Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 597
Filtrar
1.
J Nanobiotechnology ; 22(1): 264, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760771

RESUMEN

Glioblastoma (GBM) is the most aggressive primary brain tumor with low survival rate. Currently, temozolomide (TMZ) is the first-line drug for GBM treatment of which efficacy is unfortunately hindered by short circulation time and drug resistance associated to hypoxia and redox tumor microenvironment. Herein, a dual-targeted and multi-responsive nanoplatform is developed by loading TMZ in hollow manganese dioxide nanoparticles functionalized by polydopamine and targeting ligands RAP12 for photothermal and receptor-mediated dual-targeted delivery, respectively. After accumulated in GBM tumor site, the nanoplatform could respond to tumor microenvironment and simultaneously release manganese ion (Mn2+), oxygen (O2) and TMZ. The hypoxia alleviation via O2 production, the redox balance disruption via glutathione consumption and the reactive oxygen species generation, together would down-regulate the expression of O6-methylguanine-DNA methyltransferase under TMZ medication, which is considered as the key to drug resistance. These strategies could synergistically alleviate hypoxia microenvironment and overcome TMZ resistance, further enhancing the anti-tumor effect of chemotherapy/chemodynamic therapy against GBM. Additionally, the released Mn2+ could also be utilized as a magnetic resonance imaging contrast agent for monitoring treatment efficiency. Our study demonstrated that this nanoplatform provides an alternative approach to the challenges including low delivery efficiency and drug resistance of chemotherapeutics, which eventually appears to be a potential avenue in GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Glioblastoma , Compuestos de Manganeso , Nanopartículas , Óxidos , Temozolomida , Microambiente Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Línea Celular Tumoral , Animales , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Nanopartículas/química , Neoplasias Encefálicas/tratamiento farmacológico , Óxidos/química , Óxidos/farmacología , Ratones , Sistemas de Liberación de Medicamentos/métodos , Indoles/química , Indoles/farmacología , Polímeros/química , Ratones Desnudos , Ratones Endogámicos BALB C , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
2.
J Nanobiotechnology ; 22(1): 234, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724978

RESUMEN

Radiotherapy-induced immune activation holds great promise for optimizing cancer treatment efficacy. Here, we describe a clinically used radiosensitizer hafnium oxide (HfO2) that was core coated with a MnO2 shell followed by a glucose oxidase (GOx) doping nanoplatform (HfO2@MnO2@GOx, HMG) to trigger ferroptosis adjuvant effects by glutathione depletion and reactive oxygen species production. This ferroptosis cascade potentiation further sensitized radiotherapy by enhancing DNA damage in 4T1 breast cancer tumor cells. The combination of HMG nanoparticles and radiotherapy effectively activated the damaged DNA and Mn2+-mediated cGAS-STING immune pathway in vitro and in vivo. This process had significant inhibitory effects on cancer progression and initiating an anticancer systemic immune response to prevent distant tumor recurrence and achieve long-lasting tumor suppression of both primary and distant tumors. Furthermore, the as-prepared HMG nanoparticles "turned on" spectral computed tomography (CT)/magnetic resonance dual-modality imaging signals, and demonstrated favorable contrast enhancement capabilities activated by under the GSH tumor microenvironment. This result highlighted the potential of nanoparticles as a theranostic nanoplatform for achieving molecular imaging guided tumor radiotherapy sensitization induced by synergistic immunotherapy.


Asunto(s)
Ferroptosis , Inmunoterapia , Compuestos de Manganeso , Proteínas de la Membrana , Ratones Endogámicos BALB C , Nanopartículas , Nucleotidiltransferasas , Óxidos , Fármacos Sensibilizantes a Radiaciones , Animales , Ratones , Inmunoterapia/métodos , Óxidos/química , Óxidos/farmacología , Femenino , Nucleotidiltransferasas/metabolismo , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Línea Celular Tumoral , Nanopartículas/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/química , Proteínas de la Membrana/metabolismo , Ferroptosis/efectos de los fármacos , Glucosa Oxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Daño del ADN , Microambiente Tumoral/efectos de los fármacos
3.
J Colloid Interface Sci ; 666: 244-258, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38598997

