Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 813
Filtrar
1.
J Environ Manage ; 368: 122169, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128354

RESUMEN

Nitrogen, phosphorus and potassium are essential for crop growth, which are abundant in urine. Although numerous studies have developed techniques to recover ammonium and phosphorus from urine, limited research made efforts on the recovery of potassium, which is a non-renewable resource with uneven global distribution. In this study, we explored the possibility of zeolite based mixed matrix membranes (MMMs) to selectively recover ammonium and potassium from urine, with minimal detention of sodium. The findings demonstrated that upon the pre-treatment of zeolites with sodium chloride solution, a 70 wt% zeolite loaded MMM could achieve 69.3 % recovery of potassium and almost full recovery of ammonium. By varying the desorption temperatures and MMMs production process, it was discovered that stepwise backwash at low temperature (276 K) greatly lowered sodium recovery whilst simultaneously enhancing the recovery of potassium and ammonium. This study demonstrates the potential of recovering potassium and ammonium from urine using zeolite-loaded MMMs, coupled with achieving low-sodium recovery.


Asunto(s)
Compuestos de Amonio , Potasio , Zeolitas , Zeolitas/química , Potasio/orina , Potasio/química , Compuestos de Amonio/química , Orina/química , Fósforo/química , Sodio/orina , Sodio/química
2.
Org Biomol Chem ; 22(34): 6999-7005, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39118586

RESUMEN

Despite the remarkable developments of the Ugi reaction and its variants, the use of ammonia in the Ugi reaction has long been recognized as impractical and unsuccessful. Indeed, the ammonia-Ugi reaction often requires harsh reaction conditions, such as heating and microwave irradiation, and competes with the Passerini reaction, thereby resulting in low yields. This study describes a robust and practical ammonia-Ugi reaction protocol. Using originally prepared ammonium carboxylates in trifluoroethanol, the ammonia-Ugi reaction proceeded at room temperature in high yields and showed a broad substrate scope, thus synthesizing a variety of α,α-disubstituted amino acid derivatives, including unnatural dipeptides. The reaction required no condensing agents and proceeded without racemization of the chiral stereocenter of α-amino acids. Furthermore, using this protocol, we quickly synthesized a novel dipeptide, D-Leu-Aic-NH-CH2Ph(p-F), which exhibited a potent inhibitory activity against α-chymotrypsin with a Ki value of 0.091 µM.


Asunto(s)
Aminoácidos , Amoníaco , Dipéptidos , Dipéptidos/química , Dipéptidos/síntesis química , Amoníaco/química , Aminoácidos/química , Aminoácidos/síntesis química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntesis química , Compuestos de Amonio/química , Quimotripsina/antagonistas & inhibidores , Quimotripsina/química , Estructura Molecular , Técnicas de Química Sintética
3.
Water Environ Res ; 96(7): e11075, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982895

RESUMEN

Partial nitritation (PN) is a novel treatment for nitrogen removal using aerobic ammonium oxidation with reduced oxygen requirements compared to conventional nitrification. This study evaluated the performance of the PN process and the factors influencing nitrogen removal from landfill leachate. During the reactivation of biomass, the results showed 70% ammonium removal, but only 20% total nitrogen removal. Further analysis showed that low nitrite accumulation and high nitrate production promoted the growth of nitrite-oxidizing bacteria (NOB). The ammonium removal activity after soaking the cultivated biomass in synthetic water and leachate was measured to be 0.57, 0.1, 0.17, and 0.25 g N•g VSS-1•d-1 for synthetic wastewater and leachate soaking for synthetic wastewater, 12 h, 3 days, and 7 days, respectively. The study found abundant ammonium-oxidizing bacteria (AOB) and NOBs in biomass soaked in synthetic wastewater. However, soaking in leachate promoted AOB growth and inhibited NOB growth making leachate suitable for PN. PRACTITIONER POINTS: The study found that with a longer leachate-soaking period for biomass, ammonium removal activity increases, which in turn increases ammonium conversions during the PN process. Ammonium-oxidizing bacteria (AOB) can acclimate to landfill leachate substrate and grow with a longer soaking period. Nitrite-oxidizing bacteria (NOB) were inhibited by landfill leachate substrate, which is beneficial for nitrite accumulation. Anabolized DO can convert nitrite to nitrate rapidly, which results in higher nitrate accumulation compared to nitrite accumulation. Hence, the DO level has to be sufficiently low to prevent nitrite oxidation and nitrate accumulation.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Oxidación-Reducción , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Compuestos de Amonio/metabolismo , Compuestos de Amonio/química , Bacterias/metabolismo , Nitrificación , Eliminación de Residuos Líquidos/métodos , Nitritos/metabolismo , Nitritos/química
4.
J Environ Manage ; 366: 121712, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003898

RESUMEN

This work describes a comprehensive assessment of operating parameters of a bench-scale electrodialysis (ED) plant for nutrient concentration from an Anaerobic Membrane BioReactor (AnMBR) effluent. The ED bench-scale plant serves a dual purpose. Firstly, to generate a concentrated stream with a high nutrient content, and secondly, to produce high-quality reclaimed water in the diluted stream, both sourced from real wastewater coming from the effluent of an AnMBR. Two sets of experiments were conducted: 1) short-term experiments to study the effect of some parameters such as the applied current and the type of anionic exchange membrane (AEM), among others, and 2) a long-term experiment to verify the feasibility of the process using the selected parameters. The results showed that ED produced concentrated ammonium and phosphate streams using a 10-cell pair stack with 64 cm2 of unitary effective membrane area, working in galvanostatic mode at 0.24 A, and operating with an Acid-100-OT anionic exchange membrane. Concentrations up to 740 mg/L and 50 mg/L for NH4-N and PO4-P, respectively, were achieved in the concentrated stream along with removal efficiencies of 70% for ammonium and 60% for phosphate in the diluted stream. The average energy consumption was around 0.47 kWh·m-3.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Fosfatos/química , Nutrientes , Compuestos de Amonio/química , Anaerobiosis , Diálisis/métodos , Membranas Artificiales
5.
J Agric Food Chem ; 72(31): 17455-17464, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39072618

RESUMEN

We tested the ability of wood distillate (WD) to interact with urea in agricultural soil. WD is a sustainable material that has been addressed as a promising alternative to synthetic soil corroborants. However, there is little information about the effect of WD on the nitrogen cycle. In this study, soils with different amounts of WD and with/without urea were tested for ammonium, urease, nitrate/nitrite, and potential nitrification activity at different points in a 30 day time frame. High concentrations of WD (1-2%) inhibited the hydrolysis of urea and the oxidation of ammonium to nitrate. Thermal desorption coupled to GC-MS and high-performance liquid chromatography-tandem mass spectrometry characterization allowed us to reveal that WD-urea interactions mainly involve lignin-derived compounds in the distillate, such as catechol, resorcinol, and syringol. This study provides the first evidence of a strong interaction between WD and urea in soil that could be used to develop slow-release fertilizers.


Asunto(s)
Fertilizantes , Madera , Madera/química , Urea/química , Urea/metabolismo , Ureasa/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Nitrificación , Compuestos de Amonio/química
6.
Chemosphere ; 363: 142968, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074665

RESUMEN

The impact of the long-term trace hydrazine (N2H4) exogenous supplementation on activity of the anaerobic ammonium oxidation (anammox) biofilm was investigated in a moving bed biofilm reactor (MBBR) for mainstream wastewater treatment. The results of this study demonstrated that the addition of 2-5 mg/L N2H4 enhanced anammox biofilm activity, as evidenced by the augmented nitrogen removal rate (NRR), which increased from 113.4 g/(m3·d) to 126.7 g/(m3·d) with the introduction of 2 mg/L N2H4. However, a higher concentration of N2H4 (10 mg/L) suppressed anammox activity, leading to a reduced NRR of 91.5 g/(m3·d). Bioindicators revealed that the long-term addition of 2 mg/L N2H4 fostered the accumulation of anammox bacteria (AnAOB) biomass, elevating the volatile suspended solids (VSS) content by 12%. Moreover, the structural composition of extracellular polymeric substances (EPS) within the biofilm was altered, resulting in enhanced biofilm strength within the reactor. The protective mechanism of the biofilm was activated, and EPS secretion was stimulated by the continuous N2H4 supplementation. The introduction of an excess dosage of N2H4 led to alterations in the microbial communities, ultimately resulting in a decline in the performance of the reactor. These findings collectively illustrate that N2H4, as an intermediate product, can effectively enhance anammox activity within the MBBR for mainstream wastewater treatment. This study contributes to the understanding of the optimization strategies for anammox processes in wastewater treatment systems.


Asunto(s)
Biopelículas , Reactores Biológicos , Hidrazinas , Oxidación-Reducción , Eliminación de Residuos Líquidos , Aguas Residuales , Biopelículas/efectos de los fármacos , Reactores Biológicos/microbiología , Hidrazinas/farmacología , Hidrazinas/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Anaerobiosis , Compuestos de Amonio/química , Nitrógeno , Microbiota/efectos de los fármacos , Biomasa
7.
J Hazard Mater ; 474: 134793, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850954

RESUMEN

Progress in the development of biodegradable or biobased ionic liquids (ILs) has led to the design of green compounds for several applications. Herein, four biocompatible dicationic ionic liquids (DILs) with ammonium-phosphonium cations and amino acid anions were synthesized and investigated their environmental impact. The structures of the DILs were confirmed by spectral analyses (1H, 13C and 31P NMR). Furthermore, physicochemical properties such as density, viscosity and refractive index were determined. Water content, bromide content and solubility were thereafter determined as the parameters needed for further studies. Subsequently, their antifeedant activity towards economically important pests of grain in storage warehouses: the granary weevil, the confused flour beetle, and the khapra beetle was examined, showing the dependence on structure. Moreover, selected DILs were investigated for toxicity towards white mustard, Daphnia magna, and Artemia franciscana to specify the environmental impact. These studies were complemented by understand the biodegradation of DILs by bacterial communities derived from soil at the agricultural land. The result was DILs with limited environmental footprints that have great potential for further application studies.


Asunto(s)
Aminoácidos , Artemia , Daphnia , Líquidos Iónicos , Líquidos Iónicos/toxicidad , Líquidos Iónicos/química , Animales , Aminoácidos/química , Aminoácidos/análisis , Daphnia/efectos de los fármacos , Artemia/efectos de los fármacos , Compuestos de Amonio/química , Compuestos Organofosforados/química , Cationes , Aniones/química , Ambiente , Biodegradación Ambiental , Escarabajos/efectos de los fármacos
8.
Dent Mater J ; 43(4): 504-516, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825449

RESUMEN

The surface treatment of glass-ceramic-based materials, namely, lithium disilicate glass (IPS e.max CAD), feldspar porcelain (VITABLOCS Mark II), and a polymer-infiltrated ceramic network (VITA ENAMIC), using aqueous fluoride solutions and their influence on luting agent bonding were investigated. Six experimental aqueous fluoride solutions were applied to these materials, and their effects were assessed by surface topological analysis. The obtained results were compared using non-parametric statistical analyses. Ammonium hydrogen fluoride (AHF) etchant demonstrated the greatest etching effect. Subsequent experiments focused on evaluating different concentrations of the AHF etchant for the bonding pretreatment of glass-ceramic-based materials with a luting agent (PANAVIA V5). AHF, particularly at concentrations above 5 wt%, effectively roughened the surfaces of the materials and improved the bonding performance. Notably, AHF at a concentration of 30 wt% exhibited a more pronounced effect on both etching and bonding capabilities compared to hydrofluoric acid.


Asunto(s)
Cerámica , Diseño Asistido por Computadora , Porcelana Dental , Fluoruros , Ácido Fluorhídrico , Ensayo de Materiales , Propiedades de Superficie , Fluoruros/química , Cerámica/química , Porcelana Dental/química , Ácido Fluorhídrico/química , Recubrimiento Dental Adhesivo/métodos , Grabado Ácido Dental , Silicatos de Aluminio/química , Compuestos de Potasio/química , Compuestos de Amonio/química
9.
J Hazard Mater ; 476: 135070, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944986

RESUMEN

Dialkyldimethyl ammonium compound (DADMAC) is widely used in daily life as a typical disinfectant and often co-exists with the heavy metal zinc in sewage environments. This study investigated the effects of co-exposure to zinc (1 mg/L) and DADMAC (0.2-5 mg/L) on the performance, bacterial community, and resistance genes (RGs) in a partial sulfur autotrophic denitrification coupled with anaerobic ammonium oxidation (PSAD-Anammox) system in a sequencing batch moving bed biofilm reactor for 150 days. Co-exposure to zinc and low concentration (0.2 mg/L) DADMAC did not affect the nitrogen removal ability of the PASD-Anammox system, but increased the abundance and transmission risk of free RGs in water. Co-exposure to zinc and medium-to-high (2-5 mg/L) DADMAC led to fluctuations in and inhibition of nitrogen removal, which might be related to the enrichment of heterotrophic denitrifying bacteria dominated by Denitratisoma. Co-exposure to zinc and high concentration DADMAC (5 mg/L) stimulated the secretion of extracellular polymeric substances and increased the proliferation risk of intracellular RGs in sludge. This study provided insights into the application of PSAD-Anammox system and the ecological risks of wastewater containing zinc and DADMAC.


Asunto(s)
Procesos Autotróficos , Reactores Biológicos , Desnitrificación , Zinc , Zinc/química , Desnitrificación/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/química , Azufre/química , Biopelículas/efectos de los fármacos , Oxidación-Reducción , Genes Bacterianos/efectos de los fármacos , Compuestos de Amonio/química , Contaminantes Químicos del Agua/toxicidad , Nitrógeno/metabolismo , Anaerobiosis , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/efectos de los fármacos
10.
Sci Adv ; 10(23): eadm9441, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838143

RESUMEN

Unlike aquaporins or potassium channels, ammonium transporters (Amts) uniquely discriminate ammonium from potassium and water. This feature has certainly contributed to their repurposing as ammonium receptors during evolution. Here, we describe the ammonium receptor Sd-Amt1, where an Amt module connects to a cytoplasmic diguanylate cyclase transducer module via an HAMP domain. Structures of the protein with and without bound ammonium were determined to 1.7- and 1.9-Ångstrom resolution, depicting the ON and OFF states of the receptor and confirming the presence of a binding site for two ammonium cations that is pivotal for signal perception and receptor activation. The transducer domain was disordered in the crystals, and an AlphaFold2 prediction suggests that the helices linking both domains are flexible. While the sensor domain retains the trimeric fold formed by all Amt family members, the HAMP domains interact as pairs and serve to dimerize the transducer domain upon activation.


Asunto(s)
Compuestos de Amonio , Proteínas de Transporte de Catión , Compuestos de Amonio/metabolismo , Compuestos de Amonio/química , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Transducción de Señal , Modelos Moleculares , Sitios de Unión , Cristalografía por Rayos X , Dominios Proteicos , Unión Proteica , Secuencia de Aminoácidos
11.
J Environ Sci (China) ; 145: 180-192, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844318

RESUMEN

A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese (Mn2+) and ammonium (NH4+-N). Three different combinations of oxidants (KMnO4 and K2FeO4) and reductants (MnSO4 and FeCl2) were used during the start-up period. Filter R3 started up by KMnO4 and FeCl2 (Mn7+→MnOx) exhibited excellent catalytic property, and the NH4+-N and Mn2+ removal efficiency reached over 80% on the 10th and 35th days, respectively. Filter R1 started up by K2FeO4 and MnSO4 (MnOx←Mn2+) exhibited the worst catalytic property. Filter R2 started up by KMnO4 and MnSO4 (Mn7+→MnOx←Mn2+) were in between. According to Zeta potential results, the Mn-based oxides (MnOx) formed by Mn7+→MnOx performed the highest pHIEP and pHPZC. The higher the pHIEP and pHPZC, the more unfavorable the cation adsorption. However, it was inconsistent with its excellent Mn2+ and NH4+-N removal abilities, implying that catalytic oxidation played a key role. Combined with XRD and XPS analysis, the results showed that the MnOx produced by the reduction of KMnO4 showed early formation of buserite crystals, high degree of amorphous, high content of Mn3+ and lattice oxygen with the higher activity to form defects. The above results showed that MnOx produced by the reduction of KMnO4 was more conducive to the formation of active species for catalytic oxidation of NH4+-N and Mn2+ removal. This study provides new insights on the formation mechanisms of the active MnOx that could catalytic oxidation of NH4+-N and Mn2+.


Asunto(s)
Compuestos de Amonio , Filtración , Manganeso , Óxidos , Manganeso/química , Óxidos/química , Compuestos de Amonio/química , Filtración/métodos , Contaminantes Químicos del Agua/química , Permanganato de Potasio/química , Compuestos de Manganeso/química , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Compuestos de Potasio/química , Adsorción , Compuestos Férricos/química , Compuestos de Hierro
12.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893541

RESUMEN

Ammonium polyphosphate (APP), a pivotal constituent within environmentally friendly flame retardants, exhibits notable decomposition susceptibility and potentially engenders ecological peril. Consequently, monitoring the APP concentration to ensure product integrity and facilitate the efficacious management of wastewater from production processes is of great significance. A fluorescent assay was devised to swiftly discern APP utilizing 4',6'-diamino-2-phenylindole (DAPI). With increasing APP concentrations, DAPI undergoes intercalation within its structure, emitting pronounced fluorescence. Notably, the flame retardant JLS-PNA220-A, predominantly comprising APP, was employed as the test substrate. Establishing a linear relationship between fluorescence intensity (F-F0) and JLS-PNA220-A concentration yielded the equation y = 76.08x + 463.2 (R2 = 0.9992), with a LOD determined to be 0.853 mg/L. The method was used to assess the degradation capacity of APP-degrading bacteria. Strain D-3 was isolated, and subsequent analysis of its 16S DNA sequence classified it as belonging to the Acinetobacter genus. Acinetobacter nosocomialis D-3 demonstrated superior APP degradation capabilities under pH 7 at 37 °C, with degradation rates exceeding 85% over a four-day cultivation period. It underscores the sensitivity and efficacy of the proposed method for APP detection. Furthermore, Acinetobacter nosocomialis D-3 exhibits promising potential for remediation of residual APP through environmental biodegradation processes.


Asunto(s)
Acinetobacter , Biodegradación Ambiental , Polifosfatos , Acinetobacter/metabolismo , Acinetobacter/genética , Polifosfatos/metabolismo , Polifosfatos/química , Indoles/metabolismo , Indoles/química , Compuestos de Amonio/metabolismo , Compuestos de Amonio/química , Retardadores de Llama/metabolismo , Retardadores de Llama/análisis
13.
Chemosphere ; 361: 142526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851507

RESUMEN

The DEnitrifying AMmonium OXidation (DEAMOX) has been proven to be a promising process treating contaminated surface water containing ammonia and nitrate, while the enrichment of the slow-growing anammox bacteria (AnAOB) remains a challenge. In this study, a novel polyurethane-adhesion vermiculite/tourmaline (VTP) modified carrier was developed to achieve effective enrichment of AnAOB. The results demonstrated that the VTP-1 (vermiculite: tourmaline = 1:1) system exhibited the greatest performance with the total nitrogen removal efficiency reaching 87.6% and anammox contributing 63% to nitrogen removal. Scanning electron microscope analysis revealed the superior biofilm structure of the VTP-1 carrier, providing attachment for AnAOB. The addition of VTP-1 promoted the secretion of EPS (extracellular polymeric substances) by microorganisms, which increased to 85.34 mg/g VSS, contributing to the aggregation of anammox cells. The favorable substrate microenvironment created by NH4+ adsorption and NO2- supply via partial denitrification process facilitated the growth of AnAOB. The relative abundance of Candidatus Brocadia and Thauera increased from 0.04% to 0.3%-1.03% and 2.06% in the VTP-1 system, respectively. This study sheds new light on the anammox biofilm formation and provides a valid approach to initiate the DEAMOX process for low nitrogen polluted water treatment.


Asunto(s)
Silicatos de Aluminio , Compuestos de Amonio , Biopelículas , Desnitrificación , Oxidación-Reducción , Compuestos de Amonio/química , Silicatos de Aluminio/química , Bacterias/metabolismo , Nitrógeno/química , Contaminantes Químicos del Agua , Amoníaco/química , Nitratos
14.
Methods Mol Biol ; 2796: 23-34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38856893

RESUMEN

Solid-state NMR allows for the study of membrane proteins under physiological conditions. Here we describe a method for detection of bound ions in the selectivity filter of ion channels using solid-state NMR. This method employs standard 1H-detected solid-state NMR setup and experiment types, which is enabled by using 15N-labelled ammonium ions to mimic potassium ions.


Asunto(s)
Compuestos de Amonio , Canales Iónicos , Isótopos de Nitrógeno , Isótopos de Nitrógeno/análisis , Compuestos de Amonio/química , Compuestos de Amonio/análisis , Canales Iónicos/metabolismo , Canales Iónicos/química , Iones/química , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Resonancia Magnética/métodos
15.
J Environ Manage ; 360: 121167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749136

RESUMEN

Organic amendment substitutes mineral fertilizers has been proven to increase the organic matter content of soils, which in turn may induce phosphorus (P) mobilization by triggering the redox reaction. However, under flooded conditions according to local agricultural practices, as one of the factors restricting the decomposition of organic matter, the role ammonium plays in P transformation and leaching from soils with different organic matter remains unclear. To address the knowledge gap, the calcareous soils were collected from a long-term field trial (>13 years) containing two treatments with equal P inputs: a long-term mineral fertilization and a long-term organic amendment. Both long-term mineral fertilized soil and long-term organic amended soil were split into ammonium applications or no ammonium applications. A series of column devices were deployed to create flooded conditions and monitor the P leaching from the collected soils. The K-edge X-ray absorption near-edge structure and sequential extraction method were employed jointly to detect soil P fractions and speciation, and the P sorption/desorption characteristics of soil were evaluated by Langmuir fitting. The results showed a reduction of cumulative leached P from soils by 33.2%-43.3% after ammonium addition, regardless of previous long-term mineral fertilization or organic amendment history. A significant enhancement of soil labile P pool (indicated by the H2O-P fraction and NaHCO3-P fraction) after ammonium addition results in the reduction in soil P leaching. The reduced P sorption capacity coupled with the transformation from hydroxyapatite to ß-tricalcium phosphate indicated that the phosphate retention is attributed to the precipitation formation rather than phosphate sorption by soil. The present study highlights that the ammonium addition could affect the phosphate precipitation transformation. This may be attributed to the effect of ammonium addition on the calcium and magnesium ion content and molar ratio in this soil, thereby regulating the form of soil phosphate precipitation. The mechanisms revealed in this study can support developing optimized agricultural management practices to alleviate soil P loss.


Asunto(s)
Compuestos de Amonio , Fertilizantes , Inundaciones , Fósforo , Suelo , Fósforo/química , Suelo/química , Fertilizantes/análisis , Compuestos de Amonio/química , Minerales/química , Agricultura
16.
Environ Sci Technol ; 58(22): 9804-9814, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771927

RESUMEN

Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.


Asunto(s)
Compuestos de Amonio , Nitratos , Sulfuros , Nitratos/química , Compuestos de Amonio/química , Sulfuros/química , Hierro/química , Desnitrificación
17.
Bioresour Technol ; 403: 130837, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744397

RESUMEN

This study investigates the potential to connect nutrient flows between wastewater treatment and agriculture through a two-stage nitrogen (N) recovery system composed of high-rate activated sludge treatment in contact stabilisation mode (HRAS/CS) and column adsorption with zeolite. The HRAS/CS process removes organic matter and suspended solids in wastewater, leaving N behind in the effluent. The N was successfully recovered with the zeolite column under different scenarios, generating N and K-rich by-products. The regeneration effluent from the zeolite column with KCl contained 60-845 mg NH4+-N/L and 1.6-14.3 g K/L, having potential for use as fertigation water. The N-saturated zeolite contained 1.5-8.4 mg N/g and 14.3-19.3 mg K/g of the product fresh weight and low contaminant content, making it potentially eligible as various fertilising products. Adsorption can thus concentrate N from HRAS/CS effluent and produce by-products with potential agricultural value while meeting chemical oxygen demand and total nitrogen discharge standards.


Asunto(s)
Compuestos de Amonio , Fertilizantes , Nitrógeno , Aguas del Alcantarillado , Zeolitas , Zeolitas/química , Aguas del Alcantarillado/química , Adsorción , Nitrógeno/química , Compuestos de Amonio/química , Purificación del Agua/métodos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos
18.
Water Res ; 257: 121668, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692262

RESUMEN

Recovering ammonia nitrogen from wastewater is a sustainable strategy that simultaneously addresses both nitrogen removal and fertilizer production. Membrane electrochemical system (MES), which utilizes electrochemical redox reactions to transport ammonium ions through cation exchange membranes, has been considered as an effective technology for ammonia recovery from wastewater. In this study, we develop a mathematical model to systematically investigate the impact of co-existing ions on the transport of ammonium (NH4+) ions in MES. Our analysis elucidates the importance of pH values on both the NH4+ transport and inert ion (Na+) transport. We further comprehensively assess the system performance by varying the concentration of Na+ in the system. We find that while the inert cation in the initial anode compartment competes with NH4+ transport, NH4+ dominates the cation transport in most cases. The transport number of Na+ surpasses NH4+ only if the fraction of Na+ to total cation is extremely high (>88.5%). Importantly, introducing Na+ ions into the cathode compartment significantly enhances the ammonia transport due to the Donnan dialysis. The analysis of selective ion transport provides valuable insights into optimizing both selectivity and efficiency in ammonia recovery from wastewater.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Purificación del Agua , Compuestos de Amonio/análisis , Compuestos de Amonio/química , Purificación del Agua/métodos , Aguas Residuales/química , Técnicas Electroquímicas , Cationes/química , Intercambio Iónico , Modelos Teóricos , Concentración de Iones de Hidrógeno
19.
J Environ Radioact ; 276: 107441, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677042

RESUMEN

Residues generated from the uranium purification process, characterized by a high uranium content, pose a significant challenge for recovery through leaching and present a considerable environmental threat. After using XRD and SEM-mapping characterization analysis combined with the BCR continuous graded extraction test to analyze the content of different states of uranium, it was found that the main reason why the uranium in the residue was difficult to leach because it was encapsulated by SiO2 crystals. Using NH4HF2 as a leaching agent, a leaching study of uranium in the residue was carried out, and the results showed that the H+ and F- produced by NH4HF2could react with SiO2, destroying the crystal lattice of SiO2 and causing the encapsulated uranium to come into contact with the leaching agent, facilitating the leaching of uranium in the residue. The optimum conditions for uranium leaching were 10% mass fraction of NH4HF2, a liquid-solid ratio of 30:1, a reaction temperature of 30 °C and a reaction time of 120 min, and the leaching efficiency of uranium from the residue was as high as 98.95%. The leaching kinetics of uranium by NH4HF2 were consistent with the mixed controlled model in the shrinking core models, indicating that the surface chemical reaction and mass diffusion dominated both uranium leaching processes. This may provide a viable method for resource recovery and the treatment of uranium purification residues.


Asunto(s)
Uranio , Uranio/química , Fluoruros/química , Compuestos de Amonio/química , Cinética
20.
Bioelectrochemistry ; 158: 108707, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38653107

RESUMEN

Microbial electrolysis cells (MEC) have been identified as an energy efficient system for ammonium recovery from wastewater. However, high ammonium concentrations at the anode can have inhibitory effects. This work aims to determine the effects on current generation performance and active ammonia nitrogen recovery in wastewater containing 0.5 to 2.5 g N-NH4+/L. The study also evaluates the effect of two cathode materials, stainless steel (SS-MEC) and nickel foam (NF-MEC). When the concentration of ammonium in the feed was increased from 0.5 to 1.5 g N-NH4+/L the maximum current density increased from 3.2 to 3.9 A/m2, but a further increase to 2.5 g N-NH4+/L inhibited the biofilm activity, decreasing the current density to 0.5 A/m2. The maximum ammonium removal and recovery efficiencies were 71 % and 33 % at 0.5 g N-NH4+/L. The SS-MEC exhibited more energy efficient ammonium recovery compared to the NF-MEC, requiring 3.6 kWh/kgN,recovered at 0.5 gN-NH4+/L. The highest ammonium recovery rate of 33 gN/m2/d (1.5 gN-NH4+/L) was obtained with an energy consumption of 4.5 kWh/kgN,recovered. Conversely, a lower recovery rate (10 gN/m2/d for 2.5 gN-NH4+/L) resulted in reduced energy consumption at 2.1 kWh/kgN,recovered. This highlights the inherent trade-off between energy consumption and efficient ammonium recovery in the process.


Asunto(s)
Compuestos de Amonio , Fuentes de Energía Bioeléctrica , Electrólisis , Nitrógeno , Aguas Residuales , Aguas Residuales/química , Nitrógeno/química , Fuentes de Energía Bioeléctrica/microbiología , Compuestos de Amonio/química , Electrodos , Biopelículas , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...