Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Eur J Pharmacol ; 979: 176835, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032764

RESUMEN

BACKGROUND: Mini-chromosome maintenance protein 2 (MCM2) is a potential target for the development of cancer therapeutics. However, small molecule inhibitors targeting MCM2 need further investigation. METHODS: Molecular dynamics simulation was performed to identify active pockets in the MCM2 protein structure (6EYC). The active pocket was used as a docking model to discover MCM2 inhibitors by using structure-based virtual screening and surface plasmon resonance (SPR) assay. Furthermore, the efficacy of pixantrone targeting MCM2 in ovarian cancer was evaluated in vitro and in vivo. RESULTS: Pixantrone was identified as a novel inhibitor of MCM2 by virtual screening. SPR binding affinity analysis confirmed the direct binding of pixantrone to MCM2 protein. Pixantrone significantly reduced the viability of ovarian cancer cells A2780 and SKOV3 in a dose- and time-dependent manner. In addition, pixantrone inhibited DNA replication, and induced cell cycle arrest and apoptosis in ovarian cancer cells via targeting MCM2. Knockdown of MCM2 could attenuate the inhibitory activity of pixantrone in ovarian cancer cells. Furthermore, pixantrone significantly suppressed ovarian cancer growth in the A2780 cell xenograft mouse model and showed favorable safety. CONCLUSION: These findings suggest that pixantrone may be a promising drug for ovarian cancer patients by targeting MCM2 in the clinic.


Asunto(s)
Antineoplásicos , Apoptosis , Isoquinolinas , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Isoquinolinas/farmacología , Isoquinolinas/química , Isoquinolinas/uso terapéutico , Ratones Desnudos , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Sci Rep ; 14(1): 13906, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886545

RESUMEN

Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.


Asunto(s)
Proteínas Cdc20 , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Regulación Neoplásica de la Expresión Génica , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Ubiquitinación , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proliferación Celular/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Progresión de la Enfermedad , Movimiento Celular/genética
3.
Exp Cell Res ; 440(1): 114115, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844260

RESUMEN

The process of aging is characterized by structural degeneration and functional decline, as well as diminished adaptability and resistance. The aging kidney exhibits a variety of structural and functional impairments. In aging mice, thinning and graying of fur were observed, along with a significant increase in kidney indices compared to young mice. Biochemical indicators revealed elevated levels of creatinine, urea nitrogen and serum uric acid, suggesting impaired kidney function. Histological analysis unveiled glomerular enlargement and sclerosis, severe hyaline degeneration, capillary occlusion, lymphocyte infiltration, tubular and glomerular fibrosis, and increased collagen deposition. Observations under electron microscopy showed thickened basement membranes, altered foot processes, and increased mesangium and mesangial matrix. Molecular marker analysis indicated upregulation of aging-related ß-galactosidase, p16-INK4A, and the DNA damage marker γH2AX in the kidneys of aged mice. In metabolomics, a total of 62 significantly different metabolites were identified, and 10 pathways were enriched. We propose that citrulline, dopamine, and indoxyl sulfate have the potential to serve as markers of kidney damage related to aging in the future. Phosphoproteomics analysis identified 6656 phosphosites across 1555 proteins, annotated to 62 pathways, and indicated increased phosphorylation at the Ser27 site of Minichromosome maintenance complex component 2 (Mcm2) and decreased at the Ser284 site of heterogeneous nuclear ribonucleoprotein K (hnRNP K), with these modifications being confirmed by western blotting. The phosphorylation changes in these molecules may contribute to aging by affecting genome stability. Eleven common pathways were detected in both omics, including arginine biosynthesis, purine metabolism and biosynthesis of unsaturated fatty acids, etc., which are closely associated with aging and renal insufficiency.


Asunto(s)
Envejecimiento , Inestabilidad Genómica , Riñón , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Animales , Envejecimiento/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Inestabilidad Genómica/genética , Ratones , Fosforilación , Riñón/metabolismo , Riñón/patología , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Ratones Endogámicos C57BL , Masculino , Metabolómica/métodos , Daño del ADN , Multiómica
4.
Proc Natl Acad Sci U S A ; 121(20): e2400610121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713623

RESUMEN

Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Proteínas de Saccharomyces cerevisiae , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Histonas/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN Polimerasa Dirigida por ADN/metabolismo
5.
Mol Carcinog ; 63(8): 1599-1610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38818892

RESUMEN

Osteosarcoma (OS) is a common primary malignant bone tumor, and it is necessary to further investigate the molecular mechanism of OS progression. The expression of kinetochore associated protein 1 (KNTC1) and minichromosome maintenance 2 (MCM2) was detected by immunohistochemistry, quantitative PCR (qPCR) and Western blot. Gene knockdown or overexpression cell models were constructed and the proliferation, apoptosis, cell cycle and migration were detected in vitro, besides, xenograft models were established to explore the effects of KNTC1 downregulation in vivo. Public databased and bioinformatics analysis were performed to screen the downstream molecules and determine the expression of MCM2 in cancers. KNTC1 was overexpressed in OS tissues and positively correlated with overall survival of OS patients. KNTC1 knockdown inhibited the proliferation and migration, and arrested G2 phase, and induced apoptosis. Besides, KNTC1 downregulation restricted the xenograft tumor formation. MCM2, one of the coexpressed genes, was highly expressed in sarcoma and downregulated after KNTC1 knockdown. MCM2 overexpression heightened the proliferation and migration ability of OS cells, which was reversed the inhibiting effects of KNTC1 knockdown. KNTC1 was overexpressed in OS and promoted the progression of OS by upregulating MCM2.


Asunto(s)
Apoptosis , Neoplasias Óseas , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Osteosarcoma , Animales , Femenino , Humanos , Masculino , Ratones , Apoptosis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/genética , Osteosarcoma/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
EMBO J ; 43(11): 2166-2197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600242

RESUMEN

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.


Asunto(s)
Proteína A Centromérica , Inestabilidad Cromosómica , Histonas , Humanos , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Histonas/metabolismo , Histonas/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Células HeLa , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Centrómero/metabolismo
8.
BMC Cancer ; 24(1): 319, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454443

RESUMEN

BACKGROUND: A high expression pattern of minichromosome maintenance 2 (MCM2) has been observed in various cancers. MCM2 is a protein involved in the cell cycle and plays a role in cancer growth and differentiation by binding to six members of the MCM subfamily. The MCM protein family includes MCM2 through MCM7. METHODS: MCM2 has shown high expression in both lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). We investigated the characteristics of CSCs and the regulation of the epithelial-to-mesenchymal transition (EMT) phenomenon in LCSCs and GSCs by MCM2. Additionally, we explored secreted factors regulated by MCM2. RESULTS: There was a significant difference in survival rates between lung cancer patients and brain cancer patients based on MCM2 expression. MCM2 was found to regulate both markers and regulatory proteins in LCSCs. Moreover, MCM2 is thought to be involved in cancer metastasis by regulating cell migration and invasion, not limited to lung cancer but also identified in glioma. Among chemokines, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be regulated by MCM2. CONCLUSIONS: MCM2 not only participates in the cell cycle but also affects cancer cell growth by regulating the external microenvironment to create a favorable environment for cells. MCM2 is highly expressed in malignant carcinomas, including CSCs, and contributes to the malignancy of various cancers. Therefore, MCM2 may represent a crucial target for cancer therapeutics.


Asunto(s)
Neoplasias Pulmonares , Proteínas de Mantenimiento de Minicromosoma , Humanos , Quimiocina CXCL1 , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas , Células Madre Neoplásicas/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Ciclo Celular/genética , Microambiente Tumoral
9.
Biotechnol J ; 19(2): e2300560, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403459

RESUMEN

Tamoxifen (TAM) resistance is finally developed in over 40% of patients with estrogen receptor α-positive breast cancer (ERα+ -BC), documenting that discovering new molecular subtype is needed to confer perception to the heterogeneity of ERα+ -BC. We obtained representative gene sets subtyping ERα+ -BC using gene set variation analysis (GSVA), non-negative matrix factorization (NMF), and COX regression methods on the basis of METABRIC, TCGA, and GEO databases. Furthermore, the risk score of ERα+ -BC subtyping was established using least absolute shrinkage and selection operator (LASSO) regression on the basis of genes in the representative gene sets, thereby generating the two subtypes of ERα+ -BC. We further found that minichromosome maintenance complex component 2 (MCM2) functioned as the hub gene subtyping ERα+ -BC using GO, KEGG, and MCODE. MCM2 expression was capable for specifically predicting 1-year overall survival (OS) of ERα+ -BC and correlated with T stage, AJCC stage, and tamoxifen (TAM) sensitivity of ERα+ -BC. The downregulation of MCM2 expression inhibited proliferation, migration, and invasion of TAM-resistant cells and promoted G0/G1 arrest. Altogether, tamoxifen resistance entails that MCM2 is a hub gene subtyping ERα+ -BC, providing a novel dimension for discovering a potential target of TAM-resistant BC.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Tamoxifeno , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Células MCF-7 , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Tamoxifeno/farmacología
10.
Cancer Lett ; 578: 216460, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37863352

RESUMEN

Coiled-Coil Domain-Containing (CCDC) is a large class of structural proteins containing left-handed supercoiled structure. The clinical value and the functional implication of CCDC in colorectal cancer (CRC) remain unknown. Based on the genetic, transcriptional, and clinical data from The Cancer Genome Atlas, five of thirty-six CCDC proteins were differentially expressed in the CRC and associated with the survival of patients with CRC. A CCDC-score model was established to evaluate the prognosis of patients. The potential function of Coiled-Coil Domain-Containing 154 (CCDC154) was investigated using bioinformatical methods, which unveiled that high expression of CCDC154 indicates poor survival for patients with CRC and correlates with low infiltration of CD8+ T cells and high infiltration of neutrophils, indicating that CCDC154 enhances tumor growth and metastasis. CCDC154 interacts with Minichromosome Maintenance Complex Component 2 (MCM2) protein and promotes malignant phenotype via MCM2. We validated the expression level and survival prediction value of CCDC154 in clinical samples, and analyzed its co-expression of MCM2, Ki-67 and p53. This work discloses the role of CCDC in clinical setting and CCDC154 functions in CRC.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Colorrectales , Humanos , Linfocitos T CD8-positivos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Pronóstico
11.
Toxicol Appl Pharmacol ; 477: 116697, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37734572

RESUMEN

Arsenic exposure is associated with an increased risk of many cancers, and epigenetic mechanisms play a crucial role in arsenic-mediated carcinogenesis. Our previous studies have shown that arsenic exposure induces polyadenylation of H3.1 mRNA and inhibits the deposition of H3.3 at critical gene regulatory elements. However, the precise underling mechanisms are not yet understood. To characterize the factors governing arsenic-induced inhibition of H3.3 assembly through H3.1 mRNA polyadenylation, we utilized mass spectrometry to identify the proteins, especially histone chaperones, with reduced binding affinity to H3.3 under conditions of arsenic exposure and polyadenylated H3.1 mRNA overexpression. Our findings reveal that the interaction between H3.3 and the histone chaperon protein MCM2 is diminished by both polyadenylated H3.1 mRNA overexpression and arsenic treatment in human lung epithelial BEAS-2B cells. The increased binding of MCM2 to H3.1, resulting from elevated H3.1 protein levels, appears to contribute to the reduced availability of MCM2 for H3.3. To further investigate the role of MCM2 in H3.3 deposition during arsenic exposure and H3.1 mRNA polyadenylation, we overexpressed MCM2 in BEAS-2B cells overexpressing polyadenylated H3.1 or exposed to arsenic. Our results demonstrate that MCM2 overexpression attenuates H3.3 depletion at several genomic loci, suggesting its involvement in the arsenic-induced displacement of H3.3 mediated by H3.1 mRNA polyadenylation. These findings suggest that changes in the association between histone chaperone MCM2 and H3.3 due to polyadenylation of H3.1 mRNA may play a pivotal role in arsenic-induced carcinogenesis.


Asunto(s)
Arsénico , Humanos , Arsénico/toxicidad , Arsénico/química , Chaperonas de Histonas/genética , Carcinogénesis , Genómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/química , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo
12.
Aging (Albany NY) ; 15(14): 7008-7022, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480569

RESUMEN

BACKGROUND: Gallbladder carcinoma is a malignant epithelial tumor of gallbladder with a high degree of malignancy. However, relationship between KNTC1 and MCM2 and gallbladder cancer is unclear. METHODS: GSE139682 and GSE202479 were downloaded from gene expression omnibus (GEO). Differentially expressed genes (DEGs) were screened. Functional enrichment analysis and gene set enrichment analysis (GSEA) were performed. Protein-protein interaction (PPI) Network was constructed and analyzed. Gene expression heat map was drawn. Comparative toxicogenomics database (CTD) analysis was performed to find diseases most related to core genes. TargetScan was performed for screening miRNAs that regulated central DEGs. RESULTS: 230 DEGs were identified. According to GObp analysis, they were mainly concentrated in regulation of ossification, regulation of spindle microtubule and centromere attachment, cytoskeleton tissue of cortical actin. According to GOcc analysis, they are mainly concentrated in plasma membrane part, cell junction, plasma membrane region and anterior membrane. According to GOmf analysis, they are mainly enriched in protein homodimerization activity, proximal promoter sequence-specific DNA binding and sulfur compound binding. KEGG showed that target genes were mainly enriched in Hippo signal pathway, p53 signal pathway and cancer pathway. KIFC2, TUBG1, RACGAP1, CHMP4C, SFN and MYH11 were identified as core genes. Gene expression heat map showed that KNTC1, MCM2, CKAP2, RACGAP1, CCNB1 were highly expressed in gallbladder carcinoma samples. CTD analysis showed that KNTC1, MCM2, CKAP2, RACGAP1, CCNB1 were associated with head and neck squamous cell carcinoma, necrosis, inflammation and hepatomegaly. CONCLUSIONS: KNTC1 and MCM2 are highly expressed in gallbladder cancer. Higher expression level correlates with worse prognosis.


Asunto(s)
Neoplasias de la Vesícula Biliar , Neoplasias de Cabeza y Cuello , Humanos , Perfilación de la Expresión Génica , Neoplasias de la Vesícula Biliar/genética , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas/genética , Neoplasias de Cabeza y Cuello/genética , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo
13.
Hematology ; 28(1): 2227489, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37358551

RESUMEN

OBJECTIVE: Acute myeloid leukemia (AML) is a common blood cancer associated with poor prognosis and high mortality. In this study, we investigated the role and underlying mechanism of action of circ_0104700 in the pathogenesis of AML. METHODS: Circ_0104700 was screened from the GEO database and detected in AML samples and cell lines. The effect of circ_0104700 on AML was analyzed using a methylcellulose colony assay, CCK-8 assay, and cell cycle and apoptosis analyses. The mechanism was explored using bioinformatic analysis, quantitative reverse transcription-PCR, dual-luciferase reporter assays, northern blotting and western blot analysis in AML cells. RESULTS: Circ_0104700 expression was higher in AML patients and AML cell lines. Functionally, circ_0104700 depletion attenuated cell viability and induced apoptosis in MV-4-11 and Kasumi-1 cells. Circ_0104700 depletion enhanced the G0/G1-phase proportion but reduced the proportion of S-phase cells in MV-4-11 and Kasumi-1 cells. circ_0104700 served as a competing endogenous RNA of miR-665 and enhanced MCM2 expression by sponging miR-665 in MV-4-11 and Kasumi-1 cells. Silencing circ_0104700 repressed the proliferation and cell cycle and induced apoptosis of MV-4-11 and Kasumi-1 cells by inhibiting miR-665. MCM2 depletion alleviated the proliferation and cell cycle and enhanced the apoptosis of MV-4-11 and Kasumi-1 cells by inactivating JAK/STAT signaling. JAK/STAT signaling was involved in circ_0104700-mediated malignant phenotypes of MV-4-11 and Kasumi-1 cells. CONCLUSION: circ_0104700 contributed to AML progression by enhancing MCM2 expression by targeting miR-665. Our findings provide novel potential therapeutic targets for AML, including circ_0104700, miR-665, and MCM2.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Componente 2 del Complejo de Mantenimiento de Minicromosoma , ARN Circular , Humanos , ARN Circular/metabolismo , Leucemia Mieloide Aguda/metabolismo , MicroARNs/metabolismo , Silenciador del Gen , Proliferación Celular , Ciclo Celular , Apoptosis , Línea Celular Tumoral , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo
14.
Science ; 380(6643): 382-387, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104614

RESUMEN

Replication fork reversal safeguards genome integrity as a replication stress response. DNA translocases and the RAD51 recombinase catalyze reversal. However, it remains unknown why RAD51 is required and what happens to the replication machinery during reversal. We find that RAD51 uses its strand exchange activity to circumvent the replicative helicase, which remains bound to the stalled fork. RAD51 is not required for fork reversal if the helicase is unloaded. Thus, we propose that RAD51 creates a parental DNA duplex behind the helicase that is used as a substrate by the DNA translocases for branch migration to create a reversed fork structure. Our data explain how fork reversal happens while maintaining the helicase in a position poised to restart DNA synthesis and complete genome duplication.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Recombinasa Rad51 , Proteínas Portadoras/metabolismo , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Humanos , Células HCT116 , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Xenopus
15.
Int J Biol Sci ; 19(3): 916-935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778110

RESUMEN

The mechanisms of self-renewal and pluripotency maintenance of human pluripotent stem cells (hPSCs) have not been fully elucidated, especially for the role of those poorly characterized long noncoding RNAs (lncRNAs). ESRG is a lncRNA highly expressed in hPSCs, and its functional roles are being extensively explored in the field. Here, we identified that the transcription of ESRG can be directly regulated by OCT4, a key self-renewal factor in hPSCs. Knockdown of ESRG induces hPSC differentiation, cell cycle arrest, and apoptosis. ESRG binds to MCM2, a replication-licensing factor, to sustain its steady-state level and nuclear location, safeguarding error-free DNA replication. Further study showed that ESRG knockdown leads to MCM2 abnormalities, resulting in DNA damage and activation of the p53 pathway, ultimately impairs hPSC self-renewal and pluripotency, and induces cell apoptosis. In summary, our study suggests that ESRG, as a novel target of OCT4, plays an essential role in maintaining the cell survival and self-renewal/pluripotency of hPSCs in collaboration with MCM2 to suppress p53 signaling. These findings provide critical insights into the mechanisms underlying the maintenance of self-renewal and pluripotency in hPSCs by lncRNAs.


Asunto(s)
Componente 2 del Complejo de Mantenimiento de Minicromosoma , Células Madre Pluripotentes , ARN Largo no Codificante , Proteína p53 Supresora de Tumor , Humanos , Diferenciación Celular/genética , Supervivencia Celular/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Células Madre Pluripotentes/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769104

RESUMEN

Hypoxia impairs blood-brain barrier (BBB) structure and function, causing pathophysiological changes in the context of stroke and high-altitude brain edema. Brain microvascular endothelial cells (BMECs) are major structural and functional elements of the BBB, and their exact role in hypoxia remains unknown. Here, we first deciphered the molecular events that occur in BMECs under 24 h hypoxia by whole-transcriptome sequencing assay. We found that hypoxia inhibited BMEC cell cycle progression and proliferation and downregulated minichromosome maintenance complex component 2 (Mcm2) expression. Mcm2 overexpression attenuated the inhibition of cell cycle progression and proliferation caused by hypoxia. Then, we predicted the upstream miRNAs of MCM2 through TargetScan and miRanDa and selected miR-212-3p, whose expression was significantly increased under hypoxia. Moreover, the miR-212-3p inhibitor attenuated the inhibition of cell cycle progression and cell proliferation caused by hypoxia by regulating MCM2. Taken together, these results suggest that the miR-212-3p/MCM2 axis plays an important role in BMECs under hypoxia and provide a potential target for the treatment of BBB disorder-related cerebrovascular disease.


Asunto(s)
Células Endoteliales , MicroARNs , Humanos , Células Endoteliales/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Encéfalo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , División Celular , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia de la Célula/genética
17.
Nucleic Acids Res ; 51(5): 2298-2318, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36807739

RESUMEN

An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.


Asunto(s)
Diabetes Mellitus , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Neoplasias , Receptor para Productos Finales de Glicación Avanzada , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
18.
Mol Med ; 28(1): 128, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36303105

RESUMEN

BACKGROUND: Aberrant DNA replication is the main source of genomic instability that leads to tumorigenesis and progression. MCM2, a core subunit of eukaryotic helicase, plays a vital role in DNA replication. The dysfunction of MCM2 results in the occurrence and progression of multiple cancers through impairing DNA replication and cell proliferation. CONCLUSIONS: MCM2 is a vital regulator in DNA replication. The overexpression of MCM2 was detected in multiple types of cancers, and the dysfunction of MCM2 was correlated with the progression and poor prognoses of malignant tumors. According to the altered expression of MCM2 and its correlation with clinicopathological features of cancer patients, MCM2 was thought to be a sensitive biomarker for cancer diagnosis, prognosis, and chemotherapy response. The anti-tumor effect induced by MCM2 inhibition implies the potential of MCM2 to be a novel therapeutic target for cancer treatment. Since DNA replication stress, which may stimulate anti-tumor immunity, frequently occurs in MCM2 deficient cells, it also proposes the possibility that MCM2 targeting improves the effect of tumor immunotherapy.


Asunto(s)
Replicación del ADN , Neoplasias , Humanos , Neoplasias/genética , Proliferación Celular , Transformación Celular Neoplásica , Proteínas de Ciclo Celular/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo
19.
Sci Rep ; 12(1): 9700, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690672

RESUMEN

Vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex that regulates endosomal trafficking in eukaryotic cells. Recent studies have shown that VPS35 promotes tumor cell proliferation and affects the nuclear accumulation of its interacting partner. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to measure the changes in nuclear protein abundance in VPS35-depleted HeLa cells. A total of 47 differentially expressed proteins were identified, including 27 downregulated and 20 upregulated proteins. Gene ontology (GO) analysis showed that the downregulated proteins included several minichromosome maintenance (MCM) proteins described as cell proliferation markers, and these proteins were present in the MCM2-7 complex, which is essential for DNA replication. Moreover, we validated that loss of VPS35 reduced the mRNA and protein expression of MCM2-7 genes. Notably, re-expression of VPS35 in VPS35 knockout HeLa cells rescued the expression of these genes. Functionally, we showed that VPS35 contributes to cell proliferation and maintenance of genomic stability of HeLa cells. Therefore, these findings reveal that VPS35 is involved in the regulation of MCM2-7 gene expression and establish a link between VPS35 and cell proliferation.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteómica , Proteínas de Transporte Vesicular , Endosomas/metabolismo , Células HeLa , Humanos , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo
20.
Mol Biol Rep ; 49(9): 8349-8357, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35733063

RESUMEN

BACKGROUND: WASHC1 is a member of the Wiskott-Aldrich syndrome protein (WASP) family and is involved in endosomal protein sorting and trafficking through the generation of filamentous actin (F-actin) via activation of the Arp2/3 complex. There is increasing evidence that WASHC1 is present in the nucleus and nuclear WASHC1 plays important roles in regulating gene transcription, DNA repair as well as maintaining nuclear organization. However, the multi-faceted functions of nuclear WASHC1 still need to be clarified. METHODS AND RESULTS: We show here that WASHC1 interacts with several components of the minichromosome maintenance (MCM) 2-7 complex by using co-immunoprecipitation and in situ proximity ligation assay. WASHC1-depleted cells display normal DNA replication and S-phase progression. However, loss of WASHC1 sensitizes HeLa cells to DNA replication inhibitor hydroxyurea (HU) and increases chromosome instability of HeLa and 3T3 cells under condition of HU-induced replication stress. Re-expression of nuclear WASHC1 in WASHC1KO 3T3 cells rescues the deficiency of WASHC1KO cells in the chromosomal stability after HU treatment. Moreover, chromatin immunoprecipitation assay indicates that WASHC1 associates with DNA replication origins, and knockdown of WASHC1 inhibits MCM protein loading at origins. CONCLUSIONS: Since efficient loading of excess MCM2-7 complexes is required for cells to survive replicative stress, these results demonstrate that WASHC1 promotes cell survival and maintain chromosomal stability under replication stress through recruitment of excess MCM complex to origins.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Animales , Proteínas de Ciclo Celular/genética , Supervivencia Celular , Inestabilidad Cromosómica , Células HeLa , Humanos , Ratones , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...