Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Bone Miner Res ; 39(3): 326-340, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38477820

RESUMEN

Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/ß-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/ß-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.


Asunto(s)
Autoantígenos , Enfermedades Óseas , Células Madre Mesenquimatosas , Ratones , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Osteogénesis , beta Catenina/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización Wnt/fisiología , Enfermedades Óseas/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas , Ratones Noqueados , Lípidos
2.
Acta Ophthalmol ; 102 Suppl 282: 3-53, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467968

RESUMEN

Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase ß. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1ß in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.


Asunto(s)
Atrofia Geográfica , Degeneración Macular , Humanos , Animales , Ratones , Lactante , Inflamasomas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Epitelio Pigmentado de la Retina , Trombina , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Calidad de Vida , Degeneración Macular/genética , Degeneración Macular/metabolismo , Estrés Oxidativo , Biomarcadores/metabolismo , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología
3.
Nanoscale ; 16(10): 5280-5293, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38369899

RESUMEN

Macrophage-driven inflammation is the central player in a range of pathological conditions, comprising autoimmune disorders, various cancers, as well as chronic inflammatory states like rheumatoid arthritis. Therapeutic strategies tailored to specifically target macrophage behavior have acquired substantial interest for their potential to alleviate chronic inflammation effectively. In this study, we introduce a pioneering therapeutic approach utilizing specialized CD44-targeted immunoliposomes carrying bortezomib to address inflammation at the cellular level and the significance of this strategy lies in its precision nature. Bortezomib's inhibition of the proteasome interferes with the finely-tuned mechanism that controls NFκB activation, ultimately leading to a downregulation of the inflammatory response. After performing computational docking demonstrating its strong binding affinity to the proteasome molecule, the resulting nano-construct displayed a hydrodynamic size of 144.26 ± 74.4 nm and a quasi-spherical morphology. Moreover, the nano-construct ensured a minimum shelf-life of 30 days, aiming for targeted delivery with practical longevity. Upon internalization of immunoliposomes, the interaction with CD44 receptors exhibited downstream signaling events. This included the activation of Jun amino-terminal kinases 1/2 (JNK1/2) and the extracellular-signal-regulated kinases (ERK) pathway. JNK1/2 activation may lead to the release of mitochondrial pro-apoptotic factors, triggering the intrinsic apoptotic pathway and activation of caspases, which was confirmed from the level of apoptotic gene and protein expression. The precise targeting and anti-inflammatory action of this therapy against macrophages hold promise for therapeutic interventions in a wide range of inflammatory conditions, offering a novel avenue for precision medicine in the battle against excessive inflammation.


Asunto(s)
Inflamación , Complejo de la Endopetidasa Proteasomal , Humanos , Bortezomib/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Liposomas/metabolismo , Macrófagos/metabolismo , Receptores de Hialuranos/metabolismo
4.
J Transl Med ; 22(1): 161, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365674

RESUMEN

BACKGROUND: The autophagy adapter SQSTM1/p62 is crucial for maintaining homeostasis in various organs and cells due to its protein-protein interaction domains and involvement in diverse physiological and pathological processes. Vascular endothelium cells play a unique role in vascular biology and contribute to vascular health. METHODS: Using the Cre-loxP system, we generated mice with endothelium cell-specific knockout of p62 mediated by Tek (Tek receptor tyrosine kinase)-cre to investigate the essential role of p62 in the endothelium. In vitro, we employed protein mass spectrometry and IPA to identify differentially expressed proteins upon knockdown of p62. Immunoprecipitation assays were conducted to demonstrate the interaction between p62 and FN1 or LAMC2 in human umbilical vein endothelium cells (HUVECs). Additionally, we identified the degradation pathway of FN1 and LAMC2 using the autophagy inhibitor 3-methyladenine (3-MA) or proteasome inhibitor MG132. Finally, the results of immunoprecipitation demonstrated that the interaction between p62 and LAMC2 was abolished in the PB1 truncation group of p62, while the interaction between p62 and FN1 was abolished in the UBA truncation group of p62. RESULTS: Our findings revealed that p62 Endo mice exhibited heart, lung, and kidney fibrosis compared to littermate controls, accompanied by severe cardiac dysfunction. Immunoprecipitation assays provided evidence of p62 acting as an autophagy adapter in the autophagy-lysosome pathway for FN1 and LAMC2 degradation respectively through PB1 and UBA domain with these proteins rather than proteasome system. CONCLUSIONS: Our study demonstrates that defects in p62 within endothelium cells induce multi-organ fibrosis and cardiac dysfunction in mice. Our findings indicate that FN1 and LAMC2, as markers of (EndoMT), have detrimental effects on HUVECs and elucidate the autophagy-lysosome degradation mechanism of FN1 and LAMC2.


