Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Neurosci ; 18(1): 75, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29073893

RESUMEN

BACKGROUND: In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. RESULTS: Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. CONCLUSIONS: Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular factors involved in activity-dependent developmental processes in the auditory system. This would provide an important step forward concerning improved auditory rehabilitation in cases of congenital deafness.


Asunto(s)
Percepción Auditiva/fisiología , Complejo Olivar Superior/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Animales , Vías Auditivas/citología , Vías Auditivas/crecimiento & desarrollo , Vías Auditivas/metabolismo , Vías Auditivas/patología , Extractos Celulares , Claudinas/genética , Claudinas/metabolismo , Cóclea/fisiopatología , Proteínas de Unión al ADN , Sordera/metabolismo , Sordera/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Especificidad de la Especie , Complejo Olivar Superior/citología , Complejo Olivar Superior/crecimiento & desarrollo , Complejo Olivar Superior/patología , Extractos de Tejidos
2.
Neuroscience ; 334: 1-12, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27476438

RESUMEN

The superior paraolivary nucleus (SPON) is a prominent structure in the mammalian auditory brainstem with a proposed role in encoding transient broadband sounds such as vocalized utterances. Currently, the source of excitatory pathways that project to the SPON and how these inputs contribute to SPON function are poorly understood. To shed light on the nature of these inputs, we measured evoked excitatory postsynaptic currents (EPSCs) in the SPON originating from the intermediate acoustic stria and compared them with the properties of EPSCs in the lateral superior olive (LSO) originating from the ventral acoustic stria during auditory development from postnatal day 5 to 22 in mice. Before hearing onset, EPSCs in the SPON and LSO are very similar in size and kinetics. After the onset of hearing, SPON excitation is refined to extremely few (2:1) fibers, with each strengthened by an increase in release probability, yielding fast and strong EPSCs. LSO excitation is recruited from more fibers (5:1), resulting in strong EPSCs with a comparatively broader stimulus-response range after hearing onset. Evoked SPON excitation is comparatively weaker than evoked LSO excitation, likely due to a larger fraction of postsynaptic GluR2-containing Ca2+-impermeable AMPA receptors after hearing onset. Taken together, SPON excitation develops synaptic properties that are suited for transmitting single events with high temporal reliability and the strong, dynamic LSO excitation is compatible with high rate-level sensitivity. Thus, the excitatory input pathways to the SPON and LSO mature to support different decoding strategies of respective coarse temporal and sound intensity information at the brainstem level.


Asunto(s)
Percepción Auditiva/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Núcleo Olivar/crecimiento & desarrollo , Núcleo Olivar/fisiología , Complejo Olivar Superior/crecimiento & desarrollo , Complejo Olivar Superior/fisiología , Animales , Animales Recién Nacidos , Vías Auditivas/efectos de los fármacos , Vías Auditivas/crecimiento & desarrollo , Vías Auditivas/fisiología , Percepción Auditiva/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ratones Endogámicos CBA , Neurotransmisores/farmacología , Núcleo Olivar/efectos de los fármacos , Técnicas de Placa-Clamp , Receptores AMPA/metabolismo , Complejo Olivar Superior/efectos de los fármacos , Técnicas de Cultivo de Tejidos
3.
J Neurophysiol ; 115(3): 1170-82, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26655825

RESUMEN

During development GABA and glycine synapses are initially excitatory before they gradually become inhibitory. This transition is due to a developmental increase in the activity of neuronal potassium-chloride cotransporter 2 (KCC2), which shifts the chloride equilibrium potential (ECl) to values more negative than the resting membrane potential. While the role of early GABA and glycine depolarizations in neuronal development has become increasingly clear, the role of the transition to hyperpolarization in synapse maturation and circuit refinement has remained an open question. Here we investigated this question by examining the maturation and developmental refinement of GABA/glycinergic and glutamatergic synapses in the lateral superior olive (LSO), a binaural auditory brain stem nucleus, in KCC2-knockdown mice, in which GABA and glycine remain depolarizing. We found that many key events in the development of synaptic inputs to the LSO, such as changes in neurotransmitter phenotype, strengthening and elimination of GABA/glycinergic connection, and maturation of glutamatergic synapses, occur undisturbed in KCC2-knockdown mice compared with wild-type mice. These results indicate that maturation of inhibitory and excitatory synapses in the LSO is independent of the GABA and glycine depolarization-to-hyperpolarization transition.


Asunto(s)
Glicina/metabolismo , Potenciales de la Membrana , Neurogénesis , Complejo Olivar Superior/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Ratones , Complejo Olivar Superior/citología , Complejo Olivar Superior/crecimiento & desarrollo , Complejo Olivar Superior/metabolismo , Simportadores/genética , Simportadores/metabolismo , Sinapsis/metabolismo , Cotransportadores de K Cl
4.
Front Neural Circuits ; 8: 140, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25505386

RESUMEN

The vesicular glutamate transporter 3 (VGLUT3) is expressed at several locations not normally associated with glutamate release. Although the function of this protein has been generally elusive, when expressed in non-glutamatergic synaptic terminals, VGLUT3 can not only allow glutamate co-transmission but also synergize the action of non-glutamate vesicular transporters. Interestingly, in the immature glycinergic projection between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) of auditory brainstem, the transient early expression of VGLUT3 is required for normal developmental refinement. It has however been unknown whether the primary function of VGLUT3 in development of these inhibitory synapses is to enable glutamate release or to promote loading of inhibitory neurotransmitter through vesicular synergy. Using tissue from young mice in which Vglut3 had been genetically deleted, we evaluated inhibitory neurotransmission in the MNTB-LSO pathway. Our results show, in contrast to what has been seen at adult synapses, that VGLUT3 expression has little or no effect on vesicular synergy at the immature glycinergic synapse of brainstem. This finding supports the model that the primary function of increased VGLUT3 expression in the immature auditory brainstem is to enable glutamate release in a developing inhibitory circuit.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Glicina/metabolismo , Complejo Olivar Superior/crecimiento & desarrollo , Cuerpo Trapezoide/crecimiento & desarrollo , Ácido gamma-Aminobutírico/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Vías Auditivas/crecimiento & desarrollo , Vías Auditivas/fisiología , Estimulación Eléctrica , Ratones Noqueados , Potenciales Postsinápticos Miniatura/fisiología , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Complejo Olivar Superior/fisiología , Sinapsis/fisiología , Técnicas de Cultivo de Tejidos , Cuerpo Trapezoide/fisiología
5.
Front Neural Circuits ; 8: 109, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309335

RESUMEN

Neurons in the superior olivary complex (SOC) integrate excitatory and inhibitory inputs to localize sounds in space. The majority of these inhibitory inputs have been thought to arise within the SOC from the medial nucleus of the trapezoid body (MNTB). However, recent work demonstrates that glycinergic innervation of the SOC persists in Egr2; En1(CKO) mice that lack MNTB neurons, suggesting that there are other sources of this innervation (Jalabi et al., 2013). To study the development of MNTB- and non-MNTB-derived glycinergic SOC innervation, we compared immunostaining patterns of glycine transporter 2 (GlyT2) at several postnatal ages in control and Egr2; En1(CKO) mice. GlyT2 immunostaining was present at birth (P0) in controls and reached adult levels by P7 in the superior paraolivary nucleus (SPN) and by P12 in the lateral superior olive (LSO). In Egr2; En1(CKO) mice, glycinergic innervation of the LSO developed at a similar rate but was delayed by one week in the SPN. Conversely, consistent reductions in the number of GlyT2(+) boutons located on LSO somata were seen at all ages in Egr2; En1(CKO) mice, while these numbers reached control levels in the SPN by adulthood. Dendritic localization of GlyT2+ boutons was unaltered in both the LSO and SPN of adult Egr2; En1(CKO) mice. On the postsynaptic side, adult Egr2; En1(CKO) mice had reduced glycine receptor α1 (GlyRα1) expression in the LSO but normal levels in the SPN. GlyRα2 was not expressed by LSO or SPN neurons in either genotype. These findings contribute important information for understanding the development of MNTB- and non-MNTB-derived glycinergic pathways to the mouse SOC.


Asunto(s)
Glicina/metabolismo , Vías Nerviosas/fisiología , Neuronas/fisiología , Complejo Olivar Superior/citología , Complejo Olivar Superior/crecimiento & desarrollo , Cuerpo Trapezoide/citología , Factores de Edad , Animales , Animales Recién Nacidos , Dendritas/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Receptores de Glicina/metabolismo , Cuerpo Trapezoide/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...