RESUMEN

Starvation therapy has shown promise as a cancer treatment, but its efficacy is often limited when used alone. In this work, a multifunctional nanoscale cascade enzyme system, named CaCO3@MnO2-NH2@GOx@PVP (CMGP), was fabricated for enhanced starvation/chemodynamic combination cancer therapy. CMGP is composed of CaCO3 nanoparticles wrapped in a MnO2 shell, with glucose oxidase (GOx) adsorbed and modified with polyvinylpyrrolidone (PVP). MnO2 decomposes H2O2 in cancer cells into O2, which enhances the efficiency of GOx-mediated starvation therapy. CaCO3 can be decomposed in the acidic cancer cell environment, causing Ca2+ overload in cancer cells and inhibiting mitochondrial metabolism. This synergizes with GOx to achieve more efficient starvation therapy. Additionally, the H2O2 and gluconic acid produced during glucose consumption by GOx are utilized by MnO2 with catalase-like activity to enhance O2 production and Mn2+ release. This process accelerates glucose consumption, reactive oxygen species (ROS) generation, and CaCO3 decomposition, promoting the Ca2+ release. CMGP can alleviate tumor hypoxia by cycling the enzymatic cascade reaction, which increases enzyme activity and combines with Ca2+ overload to achieve enhanced combined starvation/chemodynamic therapy. In vitro and in vivo studies demonstrate that CMGP has effective anticancer abilities and good biosafety. It represents a new strategy with great potential for combined cancer therapy.


Asunto(s)
Carbonato de Calcio , Glucosa Oxidasa , Compuestos de Manganeso , Óxidos , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/farmacología , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Óxidos/química , Óxidos/farmacología , Humanos , Animales , Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Carbonato de Calcio/metabolismo , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Povidona/química , Povidona/farmacología , Hipoxia Tumoral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula , Línea Celular Tumoral , Peróxido de Hidrógeno/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Propiedades de Superficie , Ratones Endogámicos BALB C
4.
Water Res ; 256: 121608, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657310

RESUMEN

The application of ozone (O3) disinfection has been hindered by its low solubility in water and the formation of disinfection by-products (DBPs). In this study, capacitive disinfection is applied as a pre-treatment for O3 oxidation, in which manganese dioxide with a rambutan-like hollow spherical structure is used as the electrode to increase the charge density on the electrode surface. When a voltage is applied, the negative-charged microbes are attracted to the electrodes and killed by electrical interactions. The contact between microbes and capacitive electrodes leads to changes in cell permeability and burst of reactive oxygen species, thereby promoting the diffusion of O3 into the cells. After O3 penetrates the cell membrane, it can directly attack the cytoplasmic constituents, accelerating fatal and irreversible damage to pathogens. As a result, the performance of the capacitance-O3 process is proved better than the direct sum of the two individual process efficiencies. The design of capacitance-O3 system is beneficial to reduce the ozone dosage and DBPs with a broader inactivation spectrum, which is conducive to the application of ozone in primary water disinfection.


Asunto(s)
Desinfección , Compuestos de Manganeso , Óxidos , Ozono , Ozono/farmacología , Ozono/química , Óxidos/farmacología , Óxidos/química , Desinfección/métodos , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Membrana Celular/efectos de los fármacos , Purificación del Agua/métodos , Electrodos , Bacterias/efectos de los fármacos
5.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631280

RESUMEN

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Imagen por Resonancia Magnética , Compuestos de Manganeso , Óxidos , Fotoquimioterapia , Microambiente Tumoral , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Microambiente Tumoral/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Óxidos/química , Óxidos/farmacología , Humanos , Cobre/química , Cobre/farmacología , Tamaño de la Partícula , Nanoestructuras/química , Antineoplásicos/farmacología , Antineoplásicos/química , Fototerapia , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Propiedades de Superficie , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Animales
6.
ACS Biomater Sci Eng ; 10(5): 3188-3202, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38592024

RESUMEN

Chronic wound repair is a clinical treatment challenge. The development of multifunctional hydrogels is of great significance in the key aspects of treating chronic wounds, including reducing oxidative stress, promoting angiogenesis, and improving the natural remodeling of extracellular matrix and immune regulation. In this study, we prepared a composite hydrogel, sodium alginate (SA)@MnO2/recombinant humanized collagen III (RHC)/mesenchymal stem cells (MSCs), composed of SA, MnO2 nanoparticles, RHC, and MSCs. The hydrogel has high mechanical properties and good biocompatibility. In vitro, SA@MnO2/RHC/MSCs hydrogel effectively enhanced the formation of intricate tubular structures and angiogenesis and showed synergistic effects on cell proliferation and migration. In vivo, the SA@MnO2/RHC/MSCs hydrogel enhanced diabetes wound healing, rapid re-epithelization, favorable collagen deposition, and abundant wound angiogenesis. These findings demonstrated that the combined effects of SA, MnO2, RHC, and MSCs synergistically accelerate healing, resulting in a reduced healing time. These observed healing effects demonstrated the potential of this multifunctional hydrogel to transform chronic wound care and improve patient outcomes.