Asunto(s)
Cardiopatías , Proteína Sequestosoma-1 , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Endotelio/metabolismo , Cardiopatías/genética , Cardiopatías/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Fibrosis/genética , Fibrosis/metabolismo
5.
Int J Hematol ; 119(3): 303-315, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38245883

RESUMEN

Resistance to proteasome inhibitors (PIs) has emerged as an important clinical issue. We investigated the mechanisms underlying multiple myeloma (MM) cell resistance to PIs. To mimic their pharmacokinetic/pharmacodynamic (PK/PD) profiles, MM cells were treated with bortezomib and carfilzomib for 1 h at concentrations up to 400 and 1,000 nM, respectively. Susceptibility to these PIs markedly varied among MM cell lines. Pulsatile treatments with PIs suppressed translation, as demonstrated by incorporation of puromycin at 24 h in PI-susceptible MM.1S cells, but not PI-resistant KMS-11 cells. Inhibition of ß5 subunit activity decreased at 24 h in KMS-11 cells, even with the irreversible PI carfilzomib, but not under suppression of protein synthesis with cycloheximide. Furthermore, the proteasome-degradable pro-survival factors PIM2 and NRF2 acutely accumulated in MM cells subjected to pulsatile PI treatments. Accumulated NRF2 was trans-localized into the nucleus to induce the expression of its target gene, HMOX1, in MM cells. PIM and Akt inhibition restored the anti-MM effects of PIs, even against PI-resistant KMS-11 cells. Collectively, these results suggest that increased synthesis of ß5 proteasome subunit and acute accumulation of PIM2 and NRF2 reduce the anti-MM effects of PIs.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Inhibidores de Proteasoma/farmacología , Factor 2 Relacionado con NF-E2/farmacología , Factor 2 Relacionado con NF-E2/uso terapéutico , Mieloma Múltiple/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Bortezomib/farmacología , Bortezomib/uso terapéutico , Antineoplásicos/uso terapéutico , Proteínas Proto-Oncogénicas , Proteínas Serina-Treonina Quinasas
6.
J Physiol Biochem ; 80(1): 235-247, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38112970

RESUMEN

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus-induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7-12 m/min, 30-40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome-associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic-lysosome system, the ubiquitin-proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin-proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Metformina , Ratones , Animales , Metformina/uso terapéutico , Metformina/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Músculo Esquelético/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/terapia , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Autofagia , Ubiquitinas/metabolismo , Ubiquitinas/farmacología
7.
Int Immunopharmacol ; 127: 111423, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38141410

RESUMEN

AIM: Periodontitis is a prevalent oral immunoinflammatory condition that is distinguished by the compromised functionality of periodontal ligament stem cells (PDLSCs). Bomidin, a new recombinant antimicrobial peptide (AMP), exhibits antibacterial properties and modulates immune responses. Nevertheless, the precise anti-inflammatory impact of bomidin in periodontitis has yet to be fully elucidated. Thus, the study aimed to clarified the role of bomidin in modulating inflammation and its underlying mechanisms. METHODS: TNF-α was applied to treating PDLSCs for establishing a cell model of periodontitis. Bomidin, RSL3, ML385 and cycloheximide were also used to treat PDLSCs. Transcriptome sequencing, RT-qPCR, western blot, immunofluorescence, immunohistochemistry, Fe2+ detection probe, molecular docking, Co-IP assay, ubiquitination assay and murine models of periodontitis were used. RESULTS: Our study demonstrated that bomidin effectively suppressed inflammation in PDLSCs stimulated by TNF-α, through down-regulating the MAPK and NF-κB signaling pathways. Furthermore, bomidin exerted inhibitory effects on ferroptosis and activated the Keap1/Nrf2 pathway in the TNF-α group. There is a strong likelihood of bonding bomidin with Keap1 protein, which facilitated the degradation of Keap1 protein via the ubiquitin-proteasome pathway, leading to an enhanced translocation of Nrf2 protein to the nucleus. CONCLUSIONS: Bomidin can directly bond to Keap1 protein, resulting in the degradation of Keap1 through the ubiquitin-proteasome pathway, thereby further activating the Keap1/Nrf2 pathway. The upregulation of the Keap1/Nrf2 signaling pathway was found to contribute to the suppression of ferroptosis, ultimately alleviating inflammation in treatment of periodontitis.


