Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.050
Filtrar
1.
Protein Sci ; 33(10): e5164, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39276008

RESUMEN

This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.


Asunto(s)
Fotosíntesis , Ingeniería de Proteínas , Ingeniería de Proteínas/métodos , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares
2.
PLoS One ; 19(8): e0305781, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39178225

RESUMEN

Potato is one of the four staple food crops in the world. It has a wide range of cultivation, high yield, and high nutritional value. Enhancing the photosynthesis of potato is particularly important as it leads to an increase in the potato yield. The light-harvesting pigment-binding protein complex is very important for plant photosynthesis. We identified 12 Stlhcb gene family members from the potato variety "Atlantic" using transcriptome sequencing and bioinformatics. The proteins encoded by the Stlhcb gene family have between 3358 and 4852 atomic number, a relative molecular weight between 24060.16 and 34624.54 Da, and an isoelectric point between 4.99 and 8.65. The RT-qPCR results showed that the 12 Stlhcb genes were expressed in a tissue-specific and time-dependent fashion under low light. The relative expression of the Stlhcb genes in the leaves was significantly higher than that in the stems and roots, and the relative expression of these genes first increased and then decreased with the prolongation of light exposure time. The Stcp24 gene with the highest expression was cloned, and an expression vector was constructed. A subcellular localization analysis was performed in tobacco and an overexpression experiment was performed in potato using an Agrobacterium-mediated method. The subcellular localization analysis showed that the protein encoded by Stcp24 was located in chloroplasts as expected. Overexpression of Stcp24 in transgenic potato increased the yield of potatoes and the content of chlorophyll a and b; increased the net photosynthetic rate, transpiration rate, stomatal conductance, electron transport efficiency, and semi-saturated light intensity; and promoted photosynthesis and plant growth. This study provides a reference for the study of the function of the potato light-harvesting pigment-binding protein gene family. It lays a foundation for further study of the mechanism of the photosynthesis of potato, improvement of the light energy utilization of potato, and molecular breeding of potato.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Familia de Multigenes , Clorofila/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Filogenia
3.
Nat Commun ; 15(1): 6812, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122741

RESUMEN

Photosystem II (PSII) catalyzes the light-driven charge separation and water oxidation reactions of photosynthesis. Eukaryotic PSII core is usually associated with membrane-embedded light-harvesting antennae, which greatly increase the absorbance cross-section of the core. The peripheral antennae in different phototrophs vary considerably in protein composition and arrangement. Photosynthetic cryptophytes possess chlorophyll a/c binding proteins (CACs) that serve as their antennae. How these CACs assemble with the PSII core remains unclear. Here, we report the 2.57-Å resolution structure of cryptophyte PSII-CAC purified from cells at nitrogen-limited stationary growth phase. We show that each monomer of the PSII homodimer contains a core complex, six chlorophyll a/c binding proteins (CACs) and a previously unseen chlorophyll-binding protein (termed CAL-II). Six CACs are arranged as a double-layered arc-shaped non-parallel belt, and two such belts attach to the dimeric core from opposite sides. The CAL-II simultaneously interacts with a number of core subunits and five CACs. The distinct organization of CACs and the presence of CAL-II may play a critical role in stabilizing the dimeric PSII-CAC complex under stress conditions. Our study provides mechanistic insights into the assembly and function of the PSII-CAC complex as well as the possible adaptation of cryptophytes in response to environmental stresses.


Asunto(s)
Criptófitas , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Criptófitas/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Proteínas de Unión a Clorofila/química , Fotosíntesis , Modelos Moleculares , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química
4.
Biochim Biophys Acta Bioenerg ; 1865(4): 149503, 2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-39153589