Asunto(s)
Hidrogeles , Compuestos de Manganeso , Células Madre Mesenquimatosas , Óxidos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Animales , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Óxidos/química , Óxidos/farmacología , Diabetes Mellitus Experimental , Proliferación Celular/efectos de los fármacos , Colágeno/química , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Alginatos/química , Alginatos/farmacología , Masculino , Ratones
7.
ACS Nano ; 18(19): 12453-12467, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38686995

RESUMEN

Traditional magnetic resonance imaging (MRI) contrast agents (CAs) are a type of "always on" system that accelerates proton relaxation regardless of their enrichment region. This "always on" feature leads to a decrease in signal differences between lesions and normal tissues, hampering their applications in accurate and early diagnosis. Herein, we report a strategy to fabricate glutathione (GSH)-responsive one-dimensional (1-D) manganese oxide nanoparticles (MONPs) with improved T2 relaxivities and achieve effective T2/T1 switchable MRI imaging of tumors. Compared to traditional contrast agents with high saturation magnetization to enhance T2 relaxivities, 1-D MONPs with weak Ms effectively increase the inhomogeneity of the local magnetic field and exhibit obvious T2 contrast. The inhomogeneity of the local magnetic field of 1-D MONPs is highly dependent on their number of primary particles and surface roughness according to Landau-Lifshitz-Gilbert simulations and thus eventually determines their T2 relaxivities. Furthermore, the GSH responsiveness ensures 1-D MONPs with sensitive switching from the T2 to T1 mode in vitro and subcutaneous tumors to clearly delineate the boundary of glioma and metastasis margins, achieving precise histopathological-level MRI. This study provides a strategy to improve T2 relaxivity of magnetic nanoparticles and construct switchable MRI CAs, offering high tumor-to-normal tissue contrast signal for early and accurate diagnosis.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Compuestos de Manganeso , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Animales , Ratones , Medios de Contraste/química , Humanos , Campos Magnéticos , Glutatión/química , Óxidos/química , Línea Celular Tumoral , Glioma/diagnóstico por imagen , Glioma/patología , Tamaño de la Partícula , Nanopartículas de Magnetita/química
8.
Int J Biol Macromol ; 268(Pt 2): 131871, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677691

RESUMEN

Multifunctional hydrogels have been developed to meet the various requirements of wound healing. Herein, an innovative hydrogel (QCMC-HA-PEG) was formed through the Schiff base reaction, composed of quaternary ammonium-modified carboxymethyl chitosan (QCMC), hyaluronic acid (HA), and 8-arms Polyethylene Glycol aldehyde (8-ARM-PEG-CHO). The resulting hydrogels exhibited good mechanical and adhesive properties with improved antibacterial efficacy against both Gram-positive and Gram-negative bacteria compared to CMC hydrogels. QCMC-HA-PEG hydrogels demonstrated remarkable adhesive ability in lap-shear test. Furthermore, the incorporation of MnO2 nanosheets into the hydrogel significantly enhanced its reactive oxygen species (ROS) scavenging and oxygen generation capabilities. Finally, experimental results from a full-thickness skin wound model revealed that the QCMC-HA-PEG@MnO2 hydrogel promoted skin epithelization, collagen deposition, and inflammatory regulation significantly accelerated the wound healing process. Therefore, QCMC-HA-PEG@MnO2 hydrogel could be a promising wound dressing to promote wound healing.


Asunto(s)
Antibacterianos , Antioxidantes , Quitosano , Hidrogeles , Compuestos de Amonio Cuaternario , Cicatrización de Heridas , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/química , Hidrogeles/farmacología , Animales , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Especies Reactivas de Oxígeno/metabolismo , Ratones , Polietilenglicoles/química , Polietilenglicoles/farmacología , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Óxidos/química , Óxidos/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Piel/efectos de los fármacos
9.
ACS Appl Mater Interfaces ; 16(14): 17120-17128, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554083

RESUMEN

Cell-based therapies offer tremendous potential for skin flap regeneration. However, the hostile microenvironment of the injured tissue adversely affects the longevity and paracrine effects of the implanted cells, severely reducing their therapeutic effectiveness. Here, an injectable hydrogel (nGk) with reactive oxygen species (ROS) scavenging capability, which can amplify the cell viability and functions of encapsulated mesenchymal stem cells (MSCs), is employed to promote skin flap repair. nGk is formulated by dispersing manganese dioxide nanoparticles (MnO2 NPs) in a gelatin/κ-carrageenan hydrogel, which exhibits satisfactory injectable properties and undergoes a sol-gel phase transition at around 40 °C, leading to the formation of a solid gel at physiological temperature. MnO2 NPs enhance the mechanical properties of the hydrogel and give it the ability to scavenge ROS, thus providing a cell-protective system for MSCs. Cell culture studies show that nGk can mitigate the oxidative stress, improve cell viability, and boost stem cell paracrine function to promote angiogenesis. Furthermore, MSC-loaded nGk (nGk@MSCs) can improve the survival of skin flaps by promoting angiogenesis, reducing inflammatory reactions, and attenuating necrosis, providing an effective approach for tissue regeneration. Collectively, injectable nGk has substantial potential to enhance the therapeutic benefits of MSCs, making it a valuable delivery system for cell-based therapies.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Hidrogeles/farmacología , Especies Reactivas de Oxígeno/farmacología , Compuestos de Manganeso/farmacología , Óxidos/farmacología
10.
J Nanobiotechnology ; 22(1): 98, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461231

RESUMEN

Chemodynamic therapy (CDT) based on intracellular Fenton reaction to produce highly cytotoxic reactive oxygen species (ROS) has played an essential role in tumor therapy. However, this therapy still needs to be improved by weakly acidic pH and over-expression of glutathione (GSH) in tumor microenvironment (TEM), which hinders its future application. Herein, we reported a multifunctional bimetallic composite nanoparticle MnO2@GA-Fe@CAI based on a metal polyphenol network (MPN) structure, which could reduce intracellular pH and endogenous GSH by remodeling tumor microenvironment to improve Fenton activity. MnO2 nanoparticles were prepared first and MnO2@GA-Fe nanoparticles with Fe3+ as central ion and gallic acid (GA) as surface ligands were prepared by the chelation reaction. Then, carbonic anhydrase inhibitor (CAI) was coupled with GA to form MnO2@GA-Fe@CAI. The properties of the bimetallic composite nanoparticles were studied, and the results showed that CAI could reduce intracellular pH. At the same time, MnO2 could deplete intracellular GSH and produce Mn2+ via redox reactions, which re-established the TME with low pH and GSH. In addition, GA reduced Fe3+ to Fe2+. Mn2+ and Fe2+ catalyzed the endogenous H2O2 to produce high-lever ROS to kill tumor cells. Compared with MnO2, MnO2@GA-Fe@CAI could reduce the tumor weight and volume for the xenograft MDA-MB-231 tumor-bearing mice and the final tumor inhibition rate of 58.09 ± 5.77%, showing the improved therapeutic effect as well as the biological safety. Therefore, this study achieved the high-efficiency CDT effect catalyzed by bimetallic through reshaping the tumor microenvironment.


Asunto(s)
Nanopartículas , Neoplasias , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Peróxido de Hidrógeno , Compuestos de Manganeso/farmacología , Especies Reactivas de Oxígeno , Óxidos , Ácido Gálico , Glutatión , Concentración de Iones de Hidrógeno , Línea Celular Tumoral , Microambiente Tumoral
11.
J Colloid Interface Sci ; 665: 188-203, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522159

RESUMEN

Anti-tumor therapies reliant on reactive oxygen species (ROS) as primary therapeutic agents face challenges due to a limited oxygen substrate. Photodynamic therapy (PDT) is particularly hindered by inherent hypoxia, while chemodynamic therapy (CDT) encounters obstacles from insufficient endogenous hydrogen peroxide (H2O2) levels. In this study, we engineered biodegradable tumor microenvironment (TME)-activated hollow mesoporous MnO2-based nanotheranostic agents, designated as HAMnO2A. This construct entails loading artemisinin (ART) into the cavity and surface modification with a mussel-inspired polymer ligand, namely hyaluronic acid-linked poly(ethylene glycol)-diethylenetriamine-conjugated (3,4-dihydroxyphenyl) acetic acid, and the photosensitizer Chlorin e6 (mPEG-HA-Dien-(Dhpa/Ce6)), facilitating dual-modal imaging-guided PDT/CDT synergistic therapy. In vitro experimentation revealed that HAMnO2A exhibited ideal physiological stability and enhanced cellular uptake capability via CD44-mediated endocytosis. Additionally, it was demonstrated that accelerated endo-lysosomal escape through the pH-dependent protonation of Dien. Within the acidic and highly glutathione (GSH)-rich TME, the active component of HAMnO2A, MnO2, underwent decomposition, liberating oxygen and releasing both Mn2+ and ART. This process alleviates hypoxia within the tumor region and initiates a Fenton-like reaction through the combination of ART and Mn2+, thereby enhancing the effectiveness of PDT and CDT by generating increased singlet oxygen (1O2) and hydroxyl radicals (•OH). Moreover, the presence of Mn2+ ions enabled the activation of T1-weighted magnetic resonance imaging. In vivo findings further validated that HAMnO2A displayed meaningful tumor-targeting capabilities, prolonged circulation time in the bloodstream, and outstanding efficacy in restraining tumor growth while inducing minimal damage to normal tissues. Hence, this nanoplatform serves as an efficient all-in-one solution by facilitating the integration of multiple functions, ultimately enhancing the effectiveness of tumor theranostics.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Compuestos de Manganeso/farmacología , Compuestos de Manganeso/química , Microambiente Tumoral , Nanomedicina Teranóstica/métodos , Peróxido de Hidrógeno/química , Óxidos/química , Fármacos Fotosensibilizantes/química , Neoplasias/tratamiento farmacológico , Oxígeno , Hipoxia/tratamiento farmacológico , Línea Celular Tumoral , Nanopartículas/química
12.
Nanoscale ; 16(12): 6095-6108, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38444228

RESUMEN

In photothermal therapy (PTT), the photothermal conversion of the second near-infrared (NIR-II) window allows deeper penetration and higher laser irradiance and is considered a promising therapeutic strategy for deep tissues. Since cancer remains a leading cause of deaths worldwide, despite the numerous treatment options, we aimed to develop an improved bionic nanotheranostic for combined imaging and photothermal cancer therapy. We combined a gold nanobipyramid (Au NBP) as a photothermal agent and MnO2 as a magnetic resonance enhancer to produce core/shell structures (Au@MnO2; AM) and modified their surfaces with homologous cancer cell plasma membranes (PM) to enable tumour targeting. The performance of the resulting Au@MnO2@PM (AMP) nanotheranostic was evaluated in vitro and in vivo. AMP exhibits photothermal properties under NIR-II laser irradiation and has multimodal in vitro imaging functions. AMP enables the computed tomography (CT), photothermal imaging (PTI), and magnetic resonance imaging (MRI) of tumours. In particular, AMP exhibited a remarkable PTT effect on cancer cells in vitro and inhibited tumour cell growth under 1064 nm laser irradiation in vivo, with no significant systemic toxicity. This study achieved tumour therapy guided by multimodal imaging, thereby demonstrating a novel strategy for the use of bionic gold nanoparticles for tumour PTT under NIR-II laser irradiation.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Terapia Fototérmica , Nanomedicina Teranóstica/métodos , Oro/farmacología , Compuestos de Manganeso/farmacología , Compuestos de Manganeso/química , Biónica , Nanopartículas del Metal/uso terapéutico , Óxidos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Imagen Multimodal/métodos , Línea Celular Tumoral
13.
ACS Appl Mater Interfaces ; 16(11): 13543-13562, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452225

RESUMEN

We use low-molecular-weight branched polyethylenimine (PEI) to produce cytocompatible reduced graphene oxide quantum dots (rGOQD) as a photothermal agent and covalently bind it with the photosensitizer IR-820. The rGOQD/IR820 shows high photothermal conversion efficiency and produces reactive oxygen species (ROS) after irradiation with near-infrared (NIR) light for photothermal/photodynamic therapy (PTT/PDT). To improve suspension stability, rGOQD/IR820 was PEGylated by anchoring with the DSPE hydrophobic tails in DSPE-PEG-Mal, leaving the maleimide (Mal) end group for covalent binding with manganese dioxide/bovine serum albumin (MnO2/BSA) and targeting ligand cell-penetrating peptide (CPP) to synthesize rGOQD/IR820/MnO2/CPP. As MnO2 can react with intracellular hydrogen peroxide to produce oxygen for alleviating the hypoxia condition in the acidic tumor microenvironment, the efficacy of PDT could be enhanced by generating more cytotoxic ROS with NIR light. Furthermore, quercetin (Q) was loaded to rGOQD through π-π interaction, which can be released in the endosomes and act as an inhibitor of heat shock protein 70 (HSP70). This sensitizes tumor cells to thermal stress and increases the efficacy of mild-temperature PTT with NIR irradiation. By simultaneously incorporating the HSP70 inhibitor (Q) and the in situ hypoxia alleviating agent (MnO2), the rGOQD/IR820/MnO2/Q/CPP can overcome the limitation of PTT/PDT and enhance the efficacy of targeted phototherapy in vitro. From in vivo study with an orthotopic brain tumor model, rGOQD/IR820/MnO2/Q/CPP administered through tail vein injection can cross the blood-brain barrier and accumulate in the intracranial tumor, after which NIR laser light irradiation can shrink the tumor and prolong the survival times of animals by simultaneously enhancing the efficacy of PTT/PDT to treat glioblastoma.


Asunto(s)
Antineoplásicos , Glioblastoma , Grafito , Fotoquimioterapia , Puntos Cuánticos , Animales , Compuestos de Manganeso/farmacología , Compuestos de Manganeso/química , Glioblastoma/tratamiento farmacológico , Puntos Cuánticos/uso terapéutico , Proteínas de Choque Térmico , Especies Reactivas de Oxígeno , Hipoxia Tumoral , Óxidos/farmacología , Óxidos/química , Fototerapia , Hipoxia , Línea Celular Tumoral , Microambiente Tumoral
14.
Molecules ; 29(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543041

RESUMEN

Design of amyloid ß-protein (Aß) inhibitors is considered an effective strategy for the prevention and treatment of Alzheimer's disease (AD). However, the limited blood-brain barrier (BBB) penetration and poor Aß-targeting capability restricts the therapeutic efficiency of candidate drugs. Herein, we have proposed to engineer transthyretin (TTR) by fusion of the Aß-targeting peptide KLVFF and cell-penetrating peptide Penetratin to TTR, and derived a fusion protein, KLVFF-TTR-Penetratin (KTP). Moreover, to introduce the scavenging activity for reactive oxygen species (ROS), a nanocomposite of KTP and manganese dioxide nanoclusters (KTP@MnO2) was fabricated by biomineralization. Results revealed that KTP@MnO2 demonstrated significantly enhanced inhibition on Aß aggregation as compared to TTR. The inhibitory effect was increased from 18%, 33%, and 49% (10, 25, and 50 µg/mL TTR, respectively) to 52%, 81%, and 100% (10, 25, and 50 µg/mL KTP@MnO2). In addition, KTP@MnO2 could penetrate the BBB and target amyloid plaques. Moreover, multiple ROS, including hydroxyl radicals, superoxide radicals, hydrogen peroxide, and Aß-induced-ROS, which cannot be scavenged by TTR, were scavenged by KTP@MnO2, thus resulting in the mitigation of cellular oxidative damages. More importantly, cell culture and in vivo experiments with AD nematodes indicated that KTP@MnO2 at 50 µg/mL increased the viability of Aß-treated cells from 66% to more than 95%, and completely cleared amyloid plaques in AD nematodes and extended their lifespan by 7 d. Overall, despite critical aspects such as the stability, metabolic distribution, long-term biotoxicity, and immunogenicity of the nanocomposites in mammalian models remaining to be investigated, this work has demonstrated the multifunctionality of KTP@MnO2 for targeting Aß in vivo, and provided new insights into the design of multifunctional nanocomposites of protein-metal clusters against AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos de Penetración Celular , Fragmentos de Péptidos , Animales , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Compuestos de Manganeso/farmacología , Óxidos/farmacología , Prealbúmina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Placa Amiloide/metabolismo , Mamíferos/metabolismo
15.
ACS Biomater Sci Eng ; 10(3): 1830-1842, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38408449

RESUMEN

Retinoblastoma (RB) is an aggressive tumor of the infant retina. However, the ineffective targeting of its theranostic agents results in poor imaging and therapeutic efficacy, which makes it difficult to identify and treat RB at an early stage. In order to improve the imaging and therapeutic efficacy, we constructed an RB-targeted artificial vesicle composite nanoparticle. In this study, the MnO2 nanosponge (hMNs) was used as the core to absorb two fluorophore-modified DNAzymes to form the Dual/hMNs nanoparticle; after loaded with the artificial vesicle derived from human red blood cells, the RB-targeted DNA aptamers were modified on the surface, thus forming the Apt-EG@Dual/hMNs complex nanoparticle. The DNA aptamer endows this nanoparticle to target the nucleolin-overexpressed RB cell membrane specifically and enters cells via endocytosis. The nanoparticle could release fluorophore-modified DNAzymes and supplies Mn2+ as a DNAzyme cofactor and a magnetic resonance imaging (MRI) agent. Subsequently, the DNAzymes can target two different mRNAs, thereby realizing fluorescence/MR bimodal imaging and dual-gene therapy. This study is expected to provide a reliable and valuable basis for ocular tumor theranostics.


Asunto(s)
ADN Catalítico , Nanopartículas , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/diagnóstico por imagen , Retinoblastoma/genética , Retinoblastoma/terapia , Medicina de Precisión , Compuestos de Manganeso/farmacología , Óxidos , Nanopartículas/uso terapéutico , Neoplasias de la Retina/diagnóstico por imagen , Neoplasias de la Retina/genética , Neoplasias de la Retina/terapia
16.
Adv Healthc Mater ; 13(13): e2304125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301194

RESUMEN

Disturbance in the mitochondrial electron transport chain (ETC) is a key factor in the emerging discovery of immune cell activation in inflammatory diseases, yet specific regulation of ETC homeostasis is extremely challenging. In this paper, a mitochondrial complex biomimetic nanozyme (MCBN), which plays the role of an artificial "VI" complex and acts as an electron and free radical conversion factory to regulate ETC homeostasis is creatively developed. MCBN is composed of bovine serum albumin (BSA), polyethylene glycol (PEG), and triphenylphosphine (TPP) hierarchically encapsulating MnO2 polycrystalline particles. It has nanoscale size and biological properties like natural complexes. In vivo and in vitro experiments confirm that MCBN can target the mitochondrial complexes of inflammatory macrophages, absorb excess electrons in ETC, and convert the electrons to decompose H2O2. By reducing the ROS and ATP bursts and converting existing free radicals, inhibiting NLRP3 inflammatory vesicle activation and NF-κB signaling pathway, MCBN effectively suppresses macrophage M1 activation and inflammatory factor secretion. It also demonstrates good inflammation control and significantly alleviates alveolar bone loss in a mouse model of ligation-induced periodontitis. This is the first nanozyme that mimics the mitochondrial complex and regulates ETC, demonstrating the potential application of MCBN in immune diseases.


Asunto(s)
Macrófagos , Mitocondrias , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Células RAW 264.7 , Inflamación/metabolismo , Inflamación/patología , Radicales Libres/química , Radicales Libres/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina/química , Polietilenglicoles/química , Manganeso/química , Electrones , Óxidos/química , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Ratones Endogámicos C57BL , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología
17.
Virol J ; 21(1): 48, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395943

RESUMEN

BACKGROUND: The antiviral properties of metal nanoparticles against various viruses, including those resistant to drugs, are currently a subject of intensive research. Recently, the green synthesis of nanoparticles and their anti-viral function have attracted a lot of attention. Previous studies have shown promising results in the use of Arabic gum for the green synthesis of nanoparticles with strong antiviral properties. In this study we aimed to investigate the antiviral effects of MnO2 nanoparticles (MnO2-NPs) synthesized using Arabic gum, particularly against the influenza virus. METHODS: Arabic gum was used as a natural polymer to extract and synthesize MnO2-NPs using a green chemistry approach. The synthesized MnO2-NPs were characterized using SEM and TEM. To evaluate virus titration, cytotoxicity, and antiviral activity, TCID50, MTT, and Hemagglutination assay (HA) were performed, respectively. Molecular docking studies were also performed to investigate the potential antiviral activity of the synthesized MnO2-NPs against the influenza virus. The molecular docking was carried out using AutoDock Vina software followed by an analysis with VMD software to investigate the interaction between Arabic gum and the hemagglutinin protein. RESULTS: Simultaneous combination treatment with the green-synthesized MnO2-NPs resulted in a 3.5 log HA decrement and 69.7% cellular protection, which demonstrated the most significant difference in cellular protection compared to the virus control group (p-value < 0.01). The docking results showed that binding affinities were between - 3.3 and - 5.8 kcal/mole relating with the interaction between target with MnO2 and beta-D-galactopyranuronic acid, respectively. CONCLUSION: The results of the study indicated that the MnO2-NPs synthesized with Arabic gum had significant antiviral effects against the influenza virus, highlighting their potential as a natural and effective treatment for inhibition of respiratory infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Nanopartículas del Metal , Humanos , Gripe Humana/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Compuestos de Manganeso/farmacología , Óxidos/farmacología , Nanopartículas del Metal/química , Antivirales/farmacología
18.
Sci Rep ; 14(1): 4034, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369560

RESUMEN

For patients who have difficulty in mechanical cleaning of dental appliances, a denture cleaner that can remove biofilm with dense extracellular polymeric substances is needed. The purpose of this study is to evaluate the efficacy of diatom complex with active micro-locomotion for removing biofilms from 3D printed dentures. The diatom complex, which is made by doping MnO2 nanosheets on diatom biosilica, is mixed with H2O2 to generate fine air bubbles continuously. Denture base resin specimens were 3D printed in a roof shape, and Pseudomonas aeruginosa (107 CFU/mL) was cultured on those for biofilm formation. Cleaning solutions of phosphate-buffered saline (negative control, NC), 3% H2O2 with peracetic acid (positive control, PC), denture cleanser tablet (DCT), 3% H2O2 with 2 mg/mL diatom complex M (Melosira, DM), 3% H2O2 with 2 mg/mL diatom complex A (Aulacoseira, DA), and DCT with 2 mg/mL DM were prepared and applied. To assess the efficacy of biofilm removal quantitatively, absorbance after cleaning was measured. To evaluate the stability of long-term use, surface roughness, ΔE, surface micro-hardness, and flexural strength of the 3D printed dentures were measured before and after cleaning. Cytotoxicity was evaluated using Cell Counting Kit-8. All statistical analyses were conducted using SPSS for Windows with one-way ANOVA, followed by Scheffe's test as a post hoc (p < 0.05). The group treated with 3% H2O2 with DA demonstrated the lowest absorbance value, followed by the groups treated with 3% H2O2 with DM, PC, DCT, DCT + DM, and finally NC. As a result of Scheffe's test to evaluate the significance of difference between the mean values of each group, statistically significant differences were shown in all groups based on the NC group. The DA and DM groups showed the largest mean difference though there was no significant difference between the two groups. Regarding the evaluation of physical and mechanical properties of the denture base resin, no statistically significant differences were observed before and after cleaning. In the cytotoxicity test, the relative cell count was over 70%, reflecting an absence of cytotoxicity. The diatom complex utilizing active micro-locomotion has effective biofilm removal ability and has a minimal effect in physical and mechanical properties of the substrate with no cytotoxicity.


Asunto(s)
Bases para Dentadura , Diatomeas , Humanos , Peróxido de Hidrógeno/farmacología , Compuestos de Manganeso/farmacología , Óxidos/farmacología , Biopelículas , Impresión Tridimensional , Propiedades de Superficie , Ensayo de Materiales
19.
ACS Nano ; 18(9): 6990-7010, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38385433

RESUMEN

The clinical treatment efficacy for implant-associated infections (IAIs), particularly those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains unsatisfactory, primarily due to the formation of biofilm barriers and the resulting immunosuppressive microenvironment, leading to the chronicity and recurrence of IAIs. To address this challenge, we propose a light-induced immune enhancement strategy, synthesizing BSA@MnO2@Ce6@Van (BMCV). The BMCV exhibits precise targeting and adhesion to the S. aureus biofilm-infected region, coupled with its capacity to catalyze oxygen generation from H2O2 in the hypoxic and acidic biofilm microenvironment (BME), promoting oxygen-dependent photodynamic therapy efficacy while ensuring continuous release of manganese ions. Notably, targeted BMCV can penetrate biofilms, producing ROS that degrade extracellular DNA, disrupting the biofilm structure and impairing its barrier function, making it vulnerable to infiltration and elimination by the immune system. Furthermore, light-induced reactive oxygen species (ROS) around the biofilm can lyse S. aureus, triggering bacterium-like immunogenic cell death (ICD), releasing abundant immune costimulatory factors, facilitating the recognition and maturation of antigen-presenting cells (APCs), and activating adaptive immunity. Additionally, manganese ions in the BME act as immunoadjuvants, further amplifying macrophage-mediated innate and adaptive immune responses and reversing the immunologically cold BME to an immunologically hot BME. We prove that our synthesized BMCV elicits a robust