Asunto(s)
Ferroptosis , Periodontitis , Ratones , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ligamento Periodontal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Simulación del Acoplamiento Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Osteogénesis , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Células Madre/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/farmacología
8.
An Acad Bras Cienc ; 95(suppl 2): e20220877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055559

RESUMEN

Although there are reports that polyphenol resveratrol (Rsv) may cause muscle hypertrophy in basal conditions and attenuate muscle wasting in catabolic situations, its mechanism of action is still unclear. Our study evaluated the ex vivo effects of Rsv on protein metabolism and intracellular signaling in innervated (sham-operated; Sham) and 3-day sciatic denervated (Den) rat skeletal muscles. Rsv (10-4 M) reduced total proteolysis (40%) in sham muscles. Den increased total proteolysis (~40%) in muscle, which was accompanied by an increase in the activities of ubiquitin-proteasome (~3-fold) and lysosomal (100%) proteolytic systems. Rsv reduced total proteolysis (59%) in Den muscles by inhibiting the hyperactivation of ubiquitin-proteasome (50%) and lysosomal (~70%) systems. Neither Rsv nor Den altered calcium-dependent proteolysis in muscles. Mechanistically, Rsv stimulated PKA/CREB signaling in Den muscles, and PKA blockage by H89 (50µM) abolished the antiproteolytic action of the polyphenol. Rsv reduced FoxO4 phosphorylation (~60%) in both Sham and Den muscles and Akt phosphorylation (36%) in Den muscles. Rsv also caused a homeostatic effect in Den muscles by returning their protein synthesis rates to levels similar to Sham muscles. These data indicate that Rsv directly inhibits the proteolytic activity of lysosomal and ubiquitin-proteasome systems, mainly in Den muscles through, at least in part, the activation of PKA/CREB signaling.


Asunto(s)
Músculo Esquelético , Complejo de la Endopetidasa Proteasomal , Ratas , Animales , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Resveratrol/farmacología , Músculo Esquelético/metabolismo , Ratas Wistar , Ubiquitinas/metabolismo , Ubiquitinas/farmacología
9.
J Biol Inorg Chem ; 28(8): 751-766, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955736

RESUMEN

Three new dinuclear gold(I) complexes (1-3) containing a carbene (1,3-Bis(2,6-di-isopropylphenyl)imidazol-2-ylidene (IPr)) and diphosphane ligands [bis(1,2-diphenylphosphano)ethane (Dppe), bis(1,3-diphenylphosphano)propane (Dppp) and bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA)], were synthesized and characterized by elemental analysis and, ESI-MS, mid FT-IR and NMR spectroscopic methods. The structures of complexes 2 and 3 were determined by X-ray crystallography, which revealed that the complexes are dinuclear having gold(I) ions linearly coordinated. The anticancer activities of the complexes (1-3) were evaluated in lung (A549), breast (MC-F7), prostate (PC-3), osteosarcoma (MG-63) and ovarian (A2780 and A2780cis) cancer models. Growth inhibition by the new complexes was higher than cisplatin in all cell lines tested. The mechanism of action of complex 3 was investigated in A549 cells using 2-dimensional (2D) models and 3D-multicellular tumor spheroids. Treatment of A549 cells with complex 3 caused: the induction of apoptosis and the generation of reactive oxygen species; the cell cycle arrest in the G0/G1 phase; the inhibition of both the proteasome and the NF-kB activity; the down-regulation of lung cancer stem cell markers (NOTCH1, CD133, ALDH1 and CD44). Complex 3 was more active than cisplatin also in 3D models of A549 lung cancer cells.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias Pulmonares , Neoplasias Ováricas , Femenino , Masculino , Humanos , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Cisplatino/farmacología , Complejo de la Endopetidasa Proteasomal/farmacología , Oro/farmacología , Oro/química , Antineoplásicos/farmacología , Antineoplásicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Pulmón , Células Madre , Ligandos , Proliferación Celular
10.
Fluids Barriers CNS ; 20(1): 70, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803468

RESUMEN

BACKGROUND: Loss of P-glycoprotein (P-gp) at the blood-brain barrier contributes to amyloid-ß (Aß) brain accumulation in Alzheimer's disease (AD). Using transgenic human amyloid precursor protein (hAPP)-overexpressing mice (Tg2576), we previously showed that Aß triggers P-gp loss by activating the ubiquitin-proteasome pathway, which leads to P-gp degradation. Furthermore, we showed that inhibiting the ubiquitin-activating enzyme (E1) prevents P-gp loss and lowers Aß accumulation in the brain of hAPP mice. Based on these data, we hypothesized that repurposing the FDA-approved proteasome inhibitor, bortezomib (Velcade®; BTZ), protects blood-brain barrier P-gp from degradation in hAPP mice in vivo. METHODS: We treated hAPP mice with the proteasome inhibitor BTZ or a combination of BTZ with the P-gp inhibitor cyclosporin A (CSA) for 2 weeks. Vehicle-treated wild-type (WT) mice were used as a reference for normal P-gp protein expression and transport activity. In addition, we used the opioid receptor agonist loperamide as a P-gp substrate in tail flick assays to indirectly assess P-gp transport activity at the blood-brain barrier in vivo. We also determined P-gp protein expression by Western blotting, measured P-gp transport activity levels in isolated brain capillaries with live cell confocal imaging and assessed Aß plasma and brain levels with ELISA. RESULTS: We found that 2-week BTZ treatment of hAPP mice restored P-gp protein expression and transport activity in brain capillaries to levels found in WT mice. We also observed that hAPP mice displayed significant loperamide-induced central antinociception compared to WT mice indicating impaired P-gp transport activity at the blood-brain barrier of hAPP mice in vivo. Furthermore, BTZ treatment prevented loperamide-induced antinociception suggesting BTZ protected P-gp loss in hAPP mice. Further, BTZ-treated hAPP mice had lower Aß40 and Aß42 brain levels compared to vehicle-treated hAPP mice. CONCLUSIONS: Our data indicate that BTZ protects P-gp from proteasomal degradation in hAPP mice, which helps to reduce Aß brain levels. Our data suggest that the proteasome system could be exploited for a novel therapeutic strategy in AD, particularly since increasing Aß transport across the blood-brain barrier may prove an effective treatment for patients.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Loperamida/metabolismo , Loperamida/farmacología , Loperamida/uso terapéutico , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Inhibidores de Proteasoma/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo
11.
Mol Plant Microbe Interact ; 36(11): 693-704, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37414416

RESUMEN

DNA methylation is an important epigenetic mark required for proper gene expression and silencing of transposable elements. DNA methylation patterns can be modified by environmental factors such as pathogen infection, in which modification of DNA methylation can be associated with plant resistance. To counter the plant defense pathways, pathogens produce effector molecules, several of which act as proteasome inhibitors. Here, we investigated the effect of proteasome inhibition by the bacterial virulence factor syringolin A (SylA) on genome-wide DNA methylation. We show that SylA treatment results in an increase of DNA methylation at centromeric and pericentromeric regions of Arabidopsis chromosomes. We identify several CHH differentially methylated regions (DMRs) that are enriched in the proximity of transcriptional start sites. SylA treatment does not result in significant changes in small RNA composition. However, significant changes in genome transcriptional activity can be observed, including a strong upregulation of resistance genes that are located on chromosomal arms. We hypothesize that DNA methylation changes could be linked to the upregulation of some atypical members of the de novo DNA methylation pathway, namely AGO3, AGO9, and DRM1. Our data suggests that modification of genome-wide DNA methylation resulting from an inhibition of the proteasome by bacterial effectors could be part of an epi-genomic arms race against pathogens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Epigenoma , Arabidopsis/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética
12.
Invest New Drugs ; 41(4): 541-550, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37233863

RESUMEN

TP53 (p53) and MYC are amongst the most frequently altered genes in cancer. Both are thus attractive targets for new anticancer therapies. Historically, however, both genes have proved challenging to target and currently there is no approved therapy against either. The aim of this study was to investigate the effect of the mutant p53 reactivating drug, COTI-2 on MYC. Total MYC, pSer62 MYC and pThr58 MYC were detected using Western blotting. Proteasome-mediated degradation was determined using the proteasome, inhibitor MG-132, while MYC half-life was measured using pulse chase experiments in the presence of cycloheximide. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Treatment of 5 mutant p53 breast cancer cell lines with COTI-2 resulted in dose-dependent MYC degradation. Addition of the proteasome inhibitor, MG132, rescued the degradation, suggesting that this proteolytic system was at least partly responsible for the inactivation of MYC. Using cycloheximide in pulse chase experiments, COTI-2 was found to reduce the half-life of MYC in 2 different mutant p53 breast cancer cell lines, i.e., from 34.8 to 18.6 min in MDA-MB-232 cells and from 29.6 to 20.3 min in MDA-MB-468 cells. Co-treatment with COTI-2 and the MYC inhibitor, MYCi975 resulted in synergistic growth inhibition in all 4 mutant p53 cell lines investigated. The dual ability of COTI-2 to reactivate mutant p53 and degrade MYC should enable this compound to have broad application as an anticancer drug.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Cicloheximida/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Microbiol Spectr ; 11(3): e0501422, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37067430

RESUMEN

The antimalarial activity of the frontline drug artemisinin involves generation of reactive oxygen species (ROS) leading to oxidative damage of parasite proteins. To achieve homeostasis and maintain protein quality control in the overwhelmed parasite, the ubiquitin-proteasome system kicks in. Even though molecular markers for artemisinin resistance like pfkelch13 have been identified, the intricate network of mechanisms driving resistance remains to be elucidated. Here, we report a forward genetic screening strategy that enables a broader identification of genetic factors responsible for altering sensitivity to dihydroartemisinin (DHA) and a proteasome inhibitor, bortezomib (BTZ). Using a library of isogenic piggyBac mutants in P. falciparum, we defined phenotype-genotype associations influencing drug responses and highlighted shared mechanisms between the two processes, which mainly included proteasome-mediated degradation and the lipid metabolism genes. Additional transcriptomic analysis of a DHA/BTZ-sensitive piggyBac mutant showed it is possible to find differences between the two response mechanisms on the specific components for regulation of the exportome. Our results provide further insight into the molecular mechanisms of antimalarial drug resistance. IMPORTANCE Malaria control is seriously threatened by the emergence and spread of Plasmodium falciparum resistance to the leading antimalarial, artemisinin. The potent killing activity of artemisinin results from oxidative damage unleashed by free heme activation released by hemoglobin digestion. Although the ubiquitin-proteasome system is considered critical for parasite survival of this toxicity, the diverse genetic changes linked to artemisinin resistance are complex and, so far, have not included the ubiquitin-proteasome system. In this study, we use a systematic forward genetic approach by screening a library of P. falciparum random piggyBac mutants to decipher the genetic factors driving malaria parasite responses to the oxidative stress caused by antimalarial drugs. This study compares phenotype-genotype associations influencing dihydroartemisinin responses with the proteasome inhibitor bortezomib to delineate the role of ubiquitin-proteasome system. Our study highlights shared and unique pathways from the complex array of molecular processes critical for P. falciparum survival resulting from the oxidative damage of artemisinin.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Humanos , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Bortezomib/farmacología , Bortezomib/metabolismo , Bortezomib/uso terapéutico , Metabolismo de los Lípidos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Inhibidores de Proteasoma/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Proteínas Protozoarias/genética , Artemisininas/farmacología , Malaria Falciparum/tratamiento farmacológico , Resistencia a Medicamentos/genética , Ubiquitina/metabolismo
14.
Transgenic Res ; 32(3): 153-167, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37071377

RESUMEN

Muscle mass development depends on increased protein synthesis and reduced muscle protein degradation. Muscle ring-finger protein-1 (MuRF1) plays a key role in controlling muscle atrophy. Its E3 ubiquitin ligase activity recognizes and degrades skeletal muscle proteins through the ubiquitin-proteasome system. The loss of Murf1, which encodes MuRF1, in mice leads to the accumulation of skeletal muscle proteins and alleviation of muscle atrophy. However, the function of Murf1 in agricultural animals remains unclear. Herein, we bred F1 generation Murf1+/- and F2 generation Murf1-/- Duroc pigs from F0 Murf1-/- pigs to investigate the effect of Murf1 knockout on skeletal muscle development. We found that the Murf1+/- pigs retained normal levels of muscle growth and reproduction, and their percentage of lean meat increased by 6% compared to that of the wild type (WT) pigs. Furthermore, the meat color, pH, water-holding capacity, and tenderness of the Murf1+/- pigs were similar to those of the WT pigs. The drip loss rate and intramuscular fat decreased slightly in the Murf1+/- pigs. However, the cross-sectional area of the myofibers in the longissimus dorsi increased in the adult Murf1+/- pigs. The skeletal muscle proteins MYBPC3 and actin, which are targeted by MuRF1, accumulated in the Murf1+/- and Murf1-/- pigs. Our findings show that inhibiting muscle protein degradation in MuRF1-deficient Duroc pigs increases the size of their myofibers and their percentage of lean meat without influencing their growth or pork quality. Our study demonstrates that Murf1 is a target gene for promoting skeletal muscle hypertrophy in pig breeding.


Asunto(s)
Músculo Esquelético , Atrofia Muscular , Animales , Ratones , Porcinos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Hipertrofia/genética , Hipertrofia/metabolismo
15.
J Biomol Struct Dyn ; 41(23): 13844-13856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36826433

RESUMEN

Chagas disease is a well-known Neglected Tropical Disease, mostly endemic in continental Latin America, but that has spread to North America and Europe. Unfortunately, current treatments against such disease are ineffective and produce known and undesirable side effects. To find novel effective drug candidates to treat Chagas disease, we uniquely explore the Trypanosoma cruzi proteasome as a recent biological target and, also, apply drug repurposing through different computational methodologies. For this, we initially applied protein homology modeling to build a robust model of proteasome ß4/ß5 subunits, since there is no crystallographic structure of this target. Then, we used it on a drug repurposing via a virtual screening campaign starting with more than 8,000 drugs and including the methodologies: ligand-based similarity, toxicity predictions, and molecular docking. Three drugs were selected concerning their favorable interactions at the protein binding site and subsequently submitted to molecular dynamics simulations, which allowed us to elucidate their behavior and compare such theoretical results with experimental ones, obtained in biological assays also described in this paper.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Simulación de Dinámica Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Simulación del Acoplamiento Molecular , Ligandos , Enfermedad de Chagas/tratamiento farmacológico
16.
Brain Behav ; 13(3): e2922, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36793204

RESUMEN

AIMS: Opioid addiction is a major public health issue, yet its underlying mechanism is still unknown. The aim of this study was to explore the roles of ubiquitin-proteasome system (UPS) and regulator of G protein signaling 4 (RGS4) in morphine-induced behavioral sensitization, a well-recognized animal model of opioid addiction. METHODS: We explored the characteristics of RGS4 protein expression and polyubiquitination in the development of behavioral sensitization induced by a single morphine exposure in rats, and the effect of a selective proteasome inhibitor, lactacystin (LAC), on behavioral sensitization. RESULTS: Polyubiquitination expression was increased in time-dependent and dose-related fashions during the development of behavioral sensitization, while RGS4 protein expression was not significantly changed during this phase. Stereotaxic administration of LAC into nucleus accumbens (NAc) core inhibited the establishment of behavioral sensitization. CONCLUSION: UPS in NAc core is positively involved in behavioral sensitization induced by a single morphine exposure in rats. Polyubiquitination was observed during the development phase of behavioral sensitization, while RGS4 protein expression was not significantly changed, indicating that other members of RGS family might be substrate proteins in UPS-mediated behavioral sensitization.


Asunto(s)
Morfina , Trastornos Relacionados con Opioides , Animales , Ratas , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/farmacología , Morfina/farmacología , Morfina/metabolismo , Núcleo Accumbens/metabolismo , Trastornos Relacionados con Opioides/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Ubiquitina/metabolismo , Ubiquitina/farmacología
17.
Arch Immunol Ther Exp (Warsz) ; 71(1): 6, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36807774

RESUMEN

Colon cancer etiology involves a wide spectrum of genetic and epigenetic alterations, finding it challenging to find effective therapeutic strategies. Quercetin exhibits potent anti-proliferative/apoptotic properties. In the present study, we aimed to elucidate the anti-cancer and anti-aging effect of quercetin in colon cancer cell lines. The anti-proliferative effect of quercetin was assessed in vitro by CCK-8 in normal and colon cancer cell lines. To check the anti-aging potential of quercetin, collagenase, elastase, and hyaluronidase inhibitory activity assays were performed. The epigenetic and DNA damage assays were performed using the human NAD-dependent deacetylase Sirtuin-6, proteasome 20S, Klotho, Cytochrome-C, and telomerase ELISA kits. Furthermore, the aging-associated miRNA expression profiling was performed on colon cancer cells. The treatment with quercetin inhibited cell proliferation of colon cancer cells in a dose-dependent manner. Quercetin arrested colon cancer cell growth by modulating expression of aging proteins including Sirtuin-6 and Klotho and also by inhibiting telomerase activity to restrict the telomere length which is evident from qPCR analysis. Quercetin also exhibited DNA damage protection by reducing proteasome 20S levels. The miRNA expression profiling results displayed differential expression of miRNA in colon cancer cell, and in addition, the highly upregulated miRNA was involved in the regulation of cell cycle, proliferation, and transcription. Our data suggest that quercetin treatment inhibited cell proliferation in colon cancer cells through regulating the anti-aging protein expression and provides better understanding for quercetin's potential use in colon cancer treatment.


Asunto(s)
Neoplasias del Colon , MicroARNs , Sirtuinas , Telomerasa , Humanos , Apoptosis , Proliferación Celular , Epigénesis Genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Quercetina/farmacología , Quercetina/uso terapéutico , Sirtuinas/metabolismo , Sirtuinas/farmacología , Sirtuinas/uso terapéutico , Telomerasa/metabolismo , Telomerasa/farmacología , Telomerasa/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
18.
J Pharmacol Exp Ther ; 385(1): 5-16, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36328485

RESUMEN

Ubiquitin-proteasome dysfunction contributes to obesity-related metabolic disorders, such as diabetes and fatty liver disease. However, the regulation of ubiquitin-proteasome activity by insulin remains to be elucidated. Here, we show that prolonged insulin stimulation activates proteasome function even though it reduces the ubiquitinated proteins in H4IIEC3 hepatocytes. Looking for a pathway by which insulin inhibits ubiquitination, we found that hepatic expression of ubiquitin-specific protease 14 (USP14) was upregulated in the liver of patients with insulin resistance. Indeed, the USP14-specific inhibitor IU1 canceled the insulin-mediated reduction of ubiquitinated proteins. Furthermore, insulin-induced endoplasmic reticulum (ER) stress, which was canceled by IU1, suggesting that USP14 activity is involved in insulin-induced ER stress. Co-stimulation with insulin and IU1 for 2 hours upregulated the nuclear translocation of the lipogenic transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), upregulated the expression of the lipogenic gene, fatty acid synthase (Fasn), and repressed the gluconeogenic genes. In conclusion, insulin activates proteasome function even though it inhibits protein ubiquitination by activating USP14 in hepatocytes. USP14 activation by insulin inhibits mature SREBP-1c while upregulating ER stress and the expression of genes involved in gluconeogenesis. Further understanding mechanisms underlying the USP14 activation and its pleiotropic effects may lead to therapeutic development for obesity-associated metabolic disorders, such as diabetes and fatty liver disease. SIGNIFICANCE STATEMENT: This study shows that insulin stimulation inhibits ubiquitination by activating USP14, independent of its effect on proteasome activity in hepatocytes. USP14 also downregulates the nuclear translocation of the lipogenic transcription factor SREBP-1c and upregulates the expression of genes involved in gluconeogenesis. Since USP14 is upregulated in the liver of insulin-resistant patients, understanding mechanisms underlying the USP14 activation and its pleiotropic effects will help develop treatments for metabolic disorders such as diabetes and fatty liver.


Asunto(s)
Hepatocitos , Enfermedad del Hígado Graso no Alcohólico , Complejo de la Endopetidasa Proteasomal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Insulina/farmacología , Insulina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/farmacología , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ubiquitinas/farmacología
19.
Int Ophthalmol ; 43(3): 899-914, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36089631

RESUMEN

PURPOSE: Vascular endothelial growth factor receptors (VEGFRs) have been demonstrated to play a critical role in ischemic retinal diseases, as VEGFRs mediate hypoxia-induced neovascularization. Not only hypoxia, ischemia also induces the deficiency of glucose, yet its effects on VEGFR signal and neovascularization have seldom been studied. Bioinformatics analysis predicted that VEGFRs may be regulated by O-GlcNAcylation, while glucose deficiency influences the O-GlcNAcylation. METHODS: In this study, we treated human retinal microvascular endothelial cells with low glucose (LG) alone or in combination with low oxygen (oxygen and glucose deprivation, OGD). Cell viability and apoptosis rate were used to evaluate cell growth characters. RESULTS: LG (2.8 mmol/L) treatment induced mRNA and protein levels of VEGFR1, 2, 3 even in the presence of the protein synthesis inhibitor, cycloheximide (CHX), suggesting that the increase in VEGFR proteins is partially associated with post-translational modifications. Immunoprecipitation analysis showed that O-GlcNAc level was decreased by LG in both VEGFR1, 2, but a de-O-GlcNAc glycosylase inhibitor restored the O-GlcNAc levels. This inhibitor also abolished the LG-induced increase in VEGFR2 protein, whereas this effect was not disappeared in the presence of the proteasome inhibitor, MG132. Similar results were also observed under OGD condition. VEGFR2 knockdown more significantly retarded the growth of hRMECs and HUVECs than VEGFR1, 3 knockdown under LG and OGD conditions. CONCLUSIONS: A relatively low glucose suppressed O-GlcNAcylation in VEGFR2, whereby inhibiting its proteasome degradation; up-regulated VEGFR2 promoted the proliferation of vascular endothelial cells under ischemic condition.


Asunto(s)
Células Endoteliales , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proliferación Celular , Neovascularización Patológica , Hipoxia , Oxígeno/metabolismo , Glucosa/farmacología , Glucosa/metabolismo
20.
Eur Heart J Cardiovasc Imaging ; 24(5): 643-652, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-35980754

RESUMEN

AIM: Ubiquitin-Proteasome System (UPS) is of paramount importance regarding the function of the myocardial cell. Consistently, inhibition of this system has been found to affect myocardium in experimental models; yet, the clinical impact of UPS inhibition on cardiac function has not been comprehensively examined. Our aim was to gain insight into the effect of proteasome inhibition on myocardial mechanics in humans. METHODS AND RESULTS: We prospectively evaluated 48 patients with multiple myeloma and an indication to receive carfilzomib, an irreversible proteasome inhibitor. All patients were initially evaluated and underwent echocardiography with speckle tracking analysis. Carfilzomib was administered according to Kd treatment protocol. Follow-up echocardiography was performed at the 3rd and 6th month. Proteasome activity (PrA) was measured in peripheral blood mononuclear cells.At 3 months after treatment, we observed early left ventricular (LV) segmental dysfunction and deterioration of left atrial (LA) remodelling, which was sustained and more pronounced than that observed in a cardiotoxicity control group. At 6 months, LV and right ventricular functions were additionally attenuated (P < 0.05 for all). These changes were independent of blood pressure, endothelial function, inflammation, and cardiac injury levels. Changes in PrA were associated with changes in global longitudinal strain (GLS), segmental LV strain, and LA markers (P < 0.05 for all). Finally, baseline GLS < -18% or LA strain rate > 1.71 were associated with null hypertension events. CONCLUSION: Inhibition of the UPS induced global deterioration of cardiac function.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Disfunción Ventricular Izquierda , Humanos , Estudios Prospectivos , Complejo de la Endopetidasa Proteasomal/farmacología , Leucocitos Mononucleares , Corazón , Función Ventricular Izquierda/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA