Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Dev Cell ; 57(3): 361-372.e5, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35045336

RESUMEN

The symbiotic relationship between commensal microbes and host animals predicts unidentified beneficial impacts of individual bacterial metabolites on animal physiology. Peptidoglycan fragments (muropeptides) from the bacterial cell wall are known for their roles in pathogenicity and for inducing host immune responses. However, the potential beneficial usage of muropeptides from commensal bacteria by the host needs exploration. We identified a striking role for muropeptides in supporting mitochondrial homeostasis, development, and behaviors in Caenorhabditis elegans. We determined that the beneficial molecules are disaccharide muropeptides containing a short AA chain, and they enter intestinal-cell mitochondria to repress oxidative stress. Further analyses indicate that muropeptides execute this role by binding to and promoting the activity of ATP synthase. Therefore, given the exceptional structural conservation of ATP synthase, the role of muropeptides as a rare agonist of the ATP synthase presents a major conceptual modification regarding the impact of bacterial cell metabolites on animal physiology.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Caenorhabditis elegans/fisiología , Homeostasis , Mitocondrias/metabolismo , Péptidos/metabolismo , Peptidoglicano/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Conducta Alimentaria/efectos de los fármacos , Células HEK293 , Humanos , Intestinos/metabolismo , Metaboloma/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
2.
Open Biol ; 11(12): 210177, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34905702

RESUMEN

There is a surprisingly high morphological similarity between multilamellar concentric thylakoids in cyanobacteria and the myelin sheath that wraps the nerve axons. Thylakoids are multilamellar structures, which express photosystems I and II, cytochromes and ATP synthase necessary for the light-dependent reaction of photosynthesis. Myelin is a multilamellar structure that surrounds many axons in the nervous system and has long been believed to act simply as an insulator. However, it has been shown that myelin has a trophic role, conveying nutrients to the axons and producing ATP through oxidative phosphorylation. Therefore, it is tempting to presume that both membranous structures, although distant in the evolution tree, share not only a morphological but also a functional similarity, acting in feeding ATP synthesized by the ATP synthase to the centre of the multilamellar structure. Therefore, both molecular structures may represent a convergent evolution of life on Earth to fulfill fundamentally similar functions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cianobacterias/ultraestructura , Vaina de Mielina/ultraestructura , Tilacoides/ultraestructura , Complejos de ATP Sintetasa/metabolismo , Animales , Evolución Biológica , Cianobacterias/metabolismo , Metabolismo Energético , Humanos , Vaina de Mielina/metabolismo , Fosforilación Oxidativa , Tilacoides/metabolismo
3.
Nat Commun ; 12(1): 3669, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135327

RESUMEN

Human rhinoviruses (HRV) are common cold viruses associated with exacerbations of lower airways diseases. Although viral induced epithelial damage mediates inflammation, the molecular mechanisms responsible for airway epithelial damage and dysfunction remain undefined. Using experimental HRV infection studies in highly differentiated human bronchial epithelial cells grown at air-liquid interface (ALI), we examine the links between viral host defense, cellular metabolism, and epithelial barrier function. We observe that early HRV-C15 infection induces a transitory barrier-protective metabolic state characterized by glycolysis that ultimately becomes exhausted as the infection progresses and leads to cellular damage. Pharmacological promotion of glycolysis induces ROS-dependent upregulation of the mitochondrial metabolic regulator, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), thereby restoring epithelial barrier function, improving viral defense, and attenuating disease pathology. Therefore, PGC-1α regulates a metabolic pathway essential to host defense that can be therapeutically targeted to rescue airway epithelial barrier dysfunction and potentially prevent severe respiratory complications or secondary bacterial infections.


