucosal 5-ASA concentration in UC patients. Our results demonstrated that the colonic 5-ASA concentration was notably reduced in DSS-induced colitis mice and inversely correlated with colonic inflammation. 5-ASA was not a substrate of carnitine/organic cation transporter 1/2 (OCTN1/2) or multidrug resistance protein 1 (MDR1), whereas organic anion transporting polypeptide 2B1 (OATP2B1) and sodium-coupled monocarboxylate transporter 1 (SMCT1) mediated the uptake of 5-ASA, with a greater contribution from OATP2B1 than SMCT1. Inhibitors and siRNAs targeting OATP2B1 significantly reduced 5-ASA absorption in colonic cell lines. Moreover, OATP2B1 expression was dramatically downregulated in colon tissues from UC patients and dextran sodium sulfate (DSS)-induced colitis mice, and was also negatively correlated with colonic inflammation. Mechanistically, mixed proinflammatory cytokines downregulated the expression of OATP2B1 in a time- and concentration-dependent manner through the hepatocyte nuclear factor 4 α (HNF4α) pathway. In conclusion, OATP2B1 was the pivotal transporter involved in colonic 5-ASA uptake, which indicated that inducing OATP2B1 expression may be a strategy to promote 5-ASA uptake and further improve the concentration and anti-inflammatory efficacy of 5-ASA in UC.


Asunto(s)
Colitis Ulcerosa , Citocinas , Regulación hacia Abajo , Mesalamina , Transportadores de Anión Orgánico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Animales , Humanos , Regulación hacia Abajo/efectos de los fármacos , Transportadores de Anión Orgánico/metabolismo , Ratones , Mesalamina/farmacología , Mesalamina/uso terapéutico , Citocinas/metabolismo , Masculino , Sulfato de Dextran , Ratones Endogámicos C57BL , Colon/metabolismo , Colon/patología , Colon/efectos de los fármacos , Femenino , Antiinflamatorios no Esteroideos/farmacología
18.
Life Sci ; 351: 122790, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852795

RESUMEN

AIMS: Atorvastatin is a commonly used cholesterol-lowering drug that possesses non-canonical anti-inflammatory properties. However, the precise mechanism underlying its anti-inflammatory effects remains unclear. MATERIALS AND METHODS: The acute phase of ulcerative colitis (UC) was induced using a 5 % dextran sulfate sodium (DSS) solution for 7 consecutive days and administrated with atorvastatin (10 mg/kg) from day 3 to day 7. mRNA-seq, histological pathology, and inflammatory response were determined. Intestinal microbiota alteration, tryptophan, and its metabolites were analyzed through 16S rRNA sequencing and untargeted metabolomics. KEY FINDINGS: Atorvastatin relieved the DSS-induced UC in mice, as evidenced by colon length, body weight, disease activity index score and pathological staining. Atorvastatin treatment reduced the level of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Atorvastatin also relieved the intestinal microbiota disorder caused by UC and decreased the proliferation of pernicious microbiota such as Akkermansia and Bacteroides. Atorvastatin dramatically altered tryptophan metabolism and increased the fecal contents of tryptophan, indolelactic acid (ILA), and indole-3-acetic acid (IAA). Furthermore, atorvastatin enhanced the expression level of aryl hydrocarbon receptor (AhR) and interleukin-22 (IL-22) and further promoted the expression level of intestinal tight junction proteins, such as ZO-1 and occludin, in colitis mice. SIGNIFICANCE: These findings indicated that atorvastatin could alleviate UC by regulating intestinal flora disorders, promoting microbial tryptophan metabolism, and repairing the intestinal barrier.


Asunto(s)
Atorvastatina , Colitis Ulcerosa , Sulfato de Dextran , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Triptófano , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Atorvastatina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Triptófano/metabolismo , Ratones , Masculino , Antiinflamatorios/farmacología , Colon/metabolismo , Colon/efectos de los fármacos , Colon/patología , Colon/microbiología
19.
Life Sci ; 351: 122794, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866218

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic, recurrent, non-specific inflammatory disease, and the pathogenesis of the disease remains unclear. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which are simultaneously closely related to reactive oxygen species (ROS). Although seliciclib is highly effective against immune inflammation, its mechanism on colitis is unclear. This study demonstrated that seliciclib administration partially inhibited ferroptosis, alleviating symptoms and inflammation in experimental colitis. METHODS: The mouse UC model was induced by 3.0 % dextran sodium sulfate (DSS) for 7 days and treated with seliciclib (10 mg/kg) for 5 days. In the in vitro model, LPS (100 µg/mL) was used for induction and seliciclib (10 µM) was applied for 2 h. Meanwhile, appropriate histopathology, inflammatory response, oxidative stress, and ferroptosis regulators were measured. RESULTS: This study primarily investigated the role of seliciclib in regulating ferroptosis in UC. Bioinformatics analysis indicated that Dual oxidase 2 (DUOX2) may serve a role involved in the ferroptosis of UC. The experimental findings demonstrated that seliciclib alleviates symptoms and inflammation in DSS-induced UC mice and partially mitigates the occurrence of ferroptosis both in vivo and in vitro, possibly through the modulation of DUOX2. CONCLUSIONS: Ferroptosis is strongly associated with the development of colitis, and seliciclib plays an essential role in ferroptosis and inflammation in UC. The suppression of ferroptosis in the intestinal epithelium could be a therapeutic approach for UC.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Ferroptosis , Ratones Endogámicos C57BL , Animales , Ferroptosis/efectos de los fármacos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Ratones , Masculino , Sulfato de Dextran/toxicidad , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos
20.
BMC Gastroenterol ; 24(1): 202, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886669

RESUMEN

BACKGROUND: B3GNT7, a glycosyltransferase of significant importance that is highly expressed in intestinal epithelial cells, plays a pivotal role in intestinal physiological processes. This study elucidates novel insights into the potential role and underlying mechanisms of B3GNT7 in ulcerative colitis (UC). METHODS: An experimental colitis model was induced using DSS in mice to investigate B3GNT7 expression in the colon via transcriptomics and immunohistochemistry. Bioinformatics analysis was employed to delineate the biological functions of B3GNT7. Additionally, the correlation between the transcription levels of B3GNT7 in colonic tissues from patients with UC, sourced from the IBDMDB database, and the severity of colonic inflammation was analyzed to elucidate potential mechanisms. RESULTS: The DSS-induced colitis model was successfully established, and transcriptomic analysis identified a marked downregulation of B3GNT7 expression in the colonic tissues compared to the controls. Functional enrichment analysis indicated B3GNT7's predominant role in mucin O-glycosylation. Protein interaction analysis revealed that B3GNT7 predominantly interacts with members of the mucin MUC family, including MUC2, MUC3, and MUC6. In patients with UC, B3GNT7 transcription levels were significantly reduced, particularly in those with moderate to severe disease activity. The expression level of B3GNT7 exhibited a negative correlation with the endoscopic severity of UC. Gene set enrichment analysis (GSEA) further demonstrated significant enrichment of B3GNT7 in the mucin O-glycosylation synthesis pathway. CONCLUSION: The downregulation of B3GNT7 expression in the colonic tissues of UC patients may contribute to the compromised mucin barrier function and the exacerbation of colitis.


Asunto(s)
Colitis Ulcerosa , Modelos Animales de Enfermedad , Mucinas , Animales , Humanos , Masculino , Ratones , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Sulfato de Dextran , Regulación hacia Abajo , Glicosilación , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Mucinas/metabolismo , Mucinas/genética , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...