Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.529
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(36): e2321939121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39186649

RESUMEN

Developing an effective Staphylococcus aureus (S. aureus) vaccine has been a challenging endeavor, as demonstrated by numerous failed clinical trials over the years. In this study, we formulated a vaccine containing a highly conserved moonlighting protein, the pyruvate dehydrogenase complex E2 subunit (PDHC), and showed that it induced strong protective immunity against epidemiologically relevant staphylococcal strains in various murine disease models. While antibody responses contributed to bacterial control, they were not essential for protective immunity in the bloodstream infection model. Conversely, vaccine-induced systemic immunity relied on γδ T cells. It has been suggested that prior S. aureus exposure may contribute to the reduction of vaccine efficacy. However, PDHC-induced protective immunity still facilitated bacterial clearance in mice previously exposed to S. aureus. Collectively, our findings indicate that PDHC is a promising serotype-independent vaccine candidate effective against both methicillin-sensitive and methicillin-resistant S. aureus isolates.


Asunto(s)
Infecciones Estafilocócicas , Vacunas Estafilocócicas , Staphylococcus aureus , Animales , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Ratones , Staphylococcus aureus/inmunología , Staphylococcus aureus/enzimología , Vacunas Estafilocócicas/inmunología , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/inmunología , Femenino , Anticuerpos Antibacterianos/inmunología , Modelos Animales de Enfermedad , Humanos , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Ratones Endogámicos C57BL , Staphylococcus aureus Resistente a Meticilina/inmunología , Piruvato Deshidrogenasa (Lipoamida)/inmunología , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Piruvato Deshidrogenasa (Lipoamida)/genética
2.
Cell Mol Life Sci ; 81(1): 340, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120696

RESUMEN

Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.


Asunto(s)
Senescencia Celular , Cobre , Fibrosis , Riñón , Mitocondrias , Complejo Piruvato Deshidrogenasa , Cobre/metabolismo , Mitocondrias/metabolismo , Fibrosis/metabolismo , Animales , Complejo Piruvato Deshidrogenasa/metabolismo , Riñón/metabolismo , Riñón/patología , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ciclo del Ácido Cítrico
3.
J Exp Biol ; 227(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39054898

RESUMEN

Adult, lab-reared, highland deer mice acclimate to hypoxia by increasing reliance on carbohydrates to fuel exercise. Yet neither the underlying mechanisms for this shift in fuel use nor the impact of lifetime hypoxia exposure experienced in high alpine conditions, are fully understood. Thus, we assessed the use of fuel during exercise in wild highland deer mice running in their native environment. We examined a key step in muscle carbohydrate oxidation - the regulation of pyruvate dehydrogenase (PDH) - during exercise at altitude in wild highlanders and in first generation (G1) lab-born and -raised highlanders acclimated to normoxia or hypoxia. PDH activity was also determined in the gastrocnemius of G1 highlanders using an in situ muscle preparation. We found that wild highlanders had a high reliance on carbohydrates while running in their native environment, consistent with data from hypoxia-acclimated G1 highlanders. PDH activity in the gastrocnemius was similar post exercise between G1 and wild highlanders. However, when the gastrocnemius was stimulated at a light work rate in situ, PDH activity was higher in hypoxia-acclimated G1 highlanders and was associated with lower intramuscular lactate levels. These findings were supported by lower PDH kinase 2 protein production in hypoxia-acclimated G1 mice. Our findings indicate that adult phenotypic plasticity in response to low oxygen is sufficient to increase carbohydrate reliance during exercise in highland deer mice. Additionally, variation in PDH regulation with hypoxia acclimation contributes to shifts in whole-animal patterns of fuel use and is likely to improve exercise performance via elevated energy yield per mole of O2. .


Asunto(s)
Altitud , Músculo Esquelético , Peromyscus , Condicionamiento Físico Animal , Complejo Piruvato Deshidrogenasa , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/enzimología , Peromyscus/fisiología , Complejo Piruvato Deshidrogenasa/metabolismo , Masculino , Aclimatación , Hipoxia/metabolismo , Femenino
4.
Sci Adv ; 10(29): eadn4582, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39018392

RESUMEN

The pyruvate dehydrogenase complex (PDHc) is a key megaenzyme linking glycolysis with the citric acid cycle. In mammalian PDHc, dihydrolipoamide acetyltransferase (E2) and the dihydrolipoamide dehydrogenase-binding protein (E3BP) form a 60-subunit core that associates with the peripheral subunits pyruvate dehydrogenase (E1) and dihydrolipoamide dehydrogenase (E3). The structure and stoichiometry of the fully assembled, mammalian PDHc or its core remained elusive. Here, we demonstrate that the human PDHc core is formed by 48 E2 copies that bind 48 E1 heterotetramers and 12 E3BP copies that bind 12 E3 homodimers. Cryo-electron microscopy, together with native and cross-linking mass spectrometry, confirmed a core model in which 8 E2 homotrimers and 12 E2-E2-E3BP heterotrimers assemble into a pseudoicosahedral particle such that the 12 E3BP molecules form six E3BP-E3BP intertrimer interfaces distributed tetrahedrally within the 60-subunit core. The even distribution of E3 subunits in the peripheral shell of PDHc guarantees maximum enzymatic activity of the megaenzyme.


Asunto(s)
Microscopía por Crioelectrón , Complejo Piruvato Deshidrogenasa , Humanos , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/química , Modelos Moleculares , Dihidrolipoamida Deshidrogenasa/metabolismo , Dihidrolipoamida Deshidrogenasa/química , Multimerización de Proteína , Unión Proteica , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/química
5.
Sci Adv ; 10(30): eado2825, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058774

RESUMEN

Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C-directed regulation of histone acetylation is the first key step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response. PDC is identified as an EIN2-C nuclear partner, and ethylene triggers its nuclear accumulation. Mutations in PDC lead to an ethylene hyposensitivity that results from the reduction of histone acetylation and transcription activation. Enzymatically active nuclear PDC synthesizes nuclear acetyl CoA for EIN2-C-directed histone acetylation and transcription regulation. These findings uncover a mechanism by which PDC-EIN2 converges the mitochondrial enzyme-mediated nuclear acetyl CoA synthesis with epigenetic and transcriptional regulation for plant hormone response.


Asunto(s)
Acetilcoenzima A , Proteínas de Arabidopsis , Arabidopsis , Núcleo Celular , Etilenos , Regulación de la Expresión Génica de las Plantas , Histonas , Complejo Piruvato Deshidrogenasa , Acetilación , Etilenos/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Acetilcoenzima A/metabolismo , Transcripción Genética , Mutación , Transducción de Señal , Receptores de Superficie Celular
6.
J Proteome Res ; 23(8): 3682-3695, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39037832

RESUMEN

Dental caries is a chronic oral infectious disease, and Streptococcus mutans (S. mutans) plays an important role in the formation of dental caries. Trans-cinnamaldehyde (CA) exhibits broad-spectrum antibacterial activity; however, its target and mechanism of action of CA on S. mutans needs to be further explored. In this study, it was verified that CA could inhibit the growth and biofilm formation of S. mutans. Further proteomic analysis identified 33, 55, and 78 differentially expressed proteins (DEPs) in S. mutans treated with CA for 1, 2, and 4 h, respectively. Bioinformatics analysis showed that CA interfered with carbohydrate metabolism, glycolysis, pyruvate metabolism, and the TCA cycle, as well as amino acid metabolism of S. mutans. Protein interactions suggested that pyruvate dehydrogenase (PDH) plays an important role in the antibacterial effect of CA. Moreover, the upstream and downstream pathways related to PDH were verified by various assays, and the results proved that CA not only suppressed the glucose and sucrose consumption and inhibited glucosyltransferase (GTF) and lactate dehydrogenase (LDH) activities but also decreased the ATP production. Interestingly, the protein interaction, qRT-PCR, and molecular docking analysis showed that PDH might be the target of CA to fight S. mutans. In summary, the study shows that CA interferes with the carbohydrate metabolism of bacteria by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle via binding to PDH, which verifies that PDH is a potential target for the development of new drugs against S. mutans.