RESUMEN

Spectral variations of light-harvesting (LH) proteins of purple photosynthetic bacteria provide insight into the molecular mechanisms underlying spectral tuning of circular bacteriochlorophyll (BChl) arrays, which play crucial roles in photoenergy conversion in these organisms. Here we investigate spectral changes of the Qy band of B850 BChl a in LH2 protein from purple sulfur bacterium Thermochromatium tepidum (tepidum-LH2) by detergents and Ca2+. The tepidum-LH2 solubilized with lauryl dimethylamine N-oxide and n-octyl-ß-D-glucoside (LH2LDAO and LH2OG, respectively) exhibited blue-shift of the B850 Qy band with hypochromism compared with the tepidum-LH2 solubilized with n-dodecyl-ß-D-maltoside (LH2DDM), resulting in the LH3-like spectral features. Resonance Raman spectroscopy indicated that this blue-shift was ascribable to the loss of hydrogen-bonding between the C3-acetyl group in B850 BChl a and the LH2 polypeptides. Ca2+ produced red-shift of the B850 Qy band in LH2LDAO by forming hydrogen-bond for the C3-acetyl group in B850 BChl a, probably due to a change in the microenvironmental structure around B850. Ca2+-induced red-shift was also observed in LH2OG although the B850 acetyl group is still free from hydrogen-bonding. Therefore, the Ca2+-induced B850 red-shift in LH2OG would originate from an electrostatic effect of Ca2+. The current results suggest that the B850 Qy band in tepidum-LH2 is primarily tuned by two mechanisms, namely the hydrogen-bonding of the B850 acetyl group and the electrostatic effect.


Asunto(s)
Bacterioclorofila A , Calcio , Chromatiaceae , Detergentes , Complejos de Proteína Captadores de Luz , Chromatiaceae/metabolismo , Calcio/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Detergentes/química , Detergentes/farmacología , Bacterioclorofila A/química , Bacterioclorofila A/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Espectrometría Raman , Fotosíntesis
5.
Nat Commun ; 15(1): 6325, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060282

RESUMEN

Photosystem I (PSI) from Fittonia albivenis, an Acanthaceae ornamental plant, is notable among green plants for its red-shifted emission spectrum. Here, we solved the structure of a PSI-light harvesting complex I (LHCI) supercomplex from F. albivenis at 2.46-Å resolution using cryo-electron microscopy. The supercomplex contains a core complex of 14 subunits and an LHCI belt with four antenna subunits (Lhca1-4) similar to previously reported angiosperm PSI-LHCI structures; however, Lhca3 differs in three regions surrounding a dimer of low-energy chlorophylls (Chls) termed red Chls, which absorb far-red beyond visible light. The unique amino acid sequences within these regions are exclusively shared by plants with strongly red-shifted fluorescence emission, suggesting candidate structural elements for regulating the energy state of red Chls. These results provide a structural basis for unraveling the mechanisms of light harvest and transfer in PSI-LHCI of under canopy plants and for designing Lhc to harness longer-wavelength light in the far-red spectral range.


Asunto(s)
Microscopía por Crioelectrón , Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema I , Secuencia de Aminoácidos , Clorofila/metabolismo , Clorofila/química , Luz , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/ultraestructura , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Acanthaceae
6.
Biochim Biophys Acta Bioenerg ; 1865(4): 149500, 2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-39074571

RESUMEN

In high light, the antenna system in oxygenic photosynthetic organisms switches to a photoprotective mode, dissipating excess energy in a process called non-photochemical quenching (NPQ). Diatoms exhibit very efficient NPQ, accompanied by a xanthophyll cycle in which diadinoxanthin is de-epoxidized into diatoxanthin. Diatoms accumulate pigments from this cycle in high light, and exhibit faster and more pronounced NPQ. The mechanisms underlying NPQ in diatoms remain unclear, but it can be mimicked by aggregation of their isolated light-harvesting complexes, FCP (fucoxanthin chlorophyll-a/c protein). We assess this model system by resonance Raman measurements of two peripheral FCPs, trimeric FCPa and nonameric FCPb, isolated from high- and low-light-adapted cells (LL,HL). Quenching is associated with a reorganisation of these proteins, affecting the conformation of their bound carotenoids, and in a manner which is highly dependent on the protein considered. FCPa from LL diatoms exhibits significant changes in diadinoxanthin structure, together with a smaller conformational change of at least one fucoxanthin. For these LL-FCPa, quenching is associated with consecutive events, displaying distinct spectral signatures, and its amplitude correlates with the planarity of the diadinoxanthin structure. HL-FCPa aggregation is associated with a change in planarity of a 515-nm-absorbing fucoxanthin, and, to a lesser extent, of diadinoxanthin. Finally, in FCPb, a blue-absorbing fucoxanthin is primarily affected. FCPs thus possess a plastic structure, undergoing several conformational changes upon aggregation, dependent upon their precise composition and structure. NPQ in diatoms may therefore arise from a combination of structural changes, dependent on the environment the cells are adapted to.