Asunto(s)
Antivirales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Mucosa Respiratoria/metabolismo , Rhinovirus/fisiología , Complejos de ATP Sintetasa/antagonistas & inhibidores , Complejos de ATP Sintetasa/metabolismo , Antivirales/farmacología , Técnicas de Cultivo de Célula , Citoesqueleto/metabolismo , Células Epiteliales , Ácidos Grasos/biosíntesis , Glucólisis , Humanos , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Oligomicinas/farmacología , Consumo de Oxígeno/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Infecciones por Picornaviridae/virología , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Replicación Viral/efectos de los fármacos
4.
Protein Sci ; 30(9): 1974-1982, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34191368

RESUMEN

Membrane proteins play key roles in cellular signaling and transport, represent the majority of drug targets, and are implicated in many diseases. Their relevance renders them important subjects for structural, biophysical, and functional investigations. However, obtaining membrane proteins in high purities is often challenging with conventional purification steps alone. To address this issue, we present here an approach to increase the purity of α-helical transmembrane proteins. Our approach exploits the Thioredoxin (Trx) tag system, which is able to confer some of its favorable properties, such as high solubility and thermostability, to its fusion partners. Using Trx fusions of transmembrane helical hairpin constructs derived from the human cystic fibrosis transmembrane conductance regulator (CFTR) and a bacterial ATP synthase, we establish conditions for the successful implementation of the selective heat treatment procedure to increase sample purity. We further examine systematically its efficacy with respect to different incubation times and temperatures using quantitative gel electrophoresis. We find that minute-timescale heat treatment of Trx-tagged fusion constructs with temperatures ranging from 50 to 90°C increases the purity of the membrane protein samples from ~60 to 98% even after affinity purification. We show that this single-step approach is even applicable in cases where regular selective heat purification from crude extracts, as reported for Trx fusions to soluble proteins, fails. Overall, our approach is easy to integrate into existing purification strategies and provides a facile route for increasing the purity of membrane protein constructs after purification by standard chromatography approaches.


Asunto(s)
Complejos de ATP Sintetasa/química , Proteínas Bacterianas/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Subunidades de Proteína/química , Proteínas Recombinantes de Fusión/química , Tiorredoxinas/química , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fusobacterias/química , Fusobacterias/enzimología , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Calor , Humanos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33526592

RESUMEN

The construction of energetically autonomous artificial protocells is one of the most ambitious goals in bottom-up synthetic biology. Here, we show an efficient manner to build adenosine 5'-triphosphate (ATP) synthesizing hybrid multicompartment protocells. Bacterial chromatophores from Rhodobacter sphaeroides accomplish the photophosphorylation of adenosine 5'-diphosphate (ADP) to ATP, functioning as nanosized photosynthetic organellae when encapsulated inside artificial giant phospholipid vesicles (ATP production rate up to ∼100 ATP∙s-1 per ATP synthase). The chromatophore morphology and the orientation of the photophosphorylation proteins were characterized by cryo-electron microscopy (cryo-EM) and time-resolved spectroscopy. The freshly synthesized ATP has been employed for sustaining the transcription of a DNA gene, following the RNA biosynthesis inside individual vesicles by confocal microscopy. The hybrid multicompartment approach here proposed is very promising for the construction of full-fledged artificial protocells because it relies on easy-to-obtain and ready-to-use chromatophores, paving the way for artificial simplified-autotroph protocells (ASAPs).


Asunto(s)
Adenosina Trifosfato/biosíntesis , Células Artificiales/metabolismo , Cromatóforos Bacterianos/metabolismo , Transcripción Genética , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Células Artificiales/química , Cromatóforos Bacterianos/ultraestructura , Fotosíntesis , Rhodobacter sphaeroides/metabolismo , Luz Solar , Biología Sintética/métodos
6.
Sci Rep ; 11(1): 4506, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627709

RESUMEN

Upon endoplasmic-reticulum (ER) stress, the ER-located transmembrane protein, Ire1, is autophosphorylated and acts as an endoribonuclease to trigger the unfolded protein response (UPR). Previous biochemical studies have shown that Ire1 exhibits strong endoribonuclease activity when its cytosolic kinase region captures ADP. Here, we asked how this event contributes to the regulation of Ire1 activity. At the beginning of this study, we obtained a luminal-domain mutant of Saccharomyces cerevisiae Ire1, deltaIdeltaIIIdeltaV/Y225H Ire1, which is deduced to be controlled by none of the luminal-side regulatory events. ER-stress responsiveness of deltaIdeltaIIIdeltaV/Y225H Ire1 was largely compromised by a further mutation on the kinase region, D797N/K799N, which allows Ire1 to be activated without capturing ADP. Therefore, in addition to the ER-luminal domain of Ire1, which monitors ER conditions, the kinase region is directly involved in the ER-stress responsiveness of Ire1. We propose that potent ER stress harms cells' "vividness", increasing the cytosolic ADP/ATP ratio, and eventually strongly activates Ire1. This mechanism seems to contribute to the suppression of inappropriately potent UPR under weak ER-stress conditions.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Adenosina Difosfato/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Endorribonucleasas/metabolismo , Fosforilación/fisiología , Unión Proteica/fisiología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/fisiología
7.
Biochim Biophys Acta Bioenerg ; 1862(4): 148378, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33460587

RESUMEN

ATP synthases are the key elements of cellular bioenergetics and present in any life form and the overall structure and function of this rotary energy converter is conserved in all domains of life. However, ancestral microbes, the archaea, have a unique and huge diversity in the size and number of ion-binding sites in their membrane-embedded rotor subunit c. Due to the harsh conditions for ATP synthesis in these life forms it has never been possible to address the consequences of these unusual c subunits for ATP synthesis. Recently, we have found a Na+-dependent archaeal ATP synthase with a V-type c subunit in a mesophilic bacterium and here, we have cloned and expressed the genes in the ATP synthase-negative strain Escherichia coli DK8. The enzyme was present in membranes of E. coli DK8 and catalyzed ATP hydrolysis with a rate of 35 nmol·min-1·mg protein-1. Inverted membrane vesicles of this strain were then checked for their ability to synthesize ATP. Indeed, ATP was synthesized driven by NADH oxidation despite the V-type c subunit. ATP synthesis was dependent on Na+ and inhibited by ionophores. Most importantly, ATPase activity was inhibited by DCCD and this inhibition was relieved by addition of Na+, indicating a functional coupling of the F1 and FO domains, a prerequisite for studies on structure-function relationship. A first step in this direction was the exchange of a conserved arginine (Arg530) in the FO motor subunit a which led to loss of ATP synthesis whereas ATP hydrolysis was retained.


Asunto(s)
Complejos de ATP Sintetasa , Archaea/enzimología , Proteínas Arqueales , Proteínas Bacterianas , Escherichia coli , Eubacterium/genética , Microorganismos Modificados Genéticamente , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Archaea/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Eubacterium/enzimología , Microorganismos Modificados Genéticamente/enzimología , Microorganismos Modificados Genéticamente/genética
8.
Nature ; 589(7840): 143-147, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299175

RESUMEN

Tuberculosis-the world's leading cause of death by infectious disease-is increasingly resistant to current first-line antibiotics1. The bacterium Mycobacterium tuberculosis (which causes tuberculosis) can survive low-energy conditions, allowing infections to remain dormant and decreasing their susceptibility to many antibiotics2. Bedaquiline was developed in 2005 from a lead compound identified in a phenotypic screen against Mycobacterium smegmatis3. This drug can sterilize even latent M. tuberculosis infections4 and has become a cornerstone of treatment for multidrug-resistant and extensively drug-resistant tuberculosis1,5,6. Bedaquiline targets the mycobacterial ATP synthase3, which is an essential enzyme in the obligate aerobic Mycobacterium genus3,7, but how it binds the intact enzyme is unknown. Here we determined cryo-electron microscopy structures of M. smegmatis ATP synthase alone and in complex with bedaquiline. The drug-free structure suggests that hook-like extensions from the α-subunits prevent the enzyme from running in reverse, inhibiting ATP hydrolysis and preserving energy in hypoxic conditions. Bedaquiline binding induces large conformational changes in the ATP synthase, creating tight binding pockets at the interface of subunits a and c that explain the potency of this drug as an antibiotic for tuberculosis.


Asunto(s)
Complejos de ATP Sintetasa/química , Antituberculosos/química , Microscopía por Crioelectrón , Diarilquinolinas/química , Mycobacterium smegmatis/enzimología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Complejos de ATP Sintetasa/antagonistas & inhibidores , Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Antituberculosos/metabolismo , Antituberculosos/farmacología , Diarilquinolinas/metabolismo , Diarilquinolinas/farmacología , Hidrólisis/efectos de los fármacos , Modelos Moleculares , Mycobacterium smegmatis/efectos de los fármacos , Rotación
9.
Mol Cell Biochem ; 476(1): 493-506, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33000352

RESUMEN

Mitochondria have various cellular functions, including ATP synthesis, calcium homeostasis, cell senescence, and death. Mitochondrial dysfunction has been identified in a variety of disorders correlated with human health. Among the many underlying mechanisms of mitochondrial dysfunction, the opening up of the mitochondrial permeability transition pore (mPTP) is one that has drawn increasing interest in recent years. It plays an important role in apoptosis and necrosis; however, the molecular structure and function of the mPTP have still not been fully elucidated. In recent years, the abnormal opening up of the mPTP has been implicated in the development and pathogenesis of diverse diseases including ischemia/reperfusion injury (IRI), neurodegenerative disorders, tumors, and chronic obstructive pulmonary disease (COPD). This review provides a systematic introduction to the possible molecular makeup of the mPTP and summarizes the mitochondrial dysfunction-correlated diseases and highlights possible underlying mechanisms. Since the mPTP is an important target in mitochondrial dysfunction, this review also summarizes potential treatments, which may be used to inhibit pore opening up via the molecules composing mPTP complexes, thus suppressing the progression of mitochondrial dysfunction-related diseases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/terapia , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Complejos de ATP Sintetasa/metabolismo , Animales , Aniones , Apoptosis , Transporte Biológico , Peptidil-Prolil Isomerasa F/metabolismo , Humanos , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Necrosis , Enfermedades Neurodegenerativas/metabolismo , Fosfatos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores de GABA/metabolismo , Daño por Reperfusión
10.
mBio ; 11(5)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32900803

RESUMEN

Staphylococcus aureus is a major cause of prosthetic joint infection (PJI), which is characterized by biofilm formation. S. aureus biofilm skews the host immune response toward an anti-inflammatory profile by the increased recruitment of myeloid-derived suppressor cells (MDSCs) that attenuate macrophage proinflammatory activity, leading to chronic infection. A screen of the Nebraska Transposon Mutant Library identified several hits in the ATP synthase operon that elicited a heightened inflammatory response in macrophages and MDSCs, including atpA, which encodes the alpha subunit of ATP synthase. An atpA transposon mutant (ΔatpA) had altered growth kinetics under both planktonic and biofilm conditions, along with a diffuse biofilm architecture that was permissive for leukocyte infiltration, as observed by confocal laser scanning microscopy. Coculture of MDSCs and macrophages with ΔatpA biofilm elicited significant increases in the proinflammatory cytokines interleukin 12p70 (IL-12p70), tumor necrosis factor alpha (TNF-α), and IL-6. This was attributed to increased leukocyte survival resulting from less toxin and protease production by ΔatpA biofilm as determined by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The enhanced inflammatory response elicited by ΔatpA biofilm was cell lysis-dependent since it was negated by polyanethole sodium sulfanate treatment or deletion of the major autolysin, Atl. In a mouse model of PJI, ΔatpA-infected mice had decreased MDSCs concomitant with increased monocyte/macrophage infiltrates and proinflammatory cytokine production, which resulted in biofilm clearance. These studies identify S. aureus ATP synthase as an important factor in influencing the immune response during biofilm-associated infection and bacterial persistence.IMPORTANCE Medical device-associated biofilm infections are a therapeutic challenge based on their antibiotic tolerance and ability to evade immune-mediated clearance. The virulence determinants responsible for bacterial biofilm to induce a maladaptive immune response remain largely unknown. This study identified a critical role for S. aureus ATP synthase in influencing the host immune response to biofilm infection. An S. aureus ATP synthase alpha subunit mutant (ΔatpA) elicited heightened proinflammatory cytokine production by leukocytes in vitro and in vivo, which coincided with improved biofilm clearance in a mouse model of prosthetic joint infection. The ability of S. aureus ΔatpA to augment host proinflammatory responses was cell lysis-dependent, as inhibition of bacterial lysis by polyanethole sodium sulfanate or a ΔatpAΔatl biofilm did not elicit heightened cytokine production. These studies reveal a critical role for AtpA in shaping the host immune response to S. aureus biofilm.


Asunto(s)
Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/inmunología , Biopelículas/crecimiento & desarrollo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Staphylococcus aureus/enzimología , Staphylococcus aureus/inmunología , Complejos de ATP Sintetasa/metabolismo , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad
11.
Curr Top Med Chem ; 20(29): 2723-2734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32885753

RESUMEN

BACKGROUND: Tuberculosis (TB) is a major infectious disease caused by Mycobacterium Tuberculosis. As per the World Health Organization (WHO) report of 2019, there were 1.5 million deaths in the year 2018, mainly because of multi- and extensively drug-resistant tuberculosis (MDR & XDR-TB). Among several antitubercular drugs in clinical trials, bedaquiline (TMC207) is a highly promising drug that was approved by the FDA in 2012 and marketed in 2016 for the treatment of multidrug resistant TB in combination with other drugs. Bedaquiline acts on mycobacterial ATP synthase and is highly effective in replicating as well as on dormant mycobacteria. Several series of substituted quinolines have been reported with their antitubercular and ATP synthase inhibitory activity. METHODS: To understand the role of physicochemical parameters like hydrophobicity, electronic and steric factors in eliciting the biological response, the Quantitative structure-activity relationship (QSAR) studies have been carried out using the computed parameters as independent variable and activity (-log IC50/MIC) as the dependent variable. RESULTS: The developed QSAR models in terms of positively contributing Molar Refractivity (MR) and negatively contributing Partition Coefficient (PC) and Connolly Molecular Area (CMA) parameters have high predictivity as also shown on external data set and the mean value of the computed 3D parameters of enantiomers may be used in QSAR analysis for racemic compounds. CONCLUSION: These results are also substantiated by pharmacophore modeling. The similar dependence of antitubercular activity against whole-cell M.Tb.H37Rv on MR and CMA suggests ATP synthase as the main target for antitubercular activity and the QSAR models may be useful in the identification of novel antitubercular agents.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa , Quinolinas/farmacología , Complejos de ATP Sintetasa/metabolismo , Antituberculosos/química , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Quinolinas/química , Tuberculosis/tratamiento farmacológico , Tuberculosis/metabolismo
12.
Mol Cell Proteomics ; 19(11): 1805-1825, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32788343

RESUMEN

The EGFR tyrosine kinase inhibitor gefitinib is commonly used for lung cancer patients. However, some patients eventually become resistant to gefitinib and develop progressive disease. Here, we indicate that ecto-ATP synthase, which ectopically translocated from mitochondrial inner membrane to plasma membrane, is considered as a potential therapeutic target for drug-resistant cells. Quantitative multi-omics profiling reveals that ecto-ATP synthase inhibitor mediates CK2-dependent phosphorylation of DNA topoisomerase IIα (topo IIα) at serine 1106 and subsequently increases the expression of long noncoding RNA, GAS5. Additionally, we also determine that downstream of GAS5, p53 pathway, is activated by ecto-ATP synthase inhibitor for regulation of programed cell death. Interestingly, GAS5-proteins interactomic profiling elucidates that GAS5 associates with topo IIα and subsequently enhancing the phosphorylation level of topo IIα. Taken together, our findings suggest that ecto-ATP synthase blockade is an effective therapeutic strategy via regulation of CK2/phospho-topo IIα/GAS5 network in gefitinib-resistant lung cancer cells.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/metabolismo , ARN Largo no Codificante/metabolismo , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Membrana Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Gefitinib/farmacología , Ontología de Genes , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , ARN Largo no Codificante/genética , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Espectrometría de Masas en Tándem , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Sci Rep ; 10(1): 8134, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424122

RESUMEN

Despite the remarkable advances due to the discovery and development of antimicrobials agents, infectious diseases remain the second leading cause of death worldwide. This fact underlines the importance of developing new therapeutic strategies to address the widespread antibiotic resistance, which is the major contributing factor for clinical failures of the current therapeutics. In a screen for antibiotic adjuvants, we identified a natural product from actinomycetes, venturicidin A (VentA), that potentiates the aminoglycoside antibiotic gentamicin against multidrug-resistant clinical isolates of Staphylococcus, Enterococcus, and Pseudomonas aeruginosa. Furthermore, the combination of gentamicin and VentA was bactericidal and rapidly eradicated methicillin-resistant S. aureus (MRSA). The molecular mechanism of gentamicin potentiation activity is attributed to uncoupling of ATP synthesis by VentA from electron transport presumably by blocking the proton flow through ATP synthase, which results in an elevated concentration of extracellular protons and subsequent anticipated raise in gentamicin uptake. The disruption of the proton flux was characterized by perturbed membrane potential in MRSA. These results demonstrate that inhibition of ATP synthase along with the subsequent membrane dysregulation, as shown here with VentA, complements aminoglycoside antibiotics against MDR bacteria, and that this approach may be employed to combat bacterial resistance.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Actinobacteria/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Venturicidinas/farmacología , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Aminoglicósidos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética
15.
Electromagn Biol Med ; 39(2): 45-48, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32160792

RESUMEN

The Warburg observation concerning ATP generation in cancer cells is analyzed with regard to the likely involvement of H+ resonance effects on the angular velocity of the ATP synthase rotor. It is reasonable to expect that the variety of diseases associated with mitochondrial dysfunction may in part be related to the ATP synthase rate of rotation. Experimental measurements of ATP synthase rotational rates, as found in the literature, are consistent with what might be expected from the ion cyclotron resonance (ICR) frequencies of protons moving under a Lorentz force determined by the approximate surface intensity of the geomagnetic field (~26-65 ?T). One research approach proposes that applying the electronic sum of two critical multiple resonance frequencies simultaneously may serve to more closely resemble real world biochemical changes as compared to applying these frequencies sequentially. Accordingly, it is suggested that applying the sum of the two individual resonance frequencies corresponding to H+ and H3O+ has the capacity to both increase proton density as well as couple to ATP synthase rotation. Not only will this tend to stabilize the F0 rotational rate but also perhaps make it feasible to control this rate, thereby providing a new and potentially efficacious means of treating diseases connected to mitochondrial dysfunction electromagnetically.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ondas de Radio , Complejos de ATP Sintetasa/metabolismo , Ciclotrones , Rotación
16.
Plant Sci ; 292: 110387, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32005392

RESUMEN

The cyclic electron flow (CEF) around photosystem I (PSI) plays a crucial role in photosynthesis and also functions in plant tolerance of abiotic environmental stress. However, the role of PGR5/PGRL1- and NDH-dependent CEF in tomato under hightemperature (HT) is poorly understood. Here, we assessed the photoprotective effect of these pathways in tomato leaves under HT by using antimycin A (AA) and rotenone (R), which are chemical inhibitors of PGR5/PGRL1- and NDH-dependent CEF, respectively. The results showed that AA treatment caused significantly greater inhibition of CEF under HT compared to R treatment. Moreover, AA treatment caused a greater decrease in maximal photochemistry efficiency (Fv/Fm) and increased damage to the donor and acceptor side of photosystem II (PSII); however, the limitation of the acceptor side in PSI [Y(NA)] was significantly increased. In addition, thylakoid membrane integrity was compromised and reactive oxygen species, proton gradient (ΔpH), antioxidant enzyme activity, and the expression of photosystem core subunit genes were significantly decreased under AA treatment. These findings indicate that PGR5/PGRL1-dependent CEF protects PSII and PSI from photooxidative damage through the formation of ΔpH while maintaining thylakoid membrane integrity and normal gene expression levels of core photosystem components. This study demonstrates that PGR5/PGRL1-dependent CEF plays a major role in HT response in tomato.


Asunto(s)
Electrones , Calor , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Solanum lycopersicum/genética , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Expresión Génica , Solanum lycopersicum/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Fuerza Protón-Motriz
17.
Microb Cell Fact ; 19(1): 12, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31973723

RESUMEN

BACKGROUND: The ureolytic bacterium Sporosarcina pasteurii is well-known for its capability of microbially induced calcite precipitation (MICP), representing a great potential in constructional engineering and material applications. However, the molecular mechanism for its biomineralization remains unresolved, as few studies were carried out. RESULTS: The addition of urea into the culture medium provided an alkaline environment that is suitable for S. pasteurii. As compared to S. pasteurii cultivated without urea, S. pasteurii grown with urea showed faster growth and urease production, better shape, more negative surface charge and higher biomineralization ability. To survive the unfavorable growth environment due to the absence of urea, S. pasteurii up-regulated the expression of genes involved in urease production, ATPase synthesis and flagella, possibly occupying resources that can be deployed for MICP. As compared to non-mineralizing bacteria, S. pasteurii exhibited more negative cell surface charge for binding calcium ions and more robust cell structure as nucleation sites. During MICP process, the genes for ATPase synthesis in S. pasteurii was up-regulated while genes for urease production were unchanged. Interestingly, genes involved in flagella were down-regulated during MICP, which might lead to poor mobility of S. pasteurii. Meanwhile, genes in fatty acid degradation pathway were inhibited to maintain the intact cell structure found in calcite precipitation. Both weak mobility and intact cell structure are advantageous for S. pasteurii to serve as nucleation sites during MICP. CONCLUSIONS: Four factors are demonstrated to benefit the super performance of S. pasteurii in MICP. First, the good correlation of biomass growth and urease production of S. pasteurii provides sufficient biomass and urease simultaneously for improved biomineralization. Second, the highly negative cell surface charge of S. pasteurii is good for binding calcium ions. Third, the robust cell structure and fourth, the weak mobility, are key for S. pasteurii to be nucleation sites during MICP.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Biomineralización/fisiología , Carbonato de Calcio/metabolismo , Sporosarcina , Ureasa/genética , Medios de Cultivo/química , Perfilación de la Expresión Génica , Genoma Bacteriano , Microscopía Electrónica de Rastreo , Sporosarcina/genética , Sporosarcina/metabolismo , Sporosarcina/ultraestructura , Urea
18.
Proc Natl Acad Sci U S A ; 117(2): 1167-1173, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879356

RESUMEN

Chemiosmosis and substrate-level phosphorylation are the 2 mechanisms employed to form the biological energy currency adenosine triphosphate (ATP). During chemiosmosis, a transmembrane electrochemical ion gradient is harnessed by a rotary ATP synthase to phosphorylate adenosine diphosphate to ATP. In microorganisms, this ion gradient is usually composed of [Formula: see text], but it can also be composed of Na+ Here, we show that the strictly anaerobic rumen bacterium Pseudobutyrivibrio ruminis possesses 2 ATP synthases and 2 distinct respiratory enzymes, the ferredoxin:[Formula: see text] oxidoreductase (Rnf complex) and the energy-converting hydrogenase (Ech complex). In silico analyses revealed that 1 ATP synthase is [Formula: see text]-dependent and the other Na+-dependent, which was validated by biochemical analyses. Rnf and Ech activity was also biochemically identified and investigated in membranes of P. ruminis Furthermore, the physiology of the rumen bacterium and the role of the energy-conserving systems was investigated in dependence of 2 different catabolic pathways (the Embden-Meyerhof-Parnas or the pentose-phosphate pathway) and in dependence of Na+ availability. Growth of P. ruminis was greatly stimulated by Na+, and a combination of physiological, biochemical, and transcriptional analyses revealed the role of the energy conserving systems in P. ruminis under different metabolic scenarios. These data demonstrate the use of a 2-component ion circuit for [Formula: see text] bioenergetics and a 2nd 2-component ion circuit for Na+ bioenergetics in a strictly anaerobic rumen bacterium. In silico analyses infer that these 2 circuits are prevalent in a number of other strictly anaerobic microorganisms.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Clostridiales/metabolismo , Metabolismo Energético/fisiología , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/enzimología , Membrana Celular/metabolismo , Clostridiales/enzimología , Clostridiales/genética , Clostridiales/crecimiento & desarrollo , Metabolismo Energético/genética , Ferredoxinas/metabolismo , Hidrogenasas/metabolismo , Transporte Iónico , Oxidación-Reducción , Oxidorreductasas/metabolismo , Sodio/metabolismo
19.
FEBS J ; 287(14): 3012-3023, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31876375

RESUMEN

A1 AO ATP synthases with a V-type c subunit have only been found in hyperthermophilic archaea which makes bioenergetic analyses impossible due to the instability of liposomes at high temperatures. A search for a potential archaeal A1 AO ATP synthase with a V-type c subunit in a mesophilic organism revealed an A1 AO ATP synthase cluster in the anaerobic, acetogenic bacterium Eubacterium limosum KIST612. The enzyme was purified to apparent homogeneity from cells grown on methanol to a specific activity of 1.2 U·mg-1 with a yield of 12%. The enzyme contained subunits A, B, C, D, E, F, H, a, and c. Subunit c is predicted to be a typical V-type c subunit with only one ion (Na+ )-binding site. Indeed, ATP hydrolysis was strictly Na+ -dependent. N,N'-dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis, but inhibition was relieved by addition of Na+ . Na+ was shown directly to abolish binding of the fluorescence DCCD derivative, NCD-4, to subunit c, demonstrating a competition of Na+ and DCCD/NCD-4 for a common binding site. After incorporation of the A1 AO ATP synthase into liposomes, ATP-dependent primary transport of 22 Na+ as well as ΔµNa+ -driven ATP synthesis could be demonstrated. The Na+ A1 AO ATP synthase from E. limosum is the first ATP synthase with a V-type c subunit from a mesophilic organism. This will enable future bioenergetic analysis of these unique ATP synthases.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Eubacterium/enzimología , Sodio/metabolismo , Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Hidrólisis , Transporte Iónico , Conformación Proteica , Subunidades de Proteína
20.
Genes (Basel) ; 10(11)2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752425

RESUMEN

Leaf premature senescence largely determines maize (Zea mays L.) grain yield and quality. A natural recessive premature-senescence mutant was selected from the breeding population, and near-isogenic lines were constructed using Jing24 as the recurrent parent. In the near-isogenic lines, the dominant homozygous material was wild-type (WT), and the recessive material of early leaf senescence was the premature-senescence-type ZmELS5. To identify major genes and regulatory mechanisms involved in leaf senescence, a transcriptome analysis of the ZmELS5 and WT near-isogenic lines (NILs) was performed. A total of 8,796 differentially expressed transcripts were identified between ZmELS5 and WT, including 3,811 up-regulated and 4,985 down-regulated transcripts. By combining gene ontology, Kyoto Encyclopedia of Genes and Genomes, gene set, and transcription factor enrichment analyses, key differentially expressed genes were screened. The senescence regulatory network was predicted based on these key differentially expressed genes, which indicated that the senescence process is mainly regulated by bHLH, WRKY, and AP2/EREBP family transcription factors, leading to the accumulations of jasmonic acid and ethylene. This causes stress responses and reductions in the chlorophyll a/b-binding protein activity level. Then, decreased ATP synthase activity leads to increased photosystem II photodamage, ultimately leading to leaf senescence.


Asunto(s)
Senescencia Celular/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Zea mays/fisiología , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Albinismo Oculocutáneo , Clorofila A , Ciclopentanos/metabolismo , Etilenos/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Oxilipinas/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...