Asunto(s)
Acroleína , Metabolismo de los Hidratos de Carbono , Simulación del Acoplamiento Molecular , Complejo Piruvato Deshidrogenasa , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética , Streptococcus mutans/enzimología , Acroleína/farmacología , Acroleína/análogos & derivados , Acroleína/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Antibacterianos/farmacología , Glucólisis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteómica/métodos , Caries Dental/microbiología , Ciclo del Ácido Cítrico/efectos de los fármacos , Adenosina Trifosfato/metabolismo
7.
Eur J Pharmacol ; 979: 176854, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39059568

RESUMEN

Obesity-induced muscle atrophy leads to physical impairment and metabolic dysfunction, which are risky for older adults. The activity of pyruvate dehydrogenase (PDH), a critical regulator of glucose metabolism, is reduced in obesity. Additionally, PDH activator dichloroacetate (DCA) improves metabolic dysfunction. However, the effects of PDH activation on skeletal muscles in obesity remain unclear. Thus, this study aimed to evaluate the effects of PDH activation by DCA treatment on obesity-induced muscle atrophy in vitro and in vivo and elucidate the possible underlying mechanisms. Results showed that PDH activation by DCA treatment ameliorated muscle loss, decreased the cross-sectional area, and reduced grip strength in C57BL/6 mice fed a high-fat diet (HFD). Elevation of muscle atrophic factors atrogin-1 and muscle RING-finger protein-1 (MuRF-1) and autophagy factors LC3BII and p62 were abrogated by DCA treatment in palmitate-treated C2C12 myotubes and in the skeletal muscles of HFD-fed mice. Moreover, p-Akt, p-FoxO1, and p-FoxO3 protein levels were reduced and p-NF-κB p65 and p-p38 MAPK protein levels were elevated in palmitate-treated C2C12 myotubes, which were restored by DCA treatment. However, the protective effects of DCA treatment against myotube atrophy were reversed by treatment with Akt inhibitor MK2206. Taken together, our study demonstrated that PDH activation by DCA treatment can alleviate obesity-induced muscle atrophy. It may serve as a basis for developing novel strategies to prevent obesity-associated muscle loss.


Asunto(s)
Ácido Dicloroacético , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Atrofia Muscular , Obesidad , Animales , Ácido Dicloroacético/farmacología , Ácido Dicloroacético/uso terapéutico , Atrofia Muscular/prevención & control , Atrofia Muscular/etiología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Ratones , Masculino , Dieta Alta en Grasa/efectos adversos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Línea Celular , Activación Enzimática/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/metabolismo , Autofagia/efectos de los fármacos
8.
Microb Biotechnol ; 17(6): e14514, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923400

RESUMEN

Pyruvate dehydrogenase (PDH) catalyses the irreversible decarboxylation of pyruvate to acetyl-CoA, which feeds the tricarboxylic acid cycle. We investigated how the loss of PDH affects metabolism in Pseudomonas putida. PDH inactivation resulted in a strain unable to utilize compounds whose assimilation converges at pyruvate, including sugars and several amino acids, whereas compounds that generate acetyl-CoA supported growth. PDH inactivation also resulted in the loss of carbon catabolite repression (CCR), which inhibits the assimilation of non-preferred compounds in the presence of other preferred compounds. Pseudomonas putida can degrade many aromatic compounds, most of which produce acetyl-CoA, making it useful for biotransformation and bioremediation. However, the genes involved in these metabolic pathways are often inhibited by CCR when glucose or amino acids are also present. Our results demonstrate that the PDH-null strain can efficiently degrade aromatic compounds even in the presence of other preferred substrates, which the wild-type strain does inefficiently, or not at all. As the loss of PDH limits the assimilation of many sugars and amino acids and relieves the CCR, the PDH-null strain could be useful in biotransformation or bioremediation processes that require growth with mixtures of preferred substrates and aromatic compounds.


Asunto(s)
Represión Catabólica , Pseudomonas putida , Complejo Piruvato Deshidrogenasa , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Pseudomonas putida/enzimología , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Hidrocarburos Aromáticos/metabolismo , Biodegradación Ambiental , Acetilcoenzima A/metabolismo , Ácido Pirúvico/metabolismo , Eliminación de Gen , Redes y Vías Metabólicas/genética
9.
J Endocrinol ; 262(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860519

RESUMEN

Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist used for the treatment of T2D, has been shown to alleviate diabetic cardiomyopathy (DbCM) in experimental T2D, which was associated with increased myocardial glucose oxidation. To determine whether this increase in glucose oxidation is necessary for cardioprotection, we hypothesized that liraglutide's ability to alleviate DbCM would be abolished in mice with cardiomyocyte-specific deletion of pyruvate dehydrogenase (PDH; Pdha1CM-/- mice), the rate-limiting enzyme of glucose oxidation. Male Pdha1CM-/- mice and their α-myosin heavy chain Cre expressing littermates (αMHCCre mice) were subjected to experimental T2D via 10 weeks of high-fat diet supplementation, with a single low-dose injection of streptozotocin (75 mg/kg) provided at week 4. All mice were randomized to treatment with either vehicle control or liraglutide (30 µg/kg) twice daily during the final 2.5 weeks, with cardiac function assessed via ultrasound echocardiography. As expected, liraglutide treatment improved glucose homeostasis in both αMHCCre and Pdha1CM-/- mice with T2D, in the presence of mild weight loss. Parameters of systolic function were unaffected by liraglutide treatment in both αMHCCre and Pdha1CM-/- mice with T2D. However, liraglutide treatment alleviated diastolic dysfunction in αMHCCre mice, as indicated by an increase and decrease in the e'/a' and E/e' ratios, respectively. Conversely, liraglutide failed to rescue these indices of diastolic dysfunction in Pdha1CM-/- mice. Our findings suggest that increases in glucose oxidation are necessary for GLP-1R agonist mediated alleviation of DbCM. As such, strategies aimed at increasing PDH activity may represent a novel approach for the treatment of DbCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Liraglutida , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Masculino , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratones Noqueados , Complejo Piruvato Deshidrogenasa/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Ratones Endogámicos C57BL , Dieta Alta en Grasa , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo
10.
Neurochem Int ; 178: 105791, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880231

RESUMEN

Long-term studies have confirmed a causal relationship between the development of neurodegenerative processes and vitamin B1 (thiamine) deficiency. However, the biochemical mechanisms underlying the high neurotropic activity of thiamine are not fully understood. At the same time, there is increasing evidence that vitamin B1, in addition to its coenzyme functions, may have non-coenzyme activities that are particularly important for neurons. To elucidate which effects of vitamin B1 in neurons are due to its coenzyme function and which are due to its non-coenzyme activity, we conducted a comparative study of the effects of thiamine and its derivative, 3-decyloxycarbonylmethyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride (DMHT), on selected processes in synaptosomes. The ability of DMHT to effectively compete with thiamine for binding to thiamine-binding sites on the plasma membrane of synaptosomes and to participate as a substrate in the thiamine pyrophosphokinase reaction was demonstrated. In experiments with rat brain synaptosomes, unidirectional effects of DMHT and thiamine on the activity of the pyruvate dehydrogenase complex (PDC) and on the incorporation of radiolabeled [2-14C]pyruvate into acetylcholine were demonstrated. The observed effects of thiamine and DMHT on the modulation of acetylcholine synthesis can be explained by suggesting that both compounds, which interact in cells with enzymes of thiamine metabolism, are phosphorylated and exert an inhibitory/activating effect (concentration-dependent) on PDC activity by affecting the regulatory enzymes of the complex. Such effects were not observed in the presence of structural analogues of thiamine and DMHT without a 2-hydroxyethyl substituent at position 5 of the thiazolium cycle. The effect of DMHT on the plasma membrane Ca-ATPase was similar to that of thiamine. At the same time, DMHT showed high cytostatic activity against neuroblastoma cells.


Asunto(s)
Ratas Wistar , Sinaptosomas , Tiamina , Animales , Sinaptosomas/metabolismo , Sinaptosomas/efectos de los fármacos , Ratas , Tiamina/farmacología , Tiamina/metabolismo , Masculino , Acetilcolina/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Tiazoles/farmacología , Coenzimas/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacología
11.
J Biol Chem ; 300(7): 107412, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796064

RESUMEN

The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.


Asunto(s)
Ácidos Grasos , Insulina , Miocardio , Oxidación-Reducción , Complejo Piruvato Deshidrogenasa , Animales , Insulina/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Ratones , Miocardio/metabolismo , Miocardio/enzimología , Ácidos Grasos/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Malonil Coenzima A/metabolismo , Masculino , Ratones Noqueados , Glucosa/metabolismo , Ratones Endogámicos C57BL
12.
Meat Sci ; 213: 109510, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38598967

RESUMEN

This research aimed to explore the potential influence of mitochondria on the rate of anaerobic glycolysis. We hypothesized that mitochondria could reduce the rate of anaerobic glycolysis and pH decline by metabolizing a portion of glycolytic pyruvate. We utilized an in vitro model and incorporated CPI-613 and Avidin to inhibit pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC), respectively. Four treatments were tested: 400 µM CPI-613, 1.5 U/ml Avidin, 400 µM CPI-613 + 1.5 U/ml Avidin, or control. Glycolytic metabolites and pH of the in vitro model were evaluated throughout a 1440-min incubation period. CPI-613-containing treatments, with or without Avidin, decreased pH levels and increased glycogen degradation and lactate accumulation compared to the control and Avidin treatments (P < 0.05), indicating increased glycolytic flux. In a different experiment, two treatments, 400 µM CPI-613 or control, were employed to track the fates of pyruvate using [13C6]glucose. CPI-613 reduced the contribution of glucose carbon to tricarboxylic acid cycle intermediates compared to control (P < 0.05). To test whether the acceleration of acidification in reactions containing CPI-613 was due to an increase in the activity of key enzymes of glycogenolysis and glycolysis, we evaluated the activities of glycogen phosphorylase, phosphofructokinase, and pyruvate kinase in the presence or absence of 400 µM CPI-613. The CPI-613 treatment did not elicit an alteration in the activity of these three enzymes. These findings indicate that inhibiting PDH increases the rate of anaerobic glycolysis and pH decline, suggesting that mitochondria are potential regulators of postmortem metabolism.


Asunto(s)
Glucógeno , Glucólisis , Complejo Piruvato Deshidrogenasa , Animales , Anaerobiosis , Glucosa/metabolismo , Glucógeno/metabolismo , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Mitocondrias/metabolismo , Cambios Post Mortem , Piruvato Carboxilasa/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Porcinos
13.
Diabetes ; 73(7): 1072-1083, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608261

RESUMEN

Insulin resistance is a risk factor for type 2 diabetes, and exercise can improve insulin sensitivity. However, following exercise, high circulating fatty acid (FA) levels might counteract this. We hypothesized that such inhibition would be reduced by forcibly increasing carbohydrate oxidation through pharmacological activation of the pyruvate dehydrogenase complex (PDC). Insulin-stimulated glucose uptake was examined with a crossover design in healthy young men (n = 8) in a previously exercised and a rested leg during a hyperinsulinemic-euglycemic clamp 5 h after one-legged exercise with 1) infusion of saline, 2) infusion of intralipid imitating circulating FA levels during recovery from whole-body exercise, and 3) infusion of intralipid + oral PDC activator, dichloroacetate (DCA). Intralipid infusion reduced insulin-stimulated glucose uptake by 19% in the previously exercised leg, which was not observed in the contralateral rested leg. Interestingly, this effect of intralipid in the exercised leg was abolished by DCA, which increased muscle PDC activity (130%) and flux (acetylcarnitine 130%) and decreased inhibitory phosphorylation of PDC on Ser293 (∼40%) and Ser300 (∼80%). Novel insight is provided into the regulatory interaction between glucose and lipid metabolism during exercise recovery. Coupling exercise and PDC flux activation upregulated the capacity for both glucose transport (exercise) and oxidation (DCA), which seems necessary to fully stimulate insulin-stimulated glucose uptake during recovery.


Asunto(s)
Ejercicio Físico , Insulina , Músculo Esquelético , Complejo Piruvato Deshidrogenasa , Humanos , Masculino , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Insulina/metabolismo , Insulina/sangre , Complejo Piruvato Deshidrogenasa/metabolismo , Adulto , Adulto Joven , Técnica de Clampeo de la Glucosa , Estudios Cruzados , Ácido Dicloroacético/farmacología , Resistencia a la Insulina/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Aceite de Soja/farmacología , Recuperación Después del Ejercicio , Emulsiones , Fosfolípidos
14.
Nature ; 629(8010): 184-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600378

RESUMEN

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacos
15.
Resuscitation ; 198: 110160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428722

RESUMEN

INTRODUCTION: Elevated lactate is associated with mortality after cardiac arrest. Thiamine, a cofactor of pyruvate dehydrogenase, is necessary for aerobic metabolism. In a mouse model of cardiac arrest, thiamine improved pyruvate dehydrogenase activity, survival and neurologic outcome. AIM: To determine if thiamine would decrease lactate and increase oxygen consumption after in-hospital cardiac arrest. METHODS: Randomized, double-blind, placebo-controlled phase II trial. Adult patients with arrest within 12 hours, mechanically ventilated, with lactate ≥ 3 mmol/L were included. Randomization was stratified by lactate > 5 or ≤ 5 mmol/L. Thiamine 500 mg or placebo was administered every 12 hours for 3 days. The primary outcome of lactate was checked at baseline, 6, 12, 24, and 48 hours, and compared using a linear mixed model, accounting for repeated measures. Secondary outcomes included oxygen consumption, pyruvate dehydrogenase, and mortality. RESULTS: Enrollments stopped after 36 patients due Data Safety and Monitoring Board concern about potential harm in an unplanned subgroup analysis. There was no overall difference in lactate (mean difference at 48 hours 1.5 mmol/L [95% CI -3.1-6.1], global p = 0.88) or any secondary outcomes. In those with randomization lactate > 5 mmol/L, mortality was 92% (11/12) with thiamine and 67% (8/12) with placebo (p = 0.32). In those with randomization lactate ≤ 5 mmol/L mortality was 17% (1/6) with thiamine and 67% (4/6) with placebo (p = 0.24). There was a significant interaction between randomization lactate and the effect of thiamine on survival (p = 0.03). CONCLUSIONS: In this single center trial thiamine had no overall effect on lactate after in-hospital cardiac arrest.


Asunto(s)
Paro Cardíaco , Tiamina , Humanos , Tiamina/uso terapéutico , Tiamina/administración & dosificación , Masculino , Método Doble Ciego , Femenino , Persona de Mediana Edad , Paro Cardíaco/terapia , Paro Cardíaco/mortalidad , Anciano , Ácido Láctico/sangre , Consumo de Oxígeno/efectos de los fármacos , Reanimación Cardiopulmonar/métodos , Complejo Vitamínico B/uso terapéutico , Complejo Vitamínico B/administración & dosificación , Complejo Piruvato Deshidrogenasa/metabolismo
16.
Science ; 383(6690): 1484-1492, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547260

RESUMEN

Cellular purines, particularly adenosine 5'-triphosphate (ATP), fuel many metabolic reactions, but less is known about the direct effects of pyrimidines on cellular metabolism. We found that pyrimidines, but not purines, maintain pyruvate oxidation and the tricarboxylic citric acid (TCA) cycle by regulating pyruvate dehydrogenase (PDH) activity. PDH activity requires sufficient substrates and cofactors, including thiamine pyrophosphate (TPP). Depletion of cellular pyrimidines decreased TPP synthesis, a reaction carried out by TPP kinase 1 (TPK1), which reportedly uses ATP to phosphorylate thiamine (vitamin B1). We found that uridine 5'-triphosphate (UTP) acts as the preferred substrate for TPK1, enabling cellular TPP synthesis, PDH activity, TCA-cycle activity, lipogenesis, and adipocyte differentiation. Thus, UTP is required for vitamin B1 utilization to maintain pyruvate oxidation and lipogenesis.


Asunto(s)
Ciclo del Ácido Cítrico , Lipogénesis , Pirimidinas , Complejo Piruvato Deshidrogenasa , Piruvatos , Adenosina Trifosfato/metabolismo , Pirimidinas/metabolismo , Piruvatos/metabolismo , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo , Uridina Trifosfato/metabolismo , Oxidación-Reducción , Proteínas Quinasas/metabolismo , Humanos , Células HeLa , Complejo Piruvato Deshidrogenasa/metabolismo
17.
Sci Rep ; 14(1): 5665, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453992

RESUMEN

Pyruvate dehydrogenase kinases (PDKs) play a key role in glucose metabolism by exerting negative regulation over pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibition of PDKs holds the potential to enhance PDC activity, prompting cells to adopt a more aerobic metabolic profile. Consequently, PDKs emerge as promising targets for condition rooted in metabolic dysregulation, including malignance and diabetes. However, a comprehensive exploration of the distinct contribution of various PDK family members, particularly PDK3, across diverse tumor types remain incomplete. This study undertakes a systematic investigation of PDK family expression patterns, forging association with clinical parameters, using data from the TCGA and GTEx datasets. Survival analysis of PDKs is executed through both Kaplan-Meier analysis and COX regression analysis. Furthermore, the extent of immune infiltration is assessed by leveraging the CIBERSORT algorithm. Our study uncovers pronounced genetic heterogeneity among PDK family members, coupled with discernible clinical characteristic. Significantly, the study establishes the potential utility of PDK family genes as prognostic indicators and as predictors of therapeutic response. Additionally, our study sheds light on the immune infiltration profile of PDK family. The results showed the intimate involvement of these genes in immune-related metrics, including immune scoring, immune subtypes, tumor-infiltrating lymphocytes, and immune checkpoints expression. In sum, the findings of this study offer insightful strategies to guide the therapeutic direction, aiming at leveraging the impact of PDK family genes in cancer treatment.


Asunto(s)
Neoplasias , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Neoplasias/metabolismo , Pronóstico , Piruvatos , Complejo Piruvato Deshidrogenasa/metabolismo
18.
Int J Biol Macromol ; 262(Pt 1): 129970, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325689

RESUMEN

In humans and animals, the pyruvate dehydrogenase kinase (PDK) family proteins (PDKs 1-4) are excessively activated in metabolic disorders such as obesity, diabetes, and cancer, inhibiting the activity of pyruvate dehydrogenase (PDH) which plays a crucial role in energy and fatty acid metabolism and impairing its function. Intervention and regulation of PDH activity have become important research approaches for the treatment of various metabolic disorders. In this study, a small molecule (g25) targeting PDKs and activating PDH, was identified through multi-level computational screening methods. In vivo and in vitro experiments have shown that g25 activated the activity of PDH and reduced plasma lactate and triglyceride level. Besides, g25 significantly decreased hepatic fat deposition in a diet-induced obesity mouse model. Furthermore, g25 enhanced the tumor-inhibiting activity of cisplatin when used in combination. Molecular dynamics simulations and in vitro kinase assay also revealed the specificity of g25 towards PDK2. Overall, these findings emphasize the importance of targeting the PDK/PDH axis to regulate PDH enzyme activity in the treatment of metabolic disorders, providing directions for future related research. This study provides a possible lead compound for the PDK/PDH axis related diseases and offers insights into the regulatory mechanisms of this pathway in diseases.


Asunto(s)
Enfermedades Metabólicas , Neoplasias , Animales , Ratones , Humanos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Fosforilación , Enfermedades Metabólicas/tratamiento farmacológico , Obesidad
19.
Sci Adv ; 10(6): eadj6358, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324697

RESUMEN

The Escherichia coli pyruvate dehydrogenase complex (PDHc) is a ~5 MDa assembly of the catalytic subunits pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). The PDHc core is a cubic complex of eight E2 homotrimers. Homodimers of the peripheral subunits E1 and E3 associate with the core by binding to the peripheral subunit binding domain (PSBD) of E2. Previous reports indicated that 12 E1 dimers and 6 E3 dimers bind to the 24-meric E2 core. Using an assembly arrested E2 homotrimer (E23), we show that two of the three PSBDs in the E23 dimerize, that each PSBD dimer cooperatively binds two E1 dimers, and that E3 dimers only bind to the unpaired PSBD in E23. This mechanism is preserved in wild-type PDHc, with an E1 dimer:E2 monomer:E3 dimer stoichiometry of 16:24:8. The conserved PSBD dimer interface indicates that PSBD dimerization is the previously unrecognized architectural determinant of gammaproteobacterial PDHc megacomplexes.


Asunto(s)
Dihidrolipoamida Deshidrogenasa , Acetiltransferasa de Residuos Dihidrolipoil-Lisina , Escherichia coli , Complejo Piruvato Deshidrogenasa , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/metabolismo , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/química , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Dimerización , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/metabolismo
20.
Bioorg Chem ; 144: 107160, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301426

RESUMEN

Metabolism is reprogrammed in a variety of cancer cells to ensure their rapid proliferation. Cancer cells prefer to utilize glycolysis to produce energy as well as to provide large amounts of precursors for their division. In this process, cancer cells inhibit the activity of pyruvate dehydrogenase complex (PDC) by upregulating the expression of pyruvate dehydrogenase kinases (PDKs). Inhibiting the activity of PDKs in cancer cells can effectively block this metabolic transition in cancer cells, while also activating mitochondrial oxidative metabolism and promoting apoptosis of cancer cells. To this day, the study of PDKs inhibitors has become one of the research hotspots in the field of medicinal chemistry. Novel structures targeting PDKs are constantly being discovered, and some inhibitors have entered the clinical research stage. Here, we reviewed the research progress of PDKs inhibitors in recent years and classified them according to the PDKs binding sites they acted on, aiming to summarize the structural characteristics of inhibitors acting on different binding sites and explore their clinical application value. Finally, the shortcomings of some PDKs inhibitors and the further development direction of PDKs inhibitors are discussed.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Complejo Piruvato Deshidrogenasa , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Glucólisis , Sitios de Unión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...