Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microsc Res Tech ; 86(12): 1583-1598, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37534550

RESUMEN

In this work, a new approach to construct self-assembled hybrid systems based on natural PSII-enriched thylakoid membranes (PSII BBY) is demonstrated. Superfine m-WO3 NPs (≈1-2 nm) are introduced into PSII BBY. Transmission electron microscopy (TEM) measurements showed that even the highest concentrations of NPs used did not degrade the PSII BBY membranes. Using atomic force microscopy (AFM), it is shown that the organization of PSII BBY depends strongly on the concentration of NPs applied. This proved that the superfine NPs can easily penetrate the thylakoid membrane and interact with its components. These changes are also related to the modified energy transfer between the external light-harvesting antennas and the PSII reaction center, shown by absorption and fluorescence experiments. The biohybrid system shows stability at pH 6.5, the native operating environment of PSII, so a high rate of O2 evolution is expected. In addition, the light-induced water-splitting process can be further stimulated by the direct interaction of superfine WO3 NPs with the donor and acceptor sides of PSII. The water-splitting activity and stability of this colloidal system are under investigation. RESEARCH HIGHLIGHTS: The phenomenon of the self-organization of a biohybrid system composed of thylakoid membranes enriched in photosystem II and superfine WO3 nanoparticles is studied using AFM and TEM. A strong dependence of the organization of PSII complexes within PSII BBY membranes on the concentration of NPs applied is observed. This observation turns out to be crucial to understand the complexity of the mechanism of the action of WO3 NPs on modifications of energy transfer from external antenna complexes to the PSII reaction center.


Asunto(s)
Nanopartículas , Tilacoides , Tilacoides/química , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema II/análisis , Complejo de Proteína del Fotosistema II/metabolismo , Transferencia de Energía , Agua/análisis
2.
J Integr Plant Biol ; 64(4): 915-929, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35199452

RESUMEN

In plant chloroplasts, photosystem II (PSII) complexes, together with light-harvesting complex II (LHCII), form various PSII-LHCII supercomplexes (SCs). This process likely involves immunophilins, but the underlying regulatory mechanisms are unclear. Here, by comparing Arabidopsis thaliana mutants lacking the chloroplast lumen-localized immunophilin CYCLOPHILIN28 (CYP28) to wild-type and transgenic complemented lines, we determined that CYP28 regulates the assembly and accumulation of PSII-LHCII SCs. Compared to the wild type, cyp28 plants showed accelerated leaf growth, earlier flowering time, and enhanced accumulation of high molecular weight PSII-LHCII SCs under normal light conditions. The lack of CYP28 also significantly affected the electron transport rate. Blue native-polyacrylamide gel electrophoresis analysis revealed more Lhcb6 and less Lhcb4 in M-LHCII-Lhcb4-Lhcb6 complexes in cyp28 versus wild-type plants. Peptidyl-prolyl cis/trans isomerase (PPIase) activity assays revealed that CYP28 exhibits weak PPIase activity and that its K113 and E187 residues are critical for this activity. Mutant analysis suggested that CYP28 may regulate PSII-LHCII SC accumulation by altering the configuration of Lhcb6 via its PPIase activity. Furthermore, the Lhcb6-P139 residue is critical for PSII-LHCII SC assembly and accumulation. Therefore, our findings suggest that CYP28 likely regulates PSII-LHCII SC assembly and accumulation by altering the configuration of P139 of Lhcb6 via its PPIase activity.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Inmunofilinas/análisis , Complejos de Proteína Captadores de Luz/análisis , Complejos de Proteína Captadores de Luz/química , Isomerasa de Peptidilprolil/análisis , Complejo de Proteína del Fotosistema II/análisis , Complejo de Proteína del Fotosistema II/química , Plantas , Tilacoides
3.
J Struct Biol ; 213(3): 107746, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34010667

RESUMEN

A long-standing challenge in cell biology is elucidating the structure and spatial distribution of individual membrane-bound proteins, protein complexes and their interactions in their native environment. Here, we describe a workflow that combines on-grid immunogold labeling, followed by cryo-electron tomography (cryoET) imaging and structural analyses to identify and characterize the structure of photosystem II (PSII) complexes. Using an antibody specific to a core subunit of PSII, the D1 protein (uniquely found in the water splitting complex in all oxygenic photoautotrophs), we identified PSII complexes in biophysically active thylakoid membranes isolated from a model marine diatom Phaeodactylum tricornutum. Subsequent cryoET analyses of these protein complexes resolved two PSII structures: supercomplexes and dimeric cores. Our integrative approach establishes the structural signature of multimeric membrane protein complexes in their native environment and provides a pathway to elucidate their high-resolution structures.


Asunto(s)
Diatomeas , Tilacoides , Diatomeas/metabolismo , Tomografía con Microscopio Electrónico , Complejos de Proteína Captadores de Luz/análisis , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/análisis , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/química , Tilacoides/metabolismo
4.
Chemosphere ; 217: 816-824, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30458417

RESUMEN

Large quantities of molybdenum (Mo) slag are generated as a by-product during mining and smelting, which not only occupy huge stretches of arable land and natural habitats but also threaten the local ecosystem and environment. How to recycle this Mo slag is becoming an urgent issue. Here, we reported the toxicity assessment of Mo slag as a mineral fertilizer for slag recycling in agricultural practices. The results showed the following: (1) Lower rates of slag (1.0%, 2.5%, and 5.0%) fertilization, especially 5.0% slag, increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), the contents of chlorophyll, and both the maximum quantum yield and quantum efficiency of photosystem II; decreased the content of malondialdehyde and the non-photochemical quenching of photosystem II; and eventually increased the height, leaf area, and biomass of pakchoi seedlings; (2) Higher rates (7.5% and 10.0%) of Mo slag application resulted in a reduction in the aforementioned physiological and morphological parameters (except for peroxidase activity) of pakchoi seedlings; and (3) Although fertilization with 5.0% slag increased the accumulation of the non-essential elements arsenic (As), lead (Pb), and cadmium (Cd) in pakchoi seedlings, their contents were still lower than the maximum levels of the Codex Alimentarius Commission, European Union, and standards of China. From the perspectives of plant nutrition and food safety, our results showed that Mo slag fertilization at rates lower than 5.0% can be applied as a mineral fertilizer for pakchoi grown on calcareous soils.


Asunto(s)
Brassica/crecimiento & desarrollo , Fertilizantes , Minerales , Minería , Molibdeno/toxicidad , Oxidorreductasas/metabolismo , Plantones , Biomasa , China , Malondialdehído/análisis , Complejo de Proteína del Fotosistema II/análisis , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Plantones/química , Suelo/química
5.
Geobiology ; 17(2): 127-150, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30411862

RESUMEN

Photosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.


Asunto(s)
Proteínas Bacterianas/análisis , Cianobacterias/genética , Evolución Molecular , Complejo de Proteína del Fotosistema II/análisis , Teorema de Bayes , Cianobacterias/fisiología , Fotosíntesis , Filogenia
6.
Plant Biol (Stuttg) ; 20(3): 415-425, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29274120

RESUMEN

The abundance of calcareous soils makes bicarbonate-induced iron (Fe) deficiency a major problem for plant growth and crop yield. Therefore, Fe-efficient plants may constitute a solution for use on calcareous soils. We investigated the ability of the forage legume Sulla carnosa (Desf.) to maintain integrity of its photosynthetic apparatus under Fe deficiency conditions. Three treatments were applied: control, direct Fe deficiency and bicarbonate-induced Fe deficiency. At harvest, all organs of deficient plants showed severe growth inhibition, the effect being less pronounced under indirect Fe deficiency. Pigment analysis of fully expanded leaves revealed a reduction in concentrations of chlorophyll a, chlorophyll b and carotenoids under Fe deficiency. Electron transport rate, maximum and effective quantum yield of photosystem II (PSII), photochemical quenching (qP), non-photochemical quenching (qN) as well as P700 activity also decreased significantly in plants exposed to direct Fe deficiency, while qN was not affected. The effects of indirect Fe deficiency on the same parameters were less pronounced in bicarbonate-treated plants. The relative abundances of thylakoid proteins related to PSI (PsaA, Lhca1, Lhca2) and PSII (PsbA, Lhcb1) were also more affected under direct than indirect Fe deficiency. We conclude that S. carnosa can maintain the integrity of its photosynthetic apparatus under bicarbonate-induced Fe deficiency, preventing harmful effects to both photosystems under direct Fe deficiency. This suggests a high capacity of this species not only to take up Fe in the presence of bicarbonate (HCO3- ) but also to preferentially translocate absorbed Fe towards leaves and prevent its inactivation.


Asunto(s)
Fabaceae/metabolismo , Deficiencias de Hierro , Fotosíntesis , Bicarbonatos/farmacología , Carotenoides/análisis , Clorofila/análisis , Clorofila A , Transporte de Electrón , Fabaceae/crecimiento & desarrollo , Complejo de Proteína del Fotosistema I/análisis , Complejo de Proteína del Fotosistema II/análisis , Hojas de la Planta/química
7.
BMC Res Notes ; 10(1): 168, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446247

RESUMEN

BACKGROUND: Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. METHODS: 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. RESULTS: Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. CONCLUSIONS: Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress tolerance is one of the agricultural traits prerequisite for improvement of modern rice cultivars. Data presented in this study would enable breeding of rice cultivars having strong tolerance to oxidative stress.


Asunto(s)
Adaptación Fisiológica , Clorofila/análisis , Oryza/efectos de los fármacos , Complejo de Proteína del Fotosistema II/análisis , Hojas de la Planta/efectos de los fármacos , Clorofila/biosíntesis , Clorofila A , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Peróxido de Hidrógeno/farmacología , Transporte Iónico , Oryza/crecimiento & desarrollo , Oryza/fisiología , Oxidantes/farmacología , Estrés Oxidativo , Paraquat/farmacología , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/biosíntesis , Fitomejoramiento , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Carácter Cuantitativo Heredable , Espectrometría de Fluorescencia
9.
Plant Physiol ; 169(2): 1318-32, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26220954

RESUMEN

To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach (Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Complejos Multiproteicos/análisis , Complejo de Proteína del Fotosistema II/análisis , Spinacia oleracea/química , Aumento de la Imagen/métodos , Complejos Multiproteicos/química , Complejo de Proteína del Fotosistema II/química , Spinacia oleracea/metabolismo , Tilacoides/química , Tilacoides/metabolismo
10.
Electrophoresis ; 36(20): 2569-78, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26177577

RESUMEN

Protein tyrosine nitration is a selective process, as revealed in studies of animals. However, evidence for selective protein nitration in plants is scarce. In this study, Arabidopsis plants were exposed to air with or without nitrogen dioxide at 40 ppm for 8 h in light. Proteins extracted from whole leaves or isolated chloroplasts were subjected to 2D PAGE followed by SYPRO Ruby staining and immunoblotting using an anti-3-nitrotyrosine antibody. We determined the relative intensity of a spot on an immunoblot (designated RISI), and relative intensity of the corresponding spot on SYPRO Ruby gel (designated RISS). Proteins that exhibited a high RISI value and/or a high RISI/RISS ratio were considered selectively nitrated. In whole leaf proteins from exposed plants, all immunopositive spots were identified as PsbO1, PsbO2 or PsbP1 by PMF. Thus, nitration was exclusive to PsbO and PsbP, extrinsic proteins of photosystem II (PSII). Their RISI/RISS ratio was ≤1.5. Non-exposed plants showed very faint nitration. In purified chloroplast proteins, PsbO and PsbP accounted for >80% of the total RISI values, while four non-PSII proteins, including peroxiredoxin II E, exhibited high RISI/RISS ratios (2.5∼6.6). Tyr(9) of PsbO1 was identified as a nitration site. Thus, nitration is selective for two PSII and four non-PSII proteins in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Nitrocompuestos/química , Nitrocompuestos/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Arabidopsis/análisis , Proteínas de Cloroplastos , Electroforesis en Gel Bidimensional , Nitrocompuestos/análisis , Complejo de Proteína del Fotosistema II/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tirosina/análogos & derivados , Tirosina/análisis , Tirosina/química , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...