Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 871
Filtrar
1.
PeerJ ; 12: e17115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560454

RESUMEN

Environmental stresses diversely affect multiple processes related to the growth, development, and yield of many crops worldwide. In response, plants have developed numerous sophisticated defense mechanisms at the cellular and subcellular levels to react and adapt to biotic and abiotic stressors. RNA silencing, which is an innate immune mechanism, mediates sequence-specific gene expression regulation in higher eukaryotes. ARGONAUTE (AGO) proteins are essential components of the RNA-induced silencing complex (RISC). They bind to small noncoding RNAs (sRNAs) and target complementary RNAs, causing translational repression or triggering endonucleolytic cleavage pathways. In this review, we aim to illustrate the recently published molecular functions, regulatory mechanisms, and biological roles of AGO family proteins in model plants and cash crops, especially in the defense against diverse biotic and abiotic stresses, which could be helpful in crop improvement and stress tolerance in various plants.


Asunto(s)
Proteínas Argonautas , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas Argonautas/genética , Regulación de la Expresión Génica de las Plantas , Complejo Silenciador Inducido por ARN/genética , Productos Agrícolas/genética
2.
Sci Rep ; 14(1): 3066, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321143

RESUMEN

MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins in the RNA-induced silencing complex (RISC) to modulate protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by repressing the translation of proteins involved in dendritic spine morphogenesis. Rapid NMDAR-dependent silencing of Limk1 is essential for spine shrinkage and requires Ago2 phosphorylation at S387. Not all gene silencing events are modulated by S387 phosphorylation, and the mechanisms that govern the selection of specific mRNAs for silencing downstream of S387 phosphorylation are unknown. Here, we show that NMDAR-dependent S387 phosphorylation causes a rapid and transient increase in the association of Ago2 with Limk1, but not Apt1 mRNA. The specific increase in Limk1 mRNA binding to Ago2 requires recruitment of the helicase DDX6 to RISC. Furthermore, we show that DDX6 is required for NMDAR-dependent silencing of Limk1 via miR-134, but not Apt1 via miR-138, and is essential for NMDAR-dependent spine shrinkage. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression of specific genes to control dendritic spine morphology.


Asunto(s)
MicroARNs , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Espinas Dendríticas/metabolismo , ARN Helicasas/metabolismo , MicroARNs/genética , Proteínas Argonautas/genética , Complejo Silenciador Inducido por ARN/metabolismo , Silenciador del Gen , ARN Mensajero/genética
3.
Biochem Biophys Res Commun ; 703: 149662, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38359613

RESUMEN

RNA interference (RNAi) is becoming medicine for curing human diseases. Still, we lack a thorough understanding of some fundamental aspects of RNAi that affect its efficiency and accuracy. One such question is how RNA-induced silencing complex (RISC) can efficiently find its targets. To address this question, we developed a strategy that involves the expression of mRNAs containing concatenations of identical miRNA/siRNA target sites. These mRNAs were cleaved by co-expressed miRNAs in plant cells or by co-transfected siRNAs in mammalian cells. The mRNA cleavage events were then detected using the 5'RACE assay. Using this strategy, we found that RISCs preferentially cleave the upstream ones of concatenated target sites, consistent with a model that RISC scans mRNA in 5'→3' direction to approach its target sites. The stability of the cleaved mRNA fragments correlates with the complementarity between siRNA and its target sequence. When siRNA perfectly complements its target sequence, the cleaved mRNA fragment becomes stable and may be cleaved in a second round. Our findings have practical implications for designing siRNAs with increased efficiency and reduced off-target effects.


Asunto(s)
MicroARNs , Animales , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/metabolismo
4.
J Virol ; 98(2): e0195423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289102

RESUMEN

During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Humanos , Mamíferos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/genética , ARN Viral/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , ARN Subgenómico , Proteínas Virales/metabolismo , Replicación Viral , Virus Zika/fisiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
5.
Nat Commun ; 15(1): 264, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238311

RESUMEN

Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aß42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aß42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aß42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Ratones , Animales , Humanos , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , MicroARNs/genética , Complejo Silenciador Inducido por ARN/genética , Interferencia de ARN , Envejecimiento/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/toxicidad
6.
Am J Obstet Gynecol ; 230(2): 251.e1-251.e17, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37598997

RESUMEN

BACKGROUND: Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE: Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN: To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS: We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-ß signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-ß gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION: These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.


Asunto(s)
MicroARNs , Infección por el Virus Zika , Virus Zika , Embarazo , Humanos , Femenino , Animales , Ratones , Virus Zika/genética , Infección por el Virus Zika/genética , MicroARNs/genética , MicroARNs/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Enoxacino/metabolismo , Placenta/metabolismo , Perfilación de la Expresión Génica , Complejo Silenciador Inducido por ARN/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Trofoblastos/metabolismo
7.
J Pharm Sci ; 113(1): 176-190, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871778

RESUMEN

Triantennary N-acetyl-D galactosamine (GalNAc)3-conjugated small interfering RNA (siRNA) have majorly advanced the development of RNA-based therapeutics. Chemically stabilized GalNAc-siRNAs exhibit extensive albeit capacity-limited (nonlinear) distribution into hepatocytes with additional complexities in intracellular liver disposition and pharmacology. A mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model of GalNAc-siRNA was developed to i) quantitate ASGPR-mediated disposition and downstream RNA-induced silencing complex (RISC)-dependent pharmacology following intravenous (IV) and subcutaneous (SC) dosing, ii) assess the kinetics of formed active metabolite, iii) leverage, as an example, published experimental data for givosiran, and iv) demonstrate PK translation across two preclinical species (rat and monkey) with subsequent prediction of human plasma PK. The structural model is based on competition between parent and formed active metabolite for occupancy and uptake via ASGPR into hepatocytes, intracellular sequestration and degradation, and downstream engagement of RNA-induced silencing complex (RISC) governing target mRNA degradation. The model jointly and accurately captured available concentration-time profiles of givosiran and/or AS(N-1)3' givosiran in rat and/or monkey plasma, liver, and/or kidney following givosiran administered both IV and SC. RISC-dependent gene silencing of ALAS1 mRNA was well-characterized. The model estimated an in vivo affinity (KD) value of 27.7 nM for GalNAc-ASGPR and weight-based allometric exponents of -0.27 and -0.24 for SC absorption and intracellular (endolysosomal) degradation rate constants. The model well-predicted reported givosiran plasma PK profiles in humans. PK simulations revealed net-shifts in liver-to-kidney distribution ratios with increasing IV and SC dose. Importantly, decreases in the relative liver uptake efficiency were demonstrated following IV and, to a lesser extent, following SC dosing explained by differential ASGPR occupancy profiles over time.


Asunto(s)
Galactosamina , Complejo Silenciador Inducido por ARN , Humanos , Ratas , Animales , ARN Interferente Pequeño/genética , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Silenciador del Gen , Haplorrinos/genética , Haplorrinos/metabolismo
8.
J Biol Chem ; 300(1): 105499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029964

RESUMEN

Argonaute (AGO) proteins in all three domains of life form ribonucleoprotein or deoxyribonucleoprotein complexes by loading a guide RNA or DNA, respectively. Since all AGOs retain a PIWI domain that takes an RNase H fold, the ancestor was likely an endoribonuclease (i.e., a slicer). In animals, most miRNA-mediated gene silencing occurs slicer independently. However, the slicer activity of AGO is indispensable in specific events, such as development and differentiation, which are critical for vertebrates and thus cannot be replaced by the slicer-independent regulation. This review highlights the distinctions in catalytic activation mechanisms among slicing-competent AGOs, shedding light on the roles of two metal ions in target recognition and cleavage. The precision of the target specificity by the RNA-induced silencing complexes is reevaluated and redefined. The possible coevolutionary relationship between slicer-independent gene regulation and AGO-binding protein, GW182, is also explored. These discussions reveal that numerous captivating questions remain unanswered regarding the timing and manner in which AGOs employ their slicing activity.


Asunto(s)
Proteínas Argonautas , Complejo Silenciador Inducido por ARN , Ribonucleasas , Animales , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , ARN Guía de Sistemas CRISPR-Cas , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/química , Complejo Silenciador Inducido por ARN/metabolismo
9.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003244

RESUMEN

ARGONAUTE (AGO) proteins are key components of the RNA-induced silencing complex (RISC) that mediates gene silencing in eukaryotes. Small-RNA (sRNA) cargoes are selectively loaded into different members of the AGO protein family and then target complementary sequences to in-duce transcriptional repression, mRNA cleavage, or translation inhibition. Previous reviews have mainly focused on the traditional roles of AGOs in specific biological processes or on the molecular mechanisms of sRNA sorting. In this review, we summarize the biological significance of canonical sRNA loading, including the balance among distinct sRNA pathways, cross-regulation of different RISC activities during plant development and defense, and, especially, the emerging roles of AGOs in sRNA movement. We also discuss recent advances in novel non-canonical functions of plant AGOs. Perspectives for future functional studies of this evolutionarily conserved eukaryotic protein family will facilitate a more comprehensive understanding of the multi-faceted AGO proteins.


Asunto(s)
MicroARNs , ARN Pequeño no Traducido , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Complejo Silenciador Inducido por ARN/genética , ARN Pequeño no Traducido/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/genética
10.
Sci Rep ; 13(1): 19761, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957252

RESUMEN

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are loaded into Argonaute (AGO) proteins, forming RNA-induced silencing complexes (RISCs). The assembly process establishes the seed, central, 3' supplementary, and tail regions across the loaded guide, enabling the RISC to recognize target RNAs for silencing. This guide segmentation is caused by anchoring the 3' end at the AGO PAZ domain, but the minimum guide length required for the conformation remains to be studied because the current miRNA size defined by Dicer processing is ambiguous. Using a 3' → 5' exonuclease ISG20, we determined the lengths of AGO-associated miR-20a and let-7a with 3' ends that no longer reach the PAZ domain. Unexpectedly, miR-20a and let-7a needed different lengths, 19 and 20 nt, respectively, to maintain their RISC conformation. This difference can be explained by the low affinity of the PAZ domain for the adenosine at g19 of let-7a, suggesting that the tail-region sequence slightly alters the minimum guide length. We also present that 17-nt guides are sufficiently short enough to function as tinyRNAs (tyRNAs) whose 3' ends are not anchored at the PAZ domain. Since tyRNAs do not have the prerequisite anchoring for the standardized guide segmentation, they would recognize targets differently from miRNAs and siRNAs.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , ARN Bicatenario , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
11.
RNA ; 30(1): 26-36, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37879863

RESUMEN

Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.


Asunto(s)
MicroARNs , Complejo Silenciador Inducido por ARN , Animales , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Linfocitos T CD8-positivos/metabolismo , Peso Molecular , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/metabolismo
12.
EMBO Rep ; 24(11): e57250, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37712432

RESUMEN

MicroRNAs (miRNAs) together with Argonaute (AGO) proteins form the core of the RNA-induced silencing complex (RISC) to regulate gene expression of their target RNAs post-transcriptionally. Argonaute proteins are subjected to intensive regulation via various post-translational modifications that can affect their stability, silencing efficacy and specificity for targeted gene regulation. We report here that in Caenorhabditis elegans, two conserved serine/threonine kinases - casein kinase 1 alpha 1 (CK1A1) and casein kinase 2 (CK2) - regulate a highly conserved phosphorylation cluster of 4 Serine residues (S988:S998) on the miRNA-specific AGO protein ALG-1. We show that CK1A1 phosphorylates ALG-1 at sites S992 and S995, while CK2 phosphorylates ALG-1 at sites S988 and S998. Furthermore, we demonstrate that phospho-mimicking mutants of the entire S988:S998 cluster rescue the various developmental defects observed upon depleting CK1A1 and CK2. In humans, we show that CK1A1 also acts as a priming kinase of this cluster on AGO2. Altogether, our data suggest that phosphorylation of AGO within the cluster by CK1A1 and CK2 is required for efficient miRISC-target RNA binding and silencing.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Animales , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Silenciador del Gen , Serina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
13.
J Virol ; 97(7): e0065223, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310263

RESUMEN

HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.


Asunto(s)
Infecciones por VIH , VIH-1 , MicroARNs , Humanos , VIH-1/fisiología , Latencia del Virus/genética , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo
14.
PLoS Genet ; 19(5): e1010755, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146074

RESUMEN

MicroRNAs (miRNAs) are a well-characterized class of small RNAs (sRNAs) that regulate gene expression post-transcriptionally. miRNAs function within a complex milieu of other sRNAs of similar size and abundance, with the best characterized being tRNA fragments or tRFs. The mechanism by which the RNA-induced silencing complex (RISC) selects for specific sRNAs over others is not entirely understood in human cells. Several highly expressed tRNA trailers (tRF-1s) are strikingly similar to microRNAs in length but are generally excluded from the microRNA effector pathway. This exclusion provides a paradigm for identifying mechanisms of RISC selectivity. Here, we show that 5' to 3' exoribonuclease XRN2 contributes to human RISC selectivity. Although highly abundant, tRF-1s are highly unstable and degraded by XRN2 which blocks tRF-1 accumulation in RISC. We also find that XRN mediated degradation of tRF-1s and subsequent exclusion from RISC is conserved in plants. Our findings reveal a conserved mechanism that prevents aberrant entry of a class of highly produced sRNAs into Ago2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Complejo Silenciador Inducido por ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
15.
Chem Commun (Camb) ; 59(42): 6347-6350, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37144553

RESUMEN

To ensure specificity of small interfering RNAs (siRNAs), the antisense strand must be selected by the RNA-induced silencing complex (RISC). We have previously demonstrated that a 5'-morpholino-modified nucleotide at the 5'-end of the sense strand inhibits its interaction with RISC ensuring selection of the desired antisense strand. To improve this antagonizing binding property even further, a new set of morpholino-based analogues, Mo2 and Mo3, and a piperidine analogue, Pip, were designed based on the known structure of Argonaute2, the slicer enzyme component of RISC. Sense strands of siRNAs were modified with these new analogues, and the siRNAs were evaluated in vitro and in mice for RNAi activity. Our data demonstrated that Mo2 is the best RISC inhibitor among the modifications tested and that it effectively mitigates sense strand-based off-target activity of siRNA.


Asunto(s)
ARN Interferente Pequeño , Complejo Silenciador Inducido por ARN , Animales , Ratones , ARN Interferente Pequeño/química , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Morfolinos/química
16.
Methods Mol Biol ; 2666: 137-147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166662

RESUMEN

MicroRNAs (miRNAs) are short noncoding RNAs and important players in the regulation of gene expression through post-transcriptional mechanisms. MicroRNAs regulate many cellular processes and are involved in disease progression. Identification of novel miRNA-to-target RNA connections can fill the gaps in the signaling pathways and suggest new therapeutic targets. MiRNA targets are often predicted by base-complementarity of their seed and flanking sequences with target sequences. Direct targets can also be identified by the physical interaction between the miRNA and the target RNA using immunoprecipitation of the Argonaute (AGO) protein, a component of the RNA-induced silencing complex, followed by ligation of AGO-associated miRNA and target RNA and next generation sequencing (CLASH). Databases describing these miRNA-RNA interactions have been generated from cells commonly studied or used. However, because the regulation by miRNAs varies among organs, tissues, cell types and species, identifying relevant targets in specific cells under conditions of interest may not be available. Here, the author describes simplified methods of AGO2-CLASH and AGO2-CLIP to identify miRNA targets by comparing primary cells derived from wild-type mice and those from specific miRNA knockout mice.


Asunto(s)
MicroARNs , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Línea Celular , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Inmunoprecipitación
17.
J Med Chem ; 66(4): 2506-2523, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36757090

RESUMEN

Conjugation of synthetic triantennary N-acetyl-d-galactosamine (GalNAc) to small interfering RNA (siRNA) mediates binding to the asialoglycoprotein receptor (ASGPR) on the surface of hepatocytes, facilitating liver-specific uptake and siRNA-mediated gene silencing. The natural ß-glycosidic bond of the GalNAc ligand is rapidly cleaved by glycosidases in vivo. Novel GalNAc ligands with S-, and C-glycosides with both α- and ß-anomeric linkages, N-glycosides with ß-anomeric linkage, and the O-glycoside with α-anomeric linkage were synthesized and conjugated to siRNA either on-column during siRNA synthesis or through a high-throughput, post-synthetic method. Unlike natural GalNAc, modified ligands were resistant to glycosidase activity. The siRNAs conjugated to newly designed ligands had similar affinities for ASGPR and similar silencing activity in mice as the parent GalNAc-siRNA conjugate. These data suggest that other factors, such as protein-nucleic acid interactions and loading of the antisense strand into the RNA-induced silencing complex (RISC), are more critical to the duration of action than the stereochemistry and stability of the anomeric linkage between the GalNAc moiety of the ligand conjugated to the sense strand of the siRNA.


Asunto(s)
Receptor de Asialoglicoproteína , Galactosamina , ARN Interferente Pequeño , Complejo Silenciador Inducido por ARN , Animales , Ratones , Acetilgalactosamina/química , Receptor de Asialoglicoproteína/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósidos/metabolismo , Hepatocitos/metabolismo , Ligandos , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo
18.
Dev Comp Immunol ; 142: 104668, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36774972

RESUMEN

Argonaute (Ago) is the core component of RNA-induced silencing complex to play a crucial role in the antiviral immunity, which always cooperates with Dicer in RNA interference (RNAi) to silence the target genes. In the present study, an Ago homologue (CgAgo2) was identified in the Pacific oyster Crassostrea gigas. There were four classical functional domains in the predicted CgAgo2 protein, including an N-terminal domain, a PAZ domain, a Mid domain, and a PIWI domain. The deduced amino acid sequence of CgAgo2 shared 63.52%-84.27% identity with other Agos. Transcriptome analysis showed that CgAgo2 was highly expressed in embryonic period and gradually decreased from blastula to gastrula. The transcripts of CgAgo2 were detectable in all the examined tissues of adult oysters, with the highest expression in haemocytes (36.61-fold of that in adductor muscle, p < 0.001). The expression level of CgAgo2 mRNA in haemocytes increased significantly at 12 h after poly (I:C) and dsRNA stimulation, which were 2.71-fold (p < 0.05) and 58.00-fold (p < 0.001) of that in the control group respectively. Immunocytochemistry assay revealed that CgAgo2 proteins were mainly distributed in the cytoplasm and nucleus of haemocytes. The interaction between the recombinant CgAgo2 protein (rCgAgo2) and cleavage protein rCgDicer was observed in vitro by BLI and pull-down assays. These results indicated that CgAgo2 participated in the antiviral immunity of oyster by functioning as a component of RNA-induced silencing complex in RNAi.


Asunto(s)
Crassostrea , Animales , Inmunidad Innata/genética , Regulación de la Expresión Génica , Antivirales/metabolismo , Interferencia de ARN , Poli I-C/farmacología , Proteínas Recombinantes/genética , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Hemocitos
19.
RNA ; 29(3): 317-329, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617673

RESUMEN

RNA regulation can be performed by a second targeting RNA molecule, such as in the microRNA regulation mechanism. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probes the structure of RNA molecules and can resolve RNA:protein interactions, but RNA:RNA interactions have not yet been addressed with this technique. Here, we apply SHAPE to investigate RNA-mediated binding processes in RNA:RNA and RNA:RNA-RBP complexes. We use RNA:RNA binding by SHAPE (RABS) to investigate microRNA-34a (miR-34a) binding its mRNA target, the silent information regulator 1 (mSIRT1), both with and without the Argonaute protein, constituting the RNA-induced silencing complex (RISC). We show that the seed of the mRNA target must be bound to the microRNA loaded into RISC to enable further binding of the compensatory region by RISC, while the naked miR-34a is able to bind the compensatory region without seed interaction. The method presented here provides complementary structural evidence for the commonly performed luciferase-assay-based evaluation of microRNA binding-site efficiency and specificity on the mRNA target site and could therefore be used in conjunction with it. The method can be applied to any nucleic acid-mediated RNA- or RBP-binding process, such as splicing, antisense RNA binding, or regulation by RISC, providing important insight into the targeted RNA structure.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Interferencia de ARN , Proteínas Argonautas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
J Pharmacol Exp Ther ; 384(1): 1-9, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35667689

RESUMEN

Argonautes (AGOs) are a highly conserved family of proteins found in most eukaryotes and involved in mechanisms of gene regulation, both at the transcriptional and post-transcriptional level. Among other functions, AGO proteins associate with microRNAs (miRNAs) to mediate the post-transcriptional repression of protein-coding genes. In this process, AGOs associate with members of the trinucleotide repeat containing 6 protein (TNRC6) family to form the core of the RNA-induced silencing complex (RISC), the effector machinery that mediates miRNA function. However, the description of the exact composition of the RISC has been a challenging task due to the fact the AGO's interactome is dynamically regulated in a cell type- and condition-specific manner. Here, we summarize some of the most significant studies that have identified AGO complexes in mammalian cells, as well as the approaches used to characterize them. Finally, we discuss possible opportunities to exploit what we have learned on the properties of the RISC to develop novel anti-cancer therapies. SIGNIFICANCE STATEMENT: The RNA-induced silencing complex (RISC) is the molecular machinery that mediates miRNA function in mammals. Studies over the past two decades have shed light on important biochemical and functional properties of this complex. However, many aspects of this complex await further elucidation, mostly due to technical limitations that have hindered full characterization. Here, we summarize some of the most significant studies on the mammalian RISC and discuss possible sources of biases in the approaches used to characterize it.


Asunto(s)
Proteínas Argonautas , MicroARNs , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/química , Complejo Silenciador Inducido por ARN/metabolismo , Regulación de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA