Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Cell Commun Signal ; 22(1): 399, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143485

RESUMEN

Lipopolysaccharide (LPS)-activated pro-inflammatory responses play a critical role in sepsis, a life-threatening condition. This study investigates the role of origin recognition complex subunit 6 (ORC6) in LPS responses in macrophages and monocytes. Silencing ORC6 using targeted shRNA significantly reduced LPS-induced expression and production of IL-1ß (interleukin-1 beta), TNF-α (tumor necrosis factor alpha), and IL-6 (interleukin-6) in THP-1 human macrophages, peripheral blood mononuclear cells (PBMCs), and bone marrow-derived macrophages (BMDMs). Additionally, ORC6 knockout (KO) via the CRISPR/Cas9 method in THP-1 macrophages inhibited LPS-induced pro-inflammatory responses, while ectopic overexpression of ORC6 enhanced LPS-induced expression and production of pro-inflammatory cytokines. ORC6 is crucial for the activation of the nuclear factor kappa B (NFκB) signaling cascade in macrophages and monocytes. LPS-induced NFκB activation was largely inhibited by ORC6 silencing or KO, but potentiated following ORC6 overexpression. Mechanistically, ORC6 associated with nuclear p65 after LPS stimulation, an interaction necessary for NFκB activation. Overexpression of ORC6 did not recover the reduced pro-inflammatory response to LPS in THP-1 macrophages with silenced p65. Furthermore, the NFκB inhibitor BMS-345,541 nearly eliminated the pro-inflammatory response enhanced by ORC6 overexpression in response to LPS. Further studies revealed that ORC6 depletion inhibited NFκB activation induced by double-stranded RNA (dsRNA) and high mobility group box 1 (HMGB1) in THP-1 macrophages. In vivo experiments demonstrated that macrophage-specific knockdown of ORC6 protected mice from LPS-induced septic shock and inhibited LPS-stimulated production of IL-1ß, TNF-α, and IL-6 in mouse serum. ORC6 silencing also inhibited LPS-induced NFκB activation in ex vivo cultured PBMCs following macrophage-specific knockdown of ORC6. These findings highlight ORC6 as a pivotal mediator in LPS-induced NFκB activation and the pro-inflammatory response in sepsis, suggesting that targeting ORC6 could be a novel therapeutic strategy for managing sepsis and related inflammatory conditions.


Asunto(s)
Inflamación , Lipopolisacáridos , Macrófagos , FN-kappa B , Complejo de Reconocimiento del Origen , Lipopolisacáridos/farmacología , Humanos , Animales , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/genética , Macrófagos/metabolismo , Ratones , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Células THP-1 , Ratones Endogámicos C57BL , Transducción de Señal , Masculino , Monocitos/metabolismo
2.
Nat Commun ; 15(1): 7306, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181881

RESUMEN

Origin recognition complex (ORC)-dependent loading of the replicative helicase MCM2-7 onto replication origins in G1-phase forms the basis of replication fork establishment in S-phase. However, how ORC and MCM2-7 facilitate genome-wide DNA licensing is not fully understood. Mapping the molecular footprints of budding yeast ORC and MCM2-7 genome-wide, we discovered that MCM2-7 loading is associated with ORC release from origins and redistribution to non-origin sites. Our bioinformatic analysis revealed that origins are compact units, where a single MCM2-7 double hexamer blocks repetitive loading through steric ORC binding site occlusion. Analyses of A-elements and an improved B2-element consensus motif uncovered that DNA shape, DNA flexibility, and the correct, face-to-face spacing of the two DNA elements are hallmarks of ORC-binding and efficient helicase loading sites. Thus, our work identified fundamental principles for MCM2-7 helicase loading that explain how origin licensing is realised across the genome.


