RESUMEN
Neuromyelitis optica spectrum disorder (NMOSD) is associated with pathological aquaporin-4 immunoglobulin G (AQP4-IgG), which cause brain damage. However, the impact of AQP4-IgG on retinal tissue remains unclear. Additionally, dysregulated complement anaphylatoxins C3a and C5a, known to modulate the endothelial barrier, are implicated in NMOSD. This study evaluates the susceptibility of human brain microvascular endothelial cells (HBMEC) and human retinal endothelial cells (HREC) to C3a- and C5a-mediated stress using real-time cell barrier analysis, immunocytochemical staining, qPCR and IgG transmigration assays. The findings reveal that C3a induced a concentration-dependent paracellular barrier breakdown and increased transcellular permeability in HBMEC, while HREC maintained barrier integrity under the same conditions. C5a attenuated C3a-induced disruption in HBMEC, indicating a protective role. Anaphylatoxin treatment elevated transcript levels of complement component C3 and increased C5 gene and protein expression in HREC, with no changes observed in HBMEC. In HBMEC, C5a treatment led to a transient upregulation of C3a receptor (C3AR) mRNA and an early decrease in C5a receptor 1 (C5AR1) protein detection. Conversely, HREC exhibited a late increase in C5aR1 protein levels. These results indicate that the retinal endothelial barrier is more stable under anaphylatoxin-induced stress compared to the brain, potentially offering better protection against paracellular AQP4-IgG transport.
Asunto(s)
Encéfalo , Complemento C3a , Células Endoteliales , Retina , Humanos , Células Endoteliales/metabolismo , Complemento C3a/metabolismo , Retina/metabolismo , Encéfalo/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Receptor de Anafilatoxina C5a/genética , Complemento C5a/metabolismo , Acuaporina 4/metabolismo , Acuaporina 4/genética , Receptores de Complemento/metabolismo , Receptores de Complemento/genética , Barrera Hematoencefálica/metabolismo , Células CultivadasRESUMEN
Complement C5a protein has been shown to play a major role in tissue regeneration through interaction with its receptor (C5aR) on target cells. Expression of this receptor has been reported in the nervous system which, upon injury, has no treatment to restore the lost functions. This work aimed at investigating the Complement C5a effect on axonal growth after axotomy in vitro. Primary hippocampal neurons were isolated from embryonic Wistar rats. Cell expression of C5aR mRNA was verified by RT-PCR while its membrane expression, localization, and phosphorylation were investigated by immunofluorescence. Then, the effects of C5a on injured axonal growth were investigated using a 3D-printed microfluidic device. Immunofluorescence demonstrated that the primary cultures contained only mature neurons (93%) and astrocytes (7%), but no oligodendrocytes or immature neurons. Immunofluorescence revealed a co-localization of NF-L and C5aR only in the mature neurons where C5a induced the phosphorylation of its receptor. C5a application on injured axons in the microfluidic devices significantly increased both the axonal growth speed and length. Our findings highlight a new role of C5a in regeneration demonstrating an enhancement of axonal growth after axotomy. This may provide a future therapeutic tool in the treatment of central nervous system injury.
Asunto(s)
Axones , Complemento C5a , Ratas Wistar , Animales , Axones/metabolismo , Axones/patología , Ratas , Complemento C5a/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Receptor de Anafilatoxina C5a/genética , Hipocampo/metabolismo , Hipocampo/patología , Neuronas/metabolismo , Fosforilación , Células Cultivadas , Axotomía , Regeneración NerviosaRESUMEN
The complement system is critically involved in the pathogenesis of sepsis. In particular, complement anaphylatoxin C5a is generated in excess during sepsis, leading to cellular dysfunction. Recent studies have shown that excessive C5a impairs adrenomedullary catecholamine production release and induces apoptosis in adrenomedullary cells. Currently, the mechanisms by which C5a impacts adrenal cell function are poorly understood. The PC12 cell model was used to examine the cellular effects following treatment with recombinant rat C5a. The levels of caspase activation and cell death, protein kinase signaling pathway activation, and changes in inflammatory protein expression were examined following treatment with C5a. There was an increase in apoptosis of PC12 cells following treatment with high-dose C5a. Ten inflammatory proteins, primarily involved in apoptosis, cell survival, and cell proliferation, were upregulated following treatment with high-dose C5a. Five inflammatory proteins, involved primarily in chemotaxis and anti-inflammatory functions, were downregulated. The ERK/MAPK, p38/MAPK, JNK/MAPK, and AKT protein kinase signaling pathways were upregulated in a C5aR-dependent manner. These results demonstrate an apoptotic effect and cellular signaling effect of high-dose C5a. Taken together, the overall data suggest that high levels of C5a may play a role in C5aR-dependent apoptosis of adrenal medullary cells in sepsis.
Asunto(s)
Apoptosis , Complemento C5a , Receptor de Anafilatoxina C5a , Sepsis , Transducción de Señal , Animales , Ratas , Células PC12 , Sepsis/metabolismo , Sepsis/patología , Complemento C5a/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Receptor de Anafilatoxina C5a/genética , Inflamación/metabolismo , Inflamación/patología , Supervivencia Celular/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Proliferación CelularRESUMEN
Cholesterol crystal embolism (CCE) is a complication of atherosclerosis and can cause microvascular obstruction in multiple organs. Because the consequences may be fatal, and there is no specific treatment, it is crucial to understand the mechanisms and identify treatment strategies. In this issue, Zhao et al., using a mouse model of kidney CCE, demonstrated that inhibition of C5a/C5aR prevented and resolved CCE-induced renal thrombosis and angiopathy. Although these findings must be extended to human condition, they offer hope for management of CCE syndrome.
Asunto(s)
Embolia por Colesterol , Animales , Embolia por Colesterol/diagnóstico , Humanos , Ratones , Complemento C5a/metabolismo , Complemento C5a/inmunología , Complemento C5a/antagonistas & inhibidores , Modelos Animales de Enfermedad , Aterosclerosis/inmunología , Aterosclerosis/prevención & control , Aterosclerosis/etiología , Colesterol/metabolismo , Riñón/inmunología , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacosRESUMEN
Schistosomiasis-induced pulmonary hypertension (PH) presents a significant global health burden, yet the underlying mechanisms remain poorly understood. Here, we investigate the involvement of platelets and the complement system in the initiation events leading to Schistosoma-induced PH. We demonstrate that Schistosoma exposure leads to thrombocytopenia, platelet accumulation in the lung, and platelet activation. In addition, we observed increased plasma complement anaphylatoxins C3a and C5a, indicative of complement system activation, and elevated platelet expression of C1q, C3, decay activating factor (DAF), and complement C3a and C5a receptors. Our findings suggest the active involvement of platelets in responding to complement system signals induced by Schistosoma exposure and form the basis for future mechanistic studies on how complement may regulate platelet activation and promote the development of Schistosoma-induced PH.NEW & NOTEWORTHY Schistosomiasis-induced pulmonary hypertension (PH) is a significant global health burden, yet the underlying mechanisms remain poorly understood. We demonstrate that Schistosoma exposure leads to platelet accumulation in the lung and platelet activation. We observed increased plasma levels of C3a and C5a, indicative of complement system activation, and elevated expression of platelet complement proteins and receptors. These findings underscore the role of platelets and complement in the inflammatory responses associated with Schistosoma-induced PH.
Asunto(s)
Plaquetas , Hipertensión Pulmonar , Activación Plaquetaria , Animales , Hipertensión Pulmonar/parasitología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/inmunología , Plaquetas/metabolismo , Plaquetas/inmunología , Ratones , Activación de Complemento , Ratones Endogámicos C57BL , Esquistosomiasis/complicaciones , Esquistosomiasis/inmunología , Esquistosomiasis/parasitología , Complemento C3a/metabolismo , Pulmón/parasitología , Pulmón/inmunología , Pulmón/patología , Pulmón/metabolismo , Proteínas del Sistema Complemento/metabolismo , Femenino , Complemento C5a/metabolismo , Masculino , Schistosoma/inmunologíaRESUMEN
OBJECTIVES: In myelin oligodendrocyte glycoprotein IgG-associated disease (MOGAD) and aquaporin-4 IgG+ neuromyelitis optica spectrum disorder (AQP4+NMOSD), the autoantibodies are mainly composed of IgG1, and complement-dependent cytotoxicity is a primary pathomechanism in AQP4+NMOSD. We aimed to evaluate the CSF complement activation in MOGAD. METHODS: CSF-C3a, CSF-C4a, CSF-C5a, and CSF-C5b-9 levels during the acute phase before treatment in patients with MOGAD (n = 12), AQP4+NMOSD (n = 11), multiple sclerosis (MS) (n = 5), and noninflammatory neurologic disease (n = 2) were measured. RESULTS: CSF-C3a and CSF-C5a levels were significantly higher in MOGAD (mean ± SD, 5,629 ± 1,079 pg/mL and 2,930 ± 435.8 pg/mL) and AQP4+NMOSD (6,017 ± 3,937 pg/mL and 2,544 ± 1,231 pg/mL) than in MS (1,507 ± 1,286 pg/mL and 193.8 ± 0.53 pg/mL). CSF-C3a, CSF-C4a, and CSF-C5a did not differ between MOGAD and AQP4+NMOSD while CSF-C5b-9 (membrane attack complex, MAC) levels were significantly lower in MOGAD (17.4 ± 27.9 ng/mL) than in AQP4+NMOSD (62.5 ± 45.1 ng/mL, p = 0.0019). Patients with MOGAD with severer attacks (Expanded Disability Status Scale [EDSS] ≥ 3.5) had higher C5b-9 levels (34.0 ± 38.4 ng/m) than those with milder attacks (EDSS ≤3.0, 0.9 ± 0.7 ng/mL, p = 0.044). DISCUSSION: The complement pathway is activated in both MOGAD and AQP4+NMOSD, but MAC formation is lower in MOGAD, particularly in those with mild attacks, than in AQP4+NMOSD. These findings may have pathogenetic and therapeutic implications in MOGAD.
Asunto(s)
Acuaporina 4 , Activación de Complemento , Inmunoglobulina G , Glicoproteína Mielina-Oligodendrócito , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/líquido cefalorraquídeo , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/sangre , Acuaporina 4/inmunología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Glicoproteína Mielina-Oligodendrócito/inmunología , Inmunoglobulina G/líquido cefalorraquídeo , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Autoanticuerpos/líquido cefalorraquídeo , Autoanticuerpos/sangre , Anciano , Complemento C5a/líquido cefalorraquídeo , Complemento C5a/metabolismo , Complemento C5a/inmunología , Adulto Joven , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/inmunología , Complemento C3a/metabolismo , Complemento C3a/líquido cefalorraquídeo , Complemento C3a/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/líquido cefalorraquídeo , Complejo de Ataque a Membrana del Sistema Complemento/inmunologíaRESUMEN
The conjunctiva has immune-responsive properties to protect the eye from infections. Its innate immune system reacts against external pathogens, such as fungi. The complement factor C5a is an important contributor to the initial immune response. It is known that activation of transient-receptor-potential-vanilloid 1 (TRPV1) and TRP-melastatin 8 (TRPM8) channels is involved in different immune reactions and inflammation in the human body. The aim of this study was to determine if C5a and mucor racemosus e voluminae cellulae (MR) modulate Ca2+-signaling through changes in TRPs activity in human conjunctival epithelial cells (HCjECs). Furthermore, crosstalk was examined between C5a and MR in mediating calcium regulation. Intracellular Ca2+-concentration ([Ca2+]i) was measured by fluorescence calcium imaging, and whole-cell currents were recorded using the planar-patch-clamp technique. MR was used as a purified extract. Application of C5a (0.05-50 ng/mL) increased both [Ca2+]i and whole-cell currents, which were suppressed by either the TRPV1-blocker AMG 9810 or the TRPM8-blocker AMTB (both 20 µM). The N-terminal peptide C5L2p (20-50 ng/mL) blocked rises in [Ca2+]i induced by C5a. Moreover, the MR-induced rise in Ca2+-influx was suppressed by AMG 9810 and AMTB, as well as 0.05 ng/mL C5a. In conclusion, crosstalk between C5a and MR controls human conjunctival cell function through modulating interactions between TRPV1 and TRPM8 channel activity.
Asunto(s)
Calcio , Complemento C5a , Conjuntiva , Células Epiteliales , Humanos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Conjuntiva/metabolismo , Conjuntiva/microbiología , Calcio/metabolismo , Complemento C5a/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Señalización del Calcio , Canales Catiónicos TRPV/metabolismoRESUMEN
Immune responses rely on efficient and coordinated migration of immune cells to the site of infection or injury. To reach the site of immunological threat often requires long-range navigation of immune cells through complex tissue and vascular networks. Chemotaxis, cell migration steered by gradients of cell-attractive chemicals that bind sensory receptors, is central to this response. Chemoattractant receptors mostly belong to the G-protein-coupled receptor (GPCR) family, but the way attractant-receptor signaling directs cell migration is not fully understood. Direct-viewing chemotaxis chambers combined with time-lapse microscopy give a powerful tool to study the dynamic details of cells' responses to different attractant landscapes. Here, we describe the application of one such chamber (the Dunn chamber) to study bone marrow-derived macrophage chemotaxis to gradients of complement C5a.
Asunto(s)
Quimiotaxis , Macrófagos , Quimiotaxis/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Animales , Ratones , Complemento C5a/metabolismo , Complemento C5a/farmacología , Imagen de Lapso de Tiempo/métodos , Movimiento Celular , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
The complement system is a complex network of proteins that plays a crucial role in the innate immune response. One important component of this system is the C5a-C5aR1 complex, which is critical in the recruitment and activation of immune cells. In-depth investigation of the activation mechanism as well as biased signaling of the C5a-C5aR1 system will facilitate the elucidation of C5a-mediated pathophysiology. In this study, we determined the structure of C5a-C5aR1-Gi complex at a high resolution of 3 Å using cryo-electron microscopy (Cryo-EM). Our results revealed the binding site of C5a, which consists of a polar recognition region on the extracellular side and an amphipathic pocket within the transmembrane domain. Furthermore, we found that C5a binding induces conformational changes of C5aR1, which subsequently leads to the activation of G protein signaling pathways. Notably, a key residue (M265) located on transmembrane helix 6 (TM6) was identified to play a crucial role in regulating the recruitment of ß-arrestin driven by C5a. This study provides more information about the structure and function of the human C5a-C5aR1 complex, which is essential for the proper functioning of the complement system. The findings of this study can also provide a foundation for the design of new pharmaceuticals targeting this receptor with bias or specificity.
Asunto(s)
Complemento C5a , Microscopía por Crioelectrón , Receptor de Anafilatoxina C5a , Microscopía por Crioelectrón/métodos , Humanos , Receptor de Anafilatoxina C5a/química , Receptor de Anafilatoxina C5a/metabolismo , Sitios de Unión , Complemento C5a/química , Complemento C5a/metabolismo , Unión Proteica , Transducción de Señal , Conformación Proteica , Modelos MolecularesRESUMEN
Cholesterol crystal embolism (CCE) implies immunothrombosis, tissue necrosis, and organ failure but no specific treatments are available. As CCE involves complement activation, we speculated that inhibitors of the C5a/C5aR axis would be sufficient to attenuate the consequences of CCE like that with systemic vasculitis. Cholesterol microcrystal injection into the kidney artery of wild-type mice initiated intra-kidney immunothrombosis within a few hours followed by a sudden drop of glomerular filtration rate and ischemic kidney necrosis after 24 hours. Genetic deficiency of either C3 or C5aR prevented immunothrombosis, glomerular filtration rate drop, and ischemic necrosis at 24 hours as did preemptive treatment with inhibitors of either C5a or C5aR. Delayed C5a blockade after crystal injection still resolved crystal clots and prevented all consequences. Thus, selective blockade of C5a or C5aR is sufficient to attenuate the consequences of established CCE and prospective inhibition in high-risk patients may be clinically feasible and safe.
Asunto(s)
Complemento C3 , Complemento C5a , Modelos Animales de Enfermedad , Embolia por Colesterol , Receptor de Anafilatoxina C5a , Animales , Masculino , Ratones , Complemento C3/metabolismo , Complemento C3/antagonistas & inhibidores , Complemento C3/inmunología , Complemento C5a/antagonistas & inhibidores , Complemento C5a/inmunología , Complemento C5a/metabolismo , Embolia por Colesterol/complicaciones , Embolia por Colesterol/diagnóstico , Riñón/patología , Riñón/inmunología , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/inmunología , Microvasos/efectos de los fármacos , Microvasos/patología , Necrosis , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo , Trombosis/etiología , Trombosis/inmunología , Trombosis/prevención & controlRESUMEN
Pregnancy is a fascinating immunological phenomenon because it allows allogeneic fetal and placental tissues to survive inside the mother. As a component of innate immunity with high inflammatory potential, the complement system must be tightly regulated during pregnancy. Dysregulation of the complement system plays a role in pregnancy complications including pre-eclampsia and intrauterine growth restriction. Complement components are also used as biomarkers for pregnancy complications. However, the mechanisms of detrimental role of complement in pregnancy is poorly understood. C5a is the most potent anaphylatoxin and generates multiple immune reactions via two transmembrane receptors, C5aR1 and C5aR2. C5aR1 is pro-inflammatory, but the role of C5aR2 remains largely elusive. Interestingly, murine NK cells have been shown to express C5aR2 without the usual co-expression of C5aR1. Furthermore, C5aR2 appears to regulate IFN-γ production by NK cells in vitro. As IFN-γ produced by uterine NK cells is one of the major factors for the successful development of a vital pregnancy, we investigated the role anaphylatoxin C5a and its receptors in the establishment of pregnancy and the regulation of uterine NK cells by examinations of murine C5ar2-/- pregnancies and human placental samples. C5ar2-/- mice have significantly reduced numbers of implantation sites and a maternal C5aR2 deficiency results in increased IL-12, IL-18 and IFN-γ mRNA expression as well as reduced uNK cell infiltration at the maternal-fetal interface. Human decidual leukocytes have similar C5a receptor expression patterns showing clinical relevance. In conclusion, this study identifies C5aR2 as a key contributor to dNK infiltration and pregnancy success.
Asunto(s)
Células Asesinas Naturales , Ratones Noqueados , Receptor de Anafilatoxina C5a , Útero , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo , Femenino , Animales , Embarazo , Ratones , Útero/inmunología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Placenta/inmunología , Placenta/metabolismo , Complemento C5a/inmunología , Complemento C5a/metabolismo , Ratones Endogámicos C57BL , Interferón gamma/metabolismo , Interferón gamma/inmunologíaRESUMEN
Introduction: Complement-mediated damage to the myocardium during acute myocardial infarction (AMI), particularly the late components of the terminal pathway (C5-convertase and C5b-9), have previously been characterized. Unfortunately, only few studies have reported a direct association between dysregulated complement activation and endothelial function. Hence, little attention has been paid to the role of the anaphylatoxin C5a. The endothelial glycocalyx (eGC) together with the cellular actin cortex provide a vasoprotective barrier against chronic vascular inflammation. Changes in their nanomechanical properties (stiffness and height) are recognized as hallmarks of endothelial dysfunction as they correlate with the bioavailability of vasoactive substances, such as nitric oxide (NO). Here, we determined how the C5a:C5aR1 axis affects the eGC and endothelial function in AMI. Methods: Samples of fifty-five patients with ST-elevation myocardial infarction (STEMI) vs. healthy controls were analyzed in this study. eGC components and C5a levels were determined via ELISA; NO levels were quantified chemiluminescence-based. Endothelial cells were stimulated with C5a or patient sera (with/without C5a-receptor1 antagonist "PMX53") and the nanomechanical properties of eGC quantified using the atomic force microscopy (AFM)-based nanoindentation technique. To measure actin cytoskeletal tension regulator activation (RhoA and Rac1) G-LISA assays were applied. Vascular inflammation was examined by quantifying monocyte-endothelium interaction via AFM-based single-cell-force spectroscopy. Results: Serum concentrations of eGC components and C5a were significantly increased during STEMI. Serum and solely C5a stimulation decreased eGC height and stiffness, indicating shedding of the eGC. C5a enhanced RhoA activation, resulting in increased cortical stiffness with subsequent reduction in NO concentrations. Monocyte adhesion to the endothelium was enhanced after both C5a and stimulation with STEMI serum. eGC degradation- and RhoA-induced cortical stiffening with subsequent endothelial dysfunction were attenuated after administering PMX53. Conclusion: This study demonstrates that dysregulated C5a activation during AMI results in eGC damage with subsequent endothelial dysfunction and reduced NO bioavailability, indicating progressively developing vascular inflammation. This could be prevented by antagonizing C5aR1, highlighting the role of the C5a:C5a-Receptor1 axis in vascular inflammation development and endothelial dysfunction in AMI, offering new therapeutic approaches for future investigations.
Asunto(s)
Activación de Complemento , Complemento C5a , Glicocálix , Infarto del Miocardio , Receptor de Anafilatoxina C5a , Humanos , Glicocálix/metabolismo , Glicocálix/patología , Complemento C5a/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Receptor de Anafilatoxina C5a/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Anciano , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Transducción de Señal , Óxido Nítrico/metabolismoRESUMEN
C5a is an integral glycoprotein of the complement system that plays an important role in inflammation and immunity. The physiological concentration of C5a is observed to be elevated under various immunoinflammatory pathophysiological conditions in humans. The pathophysiology of C5a is linked to the "two-site" protein-protein interactions (PPIs) with two genomically related receptors, such as C5aR1 and C5aR2. Therefore, pharmacophores that can potentially block the PPIs between C5a-C5aR1 and C5a-C5aR2 have tremendous potential for development as future therapeutics. Notably, the FDA has already approved antibodies that target the precursors of C5a (Eculizumab, 148 kDa) and C5a (Vilobelimab, 149 kDa) for marketing as complement-targeted therapeutics. In this context, the current study reports the structural characterization of a pair of synthetic designer antibody-like peptides (DePA and DePA1; ≤3.8 kDa) that bind to hotspot regions on C5a and also demonstrates potential traits to neutralize the function of C5a under pathophysiological conditions.
Asunto(s)
Complemento C5a , Péptidos , Receptor de Anafilatoxina C5a , Transducción de Señal , Humanos , Receptor de Anafilatoxina C5a/metabolismo , Receptor de Anafilatoxina C5a/química , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Complemento C5a/metabolismo , Complemento C5a/química , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Transducción de Señal/efectos de los fármacos , Unión Proteica , Anticuerpos/química , Anticuerpos/metabolismo , Anticuerpos/inmunología , Diseño de FármacosRESUMEN
As another receptor for complement activation product C5a, C5aR2 has been paid much attention these years. Although controversial and complex, its specific signals or roles in modulating the classic receptor C5aR1 have been investigated and gradually revealed. The hypothesis of the heterodimer of C5aR1 and C5aR2 has also been suggested and observed under extremely high C5a concentrations. In this article, we tried to investigate whether C5aR2 would affect C5aR1 expression under normal or inflammatory conditions in WT and C5ar2 -/- mice of C57BL/6 background. We focused on the innate immune cells-neutrophils and macrophages. The mRNA levels of C5ar1 in normal kidney, liver, and the mRNA or protein levels of naïve-bone marrow and peripheral blood leukocytes and peritoneal Mφs were comparable between WT and C5ar2 -/- mice, indicating the technique of C5aR2 knockout did not affect the transcription of its neighboring gene C5aR1. However, the mean fluorescence intensity of surface C5aR1 on naïve circulating C5ar2 -/- neutrophils detected by FACS was reduced, which might be due to the reduced internalization of C5aR1 on C5ar2 -/- neutrophils. In the peritonitis model induced by i.p. injection of thioglycollate, more neutrophils were raised after 10 hr in C5ar2 -/- peritoneal cavity, indicating the antagonism of C5aR2 on C5aR1 signal in neutrophil chemotaxis. After 3 days of thioglycollate injection, the mainly infiltrating macrophages were comparable between WT and C5ar2 -/- mice, but the C5ar1 mRNA and surface or total C5aR1 protein expression were both reduced in C5ar2 -/- macrophages, combined with our previous study of reduced chemokines and cytokines expression in C5ar2 -/- peritoneal macrophages, indicating that C5aR2 in macrophages may cooperate with C5aR1 inflammatory signals. Our article found C5aR2 deficiency lessened C5aR1 distribution and expression in neutrophils and macrophages with different functions, indicating C5aR2 might function differently in different cells.
Asunto(s)
Macrófagos , Neutrófilos , Peritonitis , Receptor de Anafilatoxina C5a , Animales , Ratones , Complemento C5a/metabolismo , Complemento C5a/inmunología , Modelos Animales de Enfermedad , Inmunidad Innata , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/metabolismo , Peritonitis/inmunología , Receptor de Anafilatoxina C5a/metabolismo , Receptor de Anafilatoxina C5a/genéticaRESUMEN
The immunosuppressive microenvironment is a vital factor for the hepatocellular carcinoma (HCC) progression. However, effective treatment is lacking at current. Shenlian decoction (SLD) is a registered herbal therapy for the HCC treatment, but the underlying mechanism of SLD remains largely elusive. Here, we aimed to explore the anti-tumor effect of SLD in the treatment of HCC. SLD was intragastrically given after the tumor initiation in ß-catenin/C-Met or DEN and CCl4 induced HCC mouse model. The tumor growth levels were evaluated by liver weight and histological staining. The tumor-infiltrating immune cells were detected by immunological staining and flow cytometry. The mechanism of the SLD was detected by non-targeted proteomics and verified by a cell co-culture system. The result showed that SLD significantly attenuated HCC progression. SLD promoted macrophage infiltration and increased the M1/M2 macrophage ratio within the tumor tissues. Non-targeted proteomics showed the inhibition of complement C5/C5a signaling is the key mechanism of SLD. Immunological staining showed SLD inhibited C5/C5a expression and C5aR1+ macrophage infiltration. The suggested mechanism was demonstrated by application of C5aR1 inhibitor, PMX-53 in mouse HCC model. Hepatoma cell-macrophage co-culture showed SLD targeted hepatoma cells and inhibited the supernatant-induced macrophage M2 polarization. SLD inhibited AMPK/p38 signaling which is an upstream mechanism of C5 transcription. In conclusion, we found SLD relieved immune-suppressive environment by inhibiting C5 expression. SLD could suppress the C5 secretion in hepatoma cells via inhibition of AMPK/p38 signaling. We suggested that SLD is a potential herbal therapy for the treatment of HCC by alleviating immune-suppressive status.
Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Macrófagos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Regulación hacia Arriba/efectos de los fármacos , Ratones Endogámicos C57BL , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Humanos , Complemento C5a/metabolismo , Técnicas de CocultivoRESUMEN
Statins are used to treat hypercholesterolemia and function by inhibiting the production of the rate-limiting metabolite mevalonate. As such, statin treatment not only inhibits de novo synthesis of cholesterol but also isoprenoids that are involved in prenylation, the posttranslational lipid modification of proteins. The immunomodulatory effects of statins are broad and often conflicting. Previous work demonstrated that statins increased survival and inhibited myeloid cell trafficking in a murine model of sepsis, but the exact mechanisms underlying this phenomenon were unclear. Herein, we investigated the role of prenylation in chemoattractant responses. We found that simvastatin treatment abolished chemoattractant responses induced by stimulation by C5a and FMLP. The inhibitory effect of simvastatin treatment was unaffected by the addition of either farnesyl pyrophosphate (FPP) or squalene but was reversed by restoring geranylgeranyl pyrophosphate (GGPP). Treatment with prenyltransferase inhibitors showed that the chemoattractant response to both chemoattractants was dependent on geranylgeranylation. Proteomic analysis of C15AlkOPP-prenylated proteins identified several geranylgeranylated proteins involved in chemoattractant responses, including RHOA, RAC1, CDC42, and GNG2. Chemoattractant responses in THP-1 human macrophages were also geranylgeranylation dependent. These studies provide data that help clarify paradoxical findings on the immunomodulatory effects of statins. Furthermore, they establish the role of geranylgeranylation in mediating the morphological response to chemoattractant C5a.NEW & NOTEWORTHY The immunomodulatory effect of prenylation is ill-defined. We investigated the role of prenylation on the chemoattractant response to C5a. Simvastatin treatment inhibits the cytoskeletal remodeling associated with a chemotactic response. We showed that the chemoattractant response to C5a was dependent on geranylgeranylation, and proteomic analysis identified several geranylgeranylated proteins that are involved in C5a receptor signaling and cytoskeletal remodeling. Furthermore, they establish the role of geranylgeranylation in mediating the response to chemoattractant C5a.
Asunto(s)
Fosfatos de Poliisoprenilo , Fosfatos de Poliisoprenilo/farmacología , Fosfatos de Poliisoprenilo/metabolismo , Humanos , Simvastatina/farmacología , Factores Quimiotácticos/farmacología , Factores Quimiotácticos/metabolismo , Fagocitos/efectos de los fármacos , Fagocitos/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Complemento C5a/metabolismo , Prenilación de Proteína/efectos de los fármacos , Animales , Ratones , SesquiterpenosRESUMEN
The potent angiogenesis inhibitor known as human plasminogen Kringle 5 has shown promise in the treatment of vascular disorders and malignancies. The study aimed to investigate the recognition and interaction between Kringle 5 and the A2M domain of human complement component C5 using bio-specific methodologies and molecular dynamics (MD) simulation. Initially, the specific interaction between Kringle 5 and A2M was confirmed and characterized through Ligand Blot and ELISA, yielding the dissociation constant (Kd) of 1.70 × 10-7 mol/L. Then, Kringle 5 showcased a dose-dependent inhibition of the production of C5a in lung cancer A549 cells, consequently impeding their proliferation and migration. Following the utilization of frontal affinity chromatography (FAC), it was revealed that there exists a singular binding site with the binding constant (Ka) of 3.79 × 105 L/mol. Following the implementation of homology modeling and MD optimization, the detailed results indicate that only a specific segment of the N-terminal structure of the A2M molecule engages in interaction with Kringle 5 throughout the binding process and the principal driving forces encompass electrostatic force, hydrogen bonding, and van der Waals force. In conclusion, the A2M domain of human complement C5 emerges as a plausible binding target for Kringle 5 in vivo.
Asunto(s)
Simulación de Dinámica Molecular , Plasminógeno , Unión Proteica , Humanos , Plasminógeno/química , Plasminógeno/metabolismo , Sitios de Unión , Complemento C5a/química , Complemento C5a/metabolismo , Células A549 , Dominios Proteicos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Fragmentos de PéptidosRESUMEN
Alzheimer's disease (AD) is characterized by abnormal inflammatory responses, and complement C5a (C5a) is known to initiate inflammation. This study aimed to investigate the associations between serum C5a, inflammatory responses, and cognitive function in AD patients. A total of 242 AD patients and 132 age-matched controls were included. Enzyme-linked immunosorbent assay revealed increased levels of C5a, interleukin (IL)-4, IL-6, IL-10, IL-1ß, and tumor necrosis factor (TNF)-α with advancing stages of AD. Pearson correlation coefficient and receiver operating characteristic curve revealed positive correlations between serum C5a levels, inflammatory cytokine levels, Neuropsychiatric Inventory (NPI) and Activities of Daily Living (ADL) scores, and negative correlations with Mini-mental State Examination (MMSE) and Montreal cognitive assessment (MoCA) scores. Serum C5a above 68.68 pg/mL could aid in the diagnosis of AD. Multivariable logistic analysis revealed that serum C5a was an independent risk factor for IL-1ß/IL-6/IL-10/TNF-α and an independent protective factor for IL-4. Higher serum C5a levels were associated with lower MMSE and MoCA scores. In conclusion, elevated serum C5a levels were beneficial for AD diagnosis and predictive of inflammation and cognitive dysfunction.
Asunto(s)
Enfermedad de Alzheimer , Complemento C5a , Humanos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/psicología , Femenino , Masculino , Anciano , Complemento C5a/análisis , Complemento C5a/metabolismo , Biomarcadores/sangre , Citocinas/sangre , Anciano de 80 o más Años , Persona de Mediana EdadRESUMEN
PURPOSE: Invasive candidiasis poses a life-threatening risk, and early prognosis assessment is vital for timely interventions to reduce mortality. Serum C5a levels have recently been linked to prognosis, but confirmation in cancer patients is pending. METHODS: We detected the concentrations of serum C5a in hospitalized cancer patients with invasive candidiasis from 2020 to 2023, and retrospectively analyzed the clinical data. RESULTS: 372 cases were included in this study, with a 90-day mortality rate of 21.8%. Candida albicans (48.7%) remained the predominant pathogen, followed by Candida glabrata (25.5%), Candida tropicalis (12.4%), and Candida parapsilosis (8.3%). Gastrointestinal cancer was the most diagnosed pathology type (37.6%). Serum C5a demonstrated a noteworthy correlation with 90-day mortality, and employing a cutoff value of 36.7 ng/ml revealed significantly higher 90-day mortality in low-C5a patients (41.2%) compared to high-C5a patients (6.3%) (p < 0.001). We also identified no source control, no surgery, metastasis, or chronic renal failure independently correlated with the 90-day mortality. Based on this, a prognostic model combining C5a and clinical parameters was constructed, which performed better than models built solely on C5a or clinical parameters. Furthermore, we weighted scores to each parameter in the model and presented diagnostic sensitivity and specificity corresponding to different score points calculated by the model. CONCLUSION: We constructed a prognostic scoring model including serum C5a and clinical parameters, which would contribute to precise prognosis assessment and benefit the outcome among cancer patients.
Asunto(s)
Candidiasis Invasiva , Complemento C5a , Neoplasias , Humanos , Femenino , Masculino , Pronóstico , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias/complicaciones , Candidiasis Invasiva/diagnóstico , Candidiasis Invasiva/mortalidad , Anciano , Complemento C5a/análisis , Adulto , Anciano de 80 o más AñosRESUMEN
IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.