Asunto(s)
Diatomeas , Complejos de Proteína Captadores de Luz , Xantófilas , Diatomeas/metabolismo , Diatomeas/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Xantófilas/química , Xantófilas/metabolismo , Espectrometría Raman , Clorofila/metabolismo , Clorofila/química , Luz
7.
J Am Chem Soc ; 146(29): 20019-20032, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38991108

RESUMEN

Small, diffusible redox proteins play an essential role in electron transfer (ET) in respiration and photosynthesis, sustaining life on Earth by shuttling electrons between membrane-bound complexes via finely tuned and reversible interactions. Ensemble kinetic studies show transient ET complexes form in two distinct stages: an "encounter" complex largely mediated by electrostatic interactions, which subsequently, through subtle reorganization of the binding interface, forms a "productive" ET complex stabilized by additional hydrophobic interactions around the redox-active cofactors. Here, using single-molecule force spectroscopy (SMFS) we dissected the transient ET complexes formed between the photosynthetic reaction center-light harvesting complex 1 (RC-LH1) of Rhodobacter sphaeroides and its native electron donor cytochrome c2 (cyt c2). Importantly, SMFS resolves the distribution of interaction forces into low (∼150 pN) and high (∼330 pN) components, with the former more susceptible to salt concentration and to alteration of key charged residues on the RC. Thus, the low force component is suggested to reflect the contribution of electrostatic interactions in forming the initial encounter complex, whereas the high force component reflects the additional stabilization provided by hydrophobic interactions to the productive ET complex. Employing molecular dynamics simulations, we resolve five intermediate states that comprise the encounter, productive ET and leaving complexes, predicting a weak interaction between cyt c2 and the LH1 ring near the RC-L subunit that could lie along the exit path for oxidized cyt c2. The multimodal nature of the interactions of ET complexes captured here may have wider implications for ET in all domains of life.


Asunto(s)
Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Transporte de Electrón , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Citocromos c2/química , Citocromos c2/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo
8.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39063190

RESUMEN

As a critical step in advancing the simulation of photosynthetic complexes, we present the Martini 3 coarse-grained (CG) models of key cofactors associated with light harvesting (LHCII) proteins and the photosystem II (PSII) core complex. Our work focuses on the parametrization of beta-carotene, plastoquinone/quinol, violaxanthin, lutein, neoxanthin, chlorophyll A, chlorophyll B, and heme. We derived the CG parameters to match the all-atom reference simulations, while structural and thermodynamic properties of the cofactors were compared to experimental values when available. To further assess the reliability of the parameterization, we tested the behavior of these cofactors within their physiological environments, specifically in a lipid bilayer and bound to photosynthetic complexes. The results demonstrate that our CG models maintain the essential features required for realistic simulations. This work lays the groundwork for detailed simulations of the PSII-LHCII super-complex, providing a robust parameter set for future studies.


Asunto(s)
Complejos de Proteína Captadores de Luz , Simulación de Dinámica Molecular , Fotosíntesis , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila/metabolismo , Clorofila/química , Termodinámica , beta Caroteno/química , beta Caroteno/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Hemo/química , Hemo/metabolismo , Clorofila A/química , Clorofila A/metabolismo
9.
Microb Biotechnol ; 17(7): e14521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949508

RESUMEN

Rhodopsins, a diverse class of light-sensitive proteins found in various life domains, have attracted considerable interest for their potential applications in sustainable synthetic biology. These proteins exhibit remarkable photochemical properties, undergoing conformational changes upon light absorption that drive a variety of biological processes. Exploiting rhodopsin's natural properties could pave the way for creating sustainable and energy-efficient technologies. Rhodopsin-based light-harvesting systems offer innovative solutions to a few key challenges in sustainable engineering, from bioproduction to renewable energy conversion. In this opinion article, we explore the recent advancements and future possibilities of employing rhodopsins for sustainable engineering, underscoring the transformative potential of these biomolecules.


Asunto(s)
Rodopsina , Biología Sintética , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/química , Rodopsina/metabolismo , Rodopsina/química , Rodopsina/genética , Biología Sintética/métodos
10.
J Phys Chem B ; 128(31): 7467-7475, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39059418

RESUMEN

Ultrafast spectroscopic techniques have been vital in studying excitation energy transfer (EET) in photosynthetic light harvesting complexes. In this paper, we simulate the pump-probe spectra of the B850 band of the light harvesting complex 2 (LH2) of purple bacteria, by using the hierarchical equation of motion method and the optical response function approach. The ground state bleach, stimulated emission, and excited state absorption components of the pump-probe spectra are analyzed in detail. The laser pulse-induced population dynamics are also simulated to help understand the main features of the pump-probe spectra and the EET process. It is shown that the excitation energy relaxation is an ultrafast process with multiple time scales. The first 40 fs of the pump-probe spectra is dominated by the relaxation of the k = ±1 states to both the k = 0 and higher energy states. Dynamics on a longer time scale around 200 fs reflects the relaxation of higher energy states to the k = 0 state.


Asunto(s)
Transferencia de Energía , Complejos de Proteína Captadores de Luz , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Proteobacteria/química , Proteobacteria/metabolismo
11.
Photosynth Res ; 161(3): 191-201, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38907135

RESUMEN

The ring-like peripheral light-harvesting complex 2 (LH2) expressed by many phototrophic purple bacteria is a popular model system in biological light-harvesting research due to its robustness, small size, and known crystal structure. Furthermore, the availability of structural variants with distinct electronic structures and optical properties has made this group of light harvesters an attractive testing ground for studies of structure-function relationships in biological systems. LH2 is one of several pigment-protein complexes for which a link between functionality and effects such as excitonic coherence and vibronic coupling has been proposed. While a direct connection has not yet been demonstrated, many such interactions are highly sensitive to resonance conditions, and a dependence of intra-complex dynamics on detailed electronic structure might be expected. To gauge the sensitivity of energy-level structure and relaxation dynamics to naturally occurring structural changes, we compare the photo-induced dynamics in two structurally distinct LH2 variants. Using polarization-controlled 2D electronic spectroscopy at cryogenic temperatures, we directly access information on dynamic and static disorder in the complexes. The simultaneous optimal spectral and temporal resolution of these experiments further allows us to characterize the ultrafast energy relaxation, including exciton transport within the complexes. Despite the variations in PPC molecular structure manifesting as clear differences in electronic structure and disorder, the energy-transport and-relaxation dynamics remain remarkably similar. This indicates that the light-harvesting functionality of purple bacteria within a single LH2 complex is highly robust to structural perturbations and likely does not rely on finely tuned electronic- or electron-vibrational resonance conditions.


Asunto(s)
Complejos de Proteína Captadores de Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Rhodopseudomonas/metabolismo , Transferencia de Energía , Luz
12.
Nat Commun ; 15(1): 5211, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890314

RESUMEN

Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive. Here, we report biochemical and structural features of a PSII-repair intermediate complex, likely arrested at an early stage of the PSII repair process in the green alga Chlamydomonas reinhardtii. The complex contains three protein factors associated with a damaged PSII core, namely Thylakoid Enriched Factor 14 (TEF14), Photosystem II Repair Factor 1 (PRF1), and Photosystem II Repair Factor 2 (PRF2). TEF14, PRF1 and PRF2 may facilitate the release of the manganese-stabilizing protein PsbO, disassembly of peripheral light-harvesting complexes from PSII and blockage of the QB site, respectively. Moreover, an α-tocopherol quinone molecule is located adjacent to the heme group of cytochrome b559, potentially fulfilling a photoprotective role by preventing the generation of reactive oxygen species.


Asunto(s)
Chlamydomonas reinhardtii , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Tilacoides/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Grupo Citocromo b/metabolismo , Grupo Citocromo b/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Luz
13.
Nat Commun ; 15(1): 4999, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866834

RESUMEN

Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.


Asunto(s)
Microscopía por Crioelectrón , Criptófitas , Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Criptófitas/metabolismo , Fotosíntesis , Modelos Moleculares , Transferencia de Energía , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/química , Clorofila A/metabolismo , Clorofila A/química
14.
Curr Biol ; 34(13): 2972-2979.e4, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851184

RESUMEN

The evolution of novel traits can have important consequences for biological diversification. Novelties such as new structures are associated with changes in both genotype and phenotype that often lead to changes in ecological function.1,2 New ecological opportunities provided by a novel trait can trigger subsequent trait modification or niche partitioning3; however, the underlying mechanisms of novel trait diversification are still poorly understood. Here, we report that the innovation of a new chlorophyll (Chl) pigment, Chl d, by the cyanobacterium Acaryochloris marina was followed by the functional divergence of its light-harvesting complex. We identified three major photosynthetic spectral types based on Chl fluorescence properties for a collection of A. marina laboratory strains for which genome sequence data are available,4,5 with shorter- and longer-wavelength types more recently derived from an ancestral intermediate phenotype. Members of the different spectral types exhibited extensive variation in the Chl-binding proteins as well as the Chl energy levels of their photosynthetic complexes. This spectral-type divergence is associated with differences in the wavelength dependence of both growth rate and photosynthetic oxygen evolution. We conclude that the divergence of the light-harvesting apparatus has consequently impacted A. marina ecological diversification through specialization on different far-red photons for photosynthesis.


Asunto(s)
Clorofila , Cianobacterias , Complejos de Proteína Captadores de Luz , Fotosíntesis , Clorofila/metabolismo , Cianobacterias/metabolismo , Cianobacterias/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Evolución Biológica , Fenotipo
15.
J Phys Chem Lett ; 15(24): 6398-6408, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38861672

RESUMEN

Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation. Here, we show that a synergistic combination of first-principles calculations and ultrafast spectroscopy can give unprecedented insight into the EET pathways occurring within LHCs. We measured the transient absorption spectra of the minor CP29 complex of plants and of two mutants, systematically mapping the kinetic components seen in experiments to the simulated exciton dynamics. With our combined strategy, we show that EET in CP29 is surprisingly robust to the changes in the exciton states induced by mutations, explaining the versatility of plant LHCs.


Asunto(s)
Transferencia de Energía , Complejos de Proteína Captadores de Luz , Mutación , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Cinética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema II
16.
Nat Chem Biol ; 20(7): 906-915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831036

RESUMEN

Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.


Asunto(s)
Clorofila , Clorofila/química , Clorofila/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Fotosíntesis , Transferencia de Energía , Microscopía por Crioelectrón , Conformación Proteica , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo
17.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849759

RESUMEN

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Asunto(s)
Luz , Phaseolus , Phaseolus/fisiología , Phaseolus/metabolismo , Phaseolus/enzimología , Fosforilación , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Frío , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Vía de Pentosa Fosfato/fisiología , Activación Enzimática , Fotosíntesis/fisiología , Estrés Fisiológico , Proteínas Serina-Treonina Quinasas/metabolismo
18.
Biochem J ; 481(13): 823-838, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38780411

RESUMEN

The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.


Asunto(s)
Proteínas Bacterianas , Complejos de Proteína Captadores de Luz , Multimerización de Proteína , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Glucolípidos/metabolismo , Glucolípidos/química , Modelos Moleculares , Cristalografía por Rayos X
19.
Nat Plants ; 10(6): 874-879, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38816499

RESUMEN

Plant photosystem I (PSI) consists of at least 13 nuclear-encoded and 4 chloroplast-encoded subunits that together act as a sunlight-driven oxidoreductase. Here we report the structure of a PSI assembly intermediate that we isolated from greening oat seedlings. The assembly intermediate shows an absence of at least eight subunits, including PsaF and LHCI, and lacks photoreduction activity. The data show that PsaF is a regulatory checkpoint that promotes the assembly of LHCI, effectively coupling biogenesis to function.


Asunto(s)
Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Avena/metabolismo , Avena/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Plantones/genética , Plantones/metabolismo
20.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791114

RESUMEN

Photosynthesis, as the primary source of energy for all life forms, plays a crucial role in maintaining the global balance of energy, entropy, and enthalpy in living organisms. Among its various building blocks, photosystem I (PSI) is responsible for light-driven electron transfer, crucial for generating cellular reducing power. PSI acts as a light-driven plastocyanin-ferredoxin oxidoreductase and is situated in the thylakoid membranes of cyanobacteria and the chloroplasts of eukaryotic photosynthetic organisms. Comprehending the structure and function of the photosynthetic machinery is essential for understanding its mode of action. New insights are offered into the structure and function of PSI and its associated light-harvesting proteins, with a specific focus on the remarkable structural conservation of the core complex and high plasticity of the peripheral light-harvesting complexes.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Fotosíntesis/fisiología , Complejos de Proteína Captadores de Luz/metabolismo , Cianobacterias/metabolismo , Modelos Moleculares , Transporte de Electrón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...