Asunto(s)
Replicación del ADN , Complejo de Reconocimiento del Origen , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Genoma Fúngico , Sitios de Unión , ADN de Hongos/metabolismo , ADN de Hongos/genética , Unión Proteica
3.
PLoS Genet ; 20(8): e1011366, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102423

RESUMEN

In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of ≈ 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting ≈ 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.


Asunto(s)
Cromatina , Replicación del ADN , Fase G1 , Complejo de Reconocimiento del Origen , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Origen de Réplica/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Fase G1/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Fase S/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dominios Proteicos/genética , Sitios de Unión , Unión Proteica , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Nucleosomas/metabolismo , Nucleosomas/genética
4.
J Virol ; 98(8): e0003524, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082875

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) reservoir consists of latently infected cells which present a major obstacle to achieving a functional cure for HIV-1. The formation and maintenance of HIV-1 latency have been extensively studied, and latency-reversing agents (LRAs) that can reactivate latent HIV-1 by targeting the involved host factors are developed; however, their clinical efficacies remain unsatisfactory. Therefore, it is imperative to identify novel targets for more potential candidates or better combinations for LRAs. In this study, we utilized CRISPR affinity purification in situ of regulatory elements system to screen for host factors associated with the HIV-1 long terminal repeat region that could potentially be involved in HIV-1 latency. We successfully identified that origin recognition complex 1 (ORC1), the largest subunit of the origin recognition complex, contributes to HIV-1 latency in addition to its function in DNA replication initiation. Notably, ORC1 is enriched on the HIV-1 promoter and recruits a series of repressive epigenetic elements, including DNMT1 and HDAC1/2, and histone modifiers, such as H3K9me3 and H3K27me3, thereby facilitating the establishment and maintenance of HIV-1 latency. Moreover, the reactivation of latent HIV-1 through ORC1 depletion has been confirmed across various latency cell models and primary CD4+ T cells from people living with HIV-1. Additionally, we comprehensively validated the properties of liquid-liquid phase separation (LLPS) of ORC1 from multiple perspectives and identified the key regions that promote the formation of LLPS. This property is important for the recruitment of ORC1 to the HIV-1 promoter. Collectively, these findings highlight ORC1 as a potential novel target implicated in HIV-1 latency and position it as a promising candidate for the development of novel LRAs. IMPORTANCE: Identifying host factors involved in maintaining human immunodeficiency virus type 1 (HIV-1) latency and understanding their mechanisms prepares the groundwork to discover novel targets for HIV-1 latent infection and provides further options for the selection of latency-reversing agents in the "shock" strategy. In this study, we identified a novel role of the DNA replication factor origin recognition complex 1 (ORC1) in maintaining repressive chromatin structures surrounding the HIV-1 promoter region, thereby contributing to HIV-1 latency. This discovery expands our understanding of the non-replicative functions of the ORC complex and provides a potential therapeutic strategy for HIV-1 cure.


Asunto(s)
Epigénesis Genética , Infecciones por VIH , Duplicado del Terminal Largo de VIH , VIH-1 , Complejo de Reconocimiento del Origen , Regiones Promotoras Genéticas , Latencia del Virus , Latencia del Virus/genética , Humanos , VIH-1/genética , VIH-1/fisiología , Duplicado del Terminal Largo de VIH/genética , Infecciones por VIH/virología , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Linfocitos T CD4-Positivos/virología , Células HEK293 , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Regulación Viral de la Expresión Génica , Replicación Viral , Histonas/metabolismo , Histonas/genética
5.
DNA Repair (Amst) ; 141: 103713, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959715

RESUMEN

Eukaryotic DNA replication is a tightly controlled process that occurs in two main steps, i.e., licensing and firing, which take place in the G1 and S phases of the cell cycle, respectively. In Saccharomyces cerevisiae, the budding yeast, replication origins contain consensus sequences that are recognized and bound by the licensing factor Orc1-6, which then recruits the replicative Mcm2-7 helicase. By contrast, mammalian initiation sites lack such consensus sequences, and the mammalian ORC does not exhibit sequence specificity. Studies performed over the past decades have identified replication initiation sites in the mammalian genome using sequencing-based assays, raising the question of whether replication initiation occurs at confined sites or in broad zones across the genome. Although recent reports have shown that the licensed MCMs in mammalian cells are broadly distributed, suggesting that ORC-dependent licensing may not determine the initiation sites/zones, they are predominantly located upstream of actively transcribed genes. This review compares the mechanism of replication initiation in yeast and mammalian cells, summarizes the sequencing-based technologies used for the identification of initiation sites/zones, and proposes a possible mechanism of initiation-site/zone selection in mammalian cells. Future directions and challenges in this field are also discussed.


Asunto(s)
Replicación del ADN , Origen de Réplica , Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Mamíferos/genética , Genoma , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética
6.
Cell Death Dis ; 15(7): 485, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971772

RESUMEN

The discovery of novel oncotargets for glioma is of immense significance. We here explored the expression patterns, biological functions, and underlying mechanisms associated with ORC6 (origin recognition complex 6) in glioma. Through the bioinformatics analyses, we found a significant increase in ORC6 expression within human glioma tissues, correlating with poorer overall survival, higher tumor grade, and wild-type isocitrate dehydrogenase status. Additionally, ORC6 overexpression is detected in glioma tissues obtained from locally-treated patients and across various primary/established glioma cells. Further bioinformatics scrutiny revealed that genes co-expressed with ORC6 are enriched in multiple signaling cascades linked to cancer. In primary and immortalized (A172) glioma cells, depleting ORC6 using specific shRNA or Cas9-sgRNA knockout (KO) significantly decreased cell viability and proliferation, disrupted cell cycle progression and mobility, and triggered apoptosis. Conversely, enhancing ORC6 expression via a lentiviral construct augmented malignant behaviors in human glioma cells. ORC6 emerged as a crucial regulator for the expression of key oncogenic genes, including Cyclin A2, Cyclin B2, and DNA topoisomerase II (TOP2A), within glioma cells. Silencing or KO of ORC6 reduced the mRNA and protein levels of these genes, while overexpression of ORC6 increased their expression in primary glioma cells. Bioinformatics analyses further identified RBPJ as a potential transcription factor of ORC6. RBPJ shRNA decreased ORC6 expression in primary glioma cells, while its overexpression increased it. Additionally, significantly enhanced binding between the RBPJ protein and the proposed ORC6 promoter region was detected in glioma tissues and cells. In vivo experiments demonstrated a significant reduction in the growth of patient-derived glioma xenografts in the mouse brain subsequent to ORC6 KO. ORC6 depletion, inhibited proliferation, decreased expression of Cyclin A2/B2/TOP2A, and increased apoptosis were detected within these ORC6 KO intracranial glioma xenografts. Altogether, RBPJ-driven ORC6 overexpression promotes glioma cell growth, underscoring its significance as a promising therapeutic target.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma , Complejo de Reconocimiento del Origen , Animales , Humanos , Masculino , Ratones , Apoptosis/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Ciclina A2/metabolismo , Ciclina A2/genética , Ciclina B2/metabolismo , Ciclina B2/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Glioma/genética , Glioma/patología , Glioma/metabolismo , Ratones Desnudos , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética
7.
Mol Cell Biol ; 44(7): 289-301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867464

RESUMEN

The human Origin Recognition Complex (ORC) is required not only for the initiation of DNA replication, but is also implicated in diverse cellular functions, including chromatin organization, centrosome biology, and cytokinesis. The smallest subunit of ORC, Orc6, is poorly conserved amongst eukaryotes. Recent studies from our laboratory have suggested that human Orc6 is not required for replication licensing, but is needed for S-phase progression. Further, ATR-dependent phosphorylation of Orc6 at T229 is implicated in DNA damage response during S-phase. In this study, we demonstrate that the CDK-dependent phosphorylation of Orc6 at T195 occurs during mitosis. While the phosphorylation at T195 does not seem to be required to exit mitosis, cells expressing the phosphomimetic T195E mutant of Orc6 impede S-phase progression. Moreover, the phosphorylated form of Orc6 associates with ORC more robustly, and Orc6 shows enhanced association with the ORC outside of G1, supporting the view that Orc6 may prevent the role of Orc1-5 in licensing outside of G1. Finally, Orc6 and the phosphorylated Orc6 localize to the nucleolar organizing centers and regulate ribosome biogenesis. Our results suggest that phosphorylated Orc6 at T195 prevents replication.


Asunto(s)
Replicación del ADN , Mitosis , Complejo de Reconocimiento del Origen , Ribosomas , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Humanos , Fosforilación , Ribosomas/metabolismo , Células HeLa , Fase S , Región Organizadora del Nucléolo/metabolismo , Región Organizadora del Nucléolo/genética
8.
Exp Cell Res ; 440(1): 114130, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885805

RESUMEN

Prostate cancer (PCa) is the most prevalent malignant tumor of the genitourinary system, and metastatic disease has a significant impact on the prognosis of PCa patients. As a result, knowing the processes of PCa development can help patients achieve better outcomes. Here, we investigated the expression and function of ORC6 in PCa. Our findings indicated that ORC6 was elevated in advanced PCa tissues. Patients with PCa who exhibited high levels of ORC6 had a poor prognosis. Following that, we investigated the function of ORC6 in PCa progression using a variety of functional experiments both in vivo and in vitro, and discovered that ORC6 knockdown inhibited PCa cell proliferation, growth, and migration. Furthermore, RNA-seq was employed to examine the molecular mechanism of PCa progression. The results revealed that ORC6 might promote the expression of PLK1, a serine/threonine kinase in PCa cells. We also discovered that ORC6 as a novel miR-361-5p substrate using database analysis, and miR-361-5p was found to lower ORC6 expression. Additionally, RNA immunoprecipitation (RIP) and luciferase reporter tests revealed that the transcription factor E2F1 could regulate ORC6 expression in PCa cells. PLK1 overexpression or miR-361-5p inhibitor treatment effectively removed the inhibitory effects caused by ORC6 silencing. Notably, our data showed that therapeutically targeting the miR-361-5p/ORC6/PLK1 axis may be a viable therapy option for PCa.


Asunto(s)
Proteínas de Ciclo Celular , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , MicroARNs , Quinasa Tipo Polo 1 , Neoplasias de la Próstata , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Animales , Humanos , Masculino , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
9.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567819

RESUMEN

Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.


Asunto(s)
Complejo de Reconocimiento del Origen , Proteínas de Saccharomyces cerevisiae , Humanos , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica/genética , Sitios de Unión , Replicación del ADN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromosomas Humanos/metabolismo , ADN/metabolismo , Proteínas de Ciclo Celular/metabolismo
10.
Nucleic Acids Res ; 52(10): 5720-5731, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597680

RESUMEN

The Origin Recognition Complex (ORC) seeds replication-fork formation by binding to DNA replication origins, which in budding yeast contain a 17bp DNA motif. High resolution structure of the ORC-DNA complex revealed two base-interacting elements: a disordered basic patch (Orc1-BP4) and an insertion helix (Orc4-IH). To define the ORC elements guiding its DNA binding in vivo, we mapped genomic locations of 38 designed ORC mutants, revealing that different ORC elements guide binding at different sites. At silencing-associated sites lacking the motif, ORC binding and activity were fully explained by a BAH domain. Within replication origins, we reveal two dominating motif variants showing differential binding modes and symmetry: a non-repetitive motif whose binding requires Orc1-BP4 and Orc4-IH, and a repetitive one where another basic patch, Orc1-BP3, can replace Orc4-IH. Disordered basic patches are therefore key for ORC-motif binding in vivo, and we discuss how these conserved, minor-groove interacting elements can guide specific ORC-DNA recognition.


Asunto(s)
Complejo de Reconocimiento del Origen , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sitios de Unión , Replicación del ADN , ADN de Hongos/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , Mutación , Motivos de Nucleótidos , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/química , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
11.
Nucleic Acids Res ; 52(8): 4344-4360, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38381902

RESUMEN

The first step toward eukaryotic genome duplication is loading of the replicative helicase onto chromatin. This 'licensing' step initiates with the recruitment of the origin recognition complex (ORC) to chromatin, which is thought to occur via ORC's ATP-dependent DNA binding and encirclement activity. However, we have previously shown that ATP binding is dispensable for the chromatin recruitment of fly ORC, raising the question of how metazoan ORC binds chromosomes. We show here that the intrinsically disordered region (IDR) of fly Orc1 is both necessary and sufficient for recruitment of ORC to chromosomes in vivo and demonstrate that this is regulated by IDR phosphorylation. Consistently, we find that the IDR confers the ORC holocomplex with ATP-independent DNA binding activity in vitro. Using phylogenetic analysis, we make the surprising observation that metazoan Orc1 IDRs have diverged so markedly that they are unrecognizable as orthologs and yet we find that these compositionally homologous sequences are functionally conserved. Altogether, these data suggest that chromatin is recalcitrant to ORC's ATP-dependent DNA binding activity, necessitating IDR-dependent chromatin tethering, which we propose poises ORC to opportunistically encircle nucleosome-free regions as they become available.


Asunto(s)
Cromatina , Proteínas Intrínsecamente Desordenadas , Complejo de Reconocimiento del Origen , Animales , Humanos , Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , Cromatina/genética , ADN/metabolismo , ADN/química , ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Fosforilación , Filogenia , Unión Proteica , Evolución Molecular
12.
Neuroscience ; 540: 68-76, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38244670

RESUMEN

Glioma is one of the most common and difficult to cure malignant primary tumors of the central nervous system. Long non-coding RNA (lncRNA) has been reported to play important functions in biological processes of many tumors, including glioma. In our study, we aimed to reveal the role and molecular mechanisms of lncRNA COX10-AS1 in regulating the progression of glioma. First of all, we showed that lncRNA COX10-AS1 was significantly increased in glioma tissues and cell lines, and high-expressed COX10-AS1 was associated with a poor prognosis in glioma patients. Moreover, through performing the functional experiments, including CCK-8, colony formation and Transwell assays, we confirmed that COX10-AS1 ablation curbed cell proliferation, migration and invasion in glioblastoma (GBM) cells. In addition, we uncovered that there existed a regulatory relationship that COX10-AS1 upregulated OCR6 by sponging miR-1-3p in GBM cells, and the following rescue assays demonstrated that both miR-1-3p downregulation and origin recognition complex subunit 6 (ORC6) overexpression rescued cell viability, migration and invasion in the COX10-AS1-deficient GBM cells. Consistently, we also verified that COX10-AS1 promoted tumorigenesis of the GBM cells in vivo through modulating the miR-1-3p/ORC6 axis. On the whole, our findings indicated a novel ceRNA pattern in which COX10-AS1 elevated OCR6 expression via sponging miR-1-3p, therefore boosting tumorigenesis in glioma, and we firstly discussed the underlying mechanisms by which the COX10-AS1/miR-1-3p/ORC6 axis affected the progression of glioma.


Asunto(s)
Transferasas Alquil y Aril , Glioblastoma , Glioma , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Glioma/genética , Glioma/patología , Carcinogénesis/genética , Línea Celular Tumoral , Glioblastoma/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/genética , Transferasas Alquil y Aril/genética
13.
Int J Biol Macromol ; 260(Pt 1): 129487, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237821

RESUMEN

Guanine (G)-rich nucleic acid sequences can form diverse G-quadruplex structures located in functionally significant genome regions, exerting regulatory control over essential biological processes, including DNA replication in vivo. During the initiation of DNA replication, Cdc6 is recruited by the origin recognition complex (ORC) to target specific chromosomal DNA sequences. This study reveals that human Cdc6 interacts with G-quadruplex structure through a distinct region within the N-terminal intrinsically disordered region (IDR), encompassing residues 7-20. The binding region assumes a hook-type conformation, as elucidated by the NMR solution structure in complex with htel21T18. Significantly, mutagenesis and in vivo investigations confirm the highly specific nature of Cdc6's recognition of G-quadruplex. This research enhances our understanding of the fundamental mechanism governing the interaction between G-quadruplex and the N-terminal IDR region of Cdc6, shedding light on the intricate regulation of DNA replication processes.


Asunto(s)
ADN , G-Cuádruplex , Humanos , ADN/química , Replicación del ADN , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Secuencia de Bases
14.
Nat Commun ; 14(1): 6735, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872142

RESUMEN

Chromatin replication involves the assembly and activity of the replisome within the nucleosomal landscape. At the core of the replisome is the Mcm2-7 complex (MCM), which is loaded onto DNA after binding to the Origin Recognition Complex (ORC). In yeast, ORC is a dynamic protein that diffuses rapidly along DNA, unless halted by origin recognition sequences. However, less is known about the dynamics of ORC proteins in the presence of nucleosomes and attendant consequences for MCM loading. To address this, we harnessed an in vitro single-molecule approach to interrogate a chromatinized origin of replication. We find that ORC binds the origin of replication with similar efficiency independently of whether the origin is chromatinized, despite ORC mobility being reduced by the presence of nucleosomes. Recruitment of MCM also proceeds efficiently on a chromatinized origin, but subsequent movement of MCM away from the origin is severely constrained. These findings suggest that chromatinized origins in yeast are essential for the local retention of MCM, which may facilitate subsequent assembly of the replisome.


Asunto(s)
Complejo de Reconocimiento del Origen , Proteínas de Saccharomyces cerevisiae , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Nucleosomas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Origen de Réplica
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1292-1295, 2023 Oct 10.
Artículo en Chino | MEDLINE | ID: mdl-37730234

RESUMEN

OBJECTIVE: To analyze the genetic characteristics of a child with Meier-Gorlin syndrome (MGS) due to a homozygous variant of the ORC6 gene. METHODS: A child who was admitted to the Children's Hospital Affiliated to Soochow University on March 25, 2019 due to growth retardation was selected as the study subject. Clinical data of the child was collected. Whole exome sequencing was carried out for the child. Candidate variant was validated by Sanger sequencing and bioinformatic analysis. RESULTS: The child, a 8-year-and-3-month-old male, has featured short stature, small ears, bilateral cryptorchidism and patellar dysplasia. His parents were of first cousins. The child was found to harbor a homozygous c.712A>T (p.K238*) missense variant of the ORC6 gene, which may lead to premature termination of protein translation. Sanger sequencing confirmed that both of his parents were heterozygous carriers. Based on the guidelines from the American College of Medical Genetics and Genomics, the variant was classified as pathogenic (PVS1_Moderate+PM2_Supporting+PM3+PP3+PP4). CONCLUSION: The homozygous c.712A>T (p.K238*) variant probably underlay the MGS in this child.


Asunto(s)
Microtia Congénita , Enanismo , Humanos , Lactante , Masculino , Biología Computacional , Microtia Congénita/genética , Enanismo/genética , Trastornos del Crecimiento/genética , Complejo de Reconocimiento del Origen/genética
16.
EMBO J ; 42(18): e114654, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37551430

RESUMEN

Eukaryotic cells use chromatin marks to regulate the initiation of DNA replication. The origin recognition complex (ORC)-associated protein ORCA plays a critical role in heterochromatin replication in mammalian cells by recruiting the initiator ORC, but the underlying mechanisms remain unclear. Here, we report crystal and cryo-electron microscopy structures of ORCA in complex with ORC's Orc2 subunit and nucleosomes, establishing that ORCA orchestrates ternary complex assembly by simultaneously recognizing a highly conserved peptide sequence in Orc2, nucleosomal DNA, and repressive histone trimethylation marks through an aromatic cage. Unexpectedly, binding of ORCA to nucleosomes prevents chromatin array compaction in a manner that relies on H4K20 trimethylation, a histone modification critical for heterochromatin replication. We further show that ORCA is necessary and sufficient to specifically recruit ORC into chromatin condensates marked by H4K20 trimethylation, providing a paradigm for studying replication initiation in specific chromatin contexts. Collectively, our findings support a model in which ORCA not only serves as a platform for ORC recruitment to nucleosomes bearing specific histone marks but also helps establish a local chromatin environment conducive to subsequent MCM2-7 loading.


Asunto(s)
Cromatina , Heterocromatina , Animales , Cromatina/genética , Heterocromatina/genética , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Nucleosomas/genética , Microscopía por Crioelectrón , Replicación del ADN , Factores de Transcripción/genética , Origen de Réplica , Mamíferos/genética
17.
Proc Natl Acad Sci U S A ; 120(30): e2305556120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463200

RESUMEN

During origin licensing, the eukaryotic replicative helicase Mcm2-7 forms head-to-head double hexamers to prime origins for bidirectional replication. Recent single-molecule and structural studies revealed that one molecule of the helicase loader ORC (origin recognition complex) can sequentially load two Mcm2-7 hexamers to ensure proper head-to-head helicase alignment. To perform this task, ORC must release from its initial high-affinity DNA-binding site and "flip" to bind a weaker, inverted DNA site. However, the mechanism of this binding-site switch remains unclear. In this study, we used single-molecule Förster resonance energy transfer to study the changing interactions between DNA and ORC or Mcm2-7. We found that the loss of DNA bending that occurs during DNA deposition into the Mcm2-7 central channel increases the rate of ORC dissociation from DNA. Further studies revealed temporally controlled DNA sliding of helicase-loading intermediates and that the first sliding complex includes ORC, Mcm2-7, and Cdt1. We demonstrate that sequential events of DNA unbending, Cdc6 release, and sliding lead to a stepwise decrease in ORC stability on DNA, facilitating ORC dissociation from its strong binding site during site switching. In addition, the controlled sliding we observed provides insight into how ORC accesses secondary DNA-binding sites at different locations relative to the initial binding site. Our study highlights the importance of dynamic protein-DNA interactions in the loading of two oppositely oriented Mcm2-7 helicases to ensure bidirectional DNA replication.


Asunto(s)
Replicación del ADN , Proteínas de Saccharomyces cerevisiae , Origen de Réplica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , ADN/genética , ADN/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(29): e2221484120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428921

RESUMEN

Eukaryotic DNA replication must occur exactly once per cell cycle to maintain cell ploidy. This outcome is ensured by temporally separating replicative helicase loading (G1 phase) and activation (S phase). In budding yeast, helicase loading is prevented outside of G1 by cyclin-dependent kinase (CDK) phosphorylation of three helicase-loading proteins: Cdc6, the Mcm2-7 helicase, and the origin recognition complex (ORC). CDK inhibition of Cdc6 and Mcm2-7 is well understood. Here we use single-molecule assays for multiple events during origin licensing to determine how CDK phosphorylation of ORC suppresses helicase loading. We find that phosphorylated ORC recruits a first Mcm2-7 to origins but prevents second Mcm2-7 recruitment. The phosphorylation of the Orc6, but not of the Orc2 subunit, increases the fraction of first Mcm2-7 recruitment events that are unsuccessful due to the rapid and simultaneous release of the helicase and its associated Cdt1 helicase-loading protein. Real-time monitoring of first Mcm2-7 ring closing reveals that either Orc2 or Orc6 phosphorylation prevents Mcm2-7 from stably encircling origin DNA. Consequently, we assessed formation of the MO complex, an intermediate that requires the closed-ring form of Mcm2-7. We found that ORC phosphorylation fully inhibits MO complex formation and we provide evidence that this event is required for stable closing of the first Mcm2-7. Our studies show that multiple steps of helicase loading are impacted by ORC phosphorylation and reveal that closing of the first Mcm2-7 ring is a two-step process started by Cdt1 release and completed by MO complex formation.


Asunto(s)
Complejo de Reconocimiento del Origen , Proteínas de Saccharomyces cerevisiae , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Fosforilación , Origen de Réplica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Quinasas Ciclina-Dependientes/metabolismo
19.
Nucleic Acids Res ; 51(12): 6286-6306, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37178000

RESUMEN

The Escherichia coli replication origin oriC contains the initiator ATP-DnaA-Oligomerization Region (DOR) and its flanking duplex unwinding element (DUE). In the Left-DOR subregion, ATP-DnaA forms a pentamer by binding to R1, R5M and three other DnaA boxes. The DNA-bending protein IHF binds sequence-specifically to the interspace between R1 and R5M boxes, promoting DUE unwinding, which is sustained predominantly by binding of R1/R5M-bound DnaAs to the single-stranded DUE (ssDUE). The present study describes DUE unwinding mechanisms promoted by DnaA and IHF-structural homolog HU, a ubiquitous protein in eubacterial species that binds DNA sequence-non-specifically, preferring bent DNA. Similar to IHF, HU promoted DUE unwinding dependent on ssDUE binding of R1/R5M-bound DnaAs. Unlike IHF, HU strictly required R1/R5M-bound DnaAs and interactions between the two DnaAs. Notably, HU site-specifically bound the R1-R5M interspace in a manner stimulated by ATP-DnaA and ssDUE. These findings suggest a model that interactions between the two DnaAs trigger DNA bending within the R1/R5M-interspace and initial DUE unwinding, which promotes site-specific HU binding that stabilizes the overall complex and DUE unwinding. Moreover, HU site-specifically bound the replication origin of the ancestral bacterium Thermotoga maritima depending on the cognate ATP-DnaA. The ssDUE recruitment mechanism could be evolutionarily conserved in eubacteria.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Origen de Réplica , Adenosina Trifosfato/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo
20.
Mol Cell Biol ; 43(4): 143-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37096556

RESUMEN

The smallest subunit of the human Origin Recognition Complex, hOrc6, is required for DNA replication progression and plays an important role in mismatch repair (MMR) during S-phase. However, the molecular details of how hOrc6 regulates DNA replication and DNA damage response remain to be elucidated. Orc6 levels are elevated upon specific types of genotoxic stress, and it is phosphorylated at Thr229, predominantly during S-phase, in response to oxidative stress. Many repair pathways, including MMR, mediate oxidative DNA damage repair. Defects in MMR are linked to Lynch syndrome, predisposing patients to many cancers, including colorectal cancer. Orc6 levels are known to be elevated in colorectal cancers. Interestingly, tumor cells show reduced hOrc6-Thr229 phosphorylation compared to adjacent normal mucosa. Further, elevated expression of wild-type and the phospho-dead forms of Orc6 results in increased tumorigenicity, implying that in the absence of this "checkpoint" signal, cells proliferate unabated. Based on these results, we propose that DNA-damage-induced hOrc6-pThr229 phosphorylation during S-phase facilitates ATR signaling in the S-phase, halts fork progression, and enables assembly of repair factors to mediate efficient repair to prevent tumorigenesis. Our study provides novel insights into how hOrc6 regulates genome stability.


Asunto(s)
Replicación del ADN , Complejo de Reconocimiento del Origen , Humanos , Fosforilación , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Fase S , Inestabilidad Genómica , Daño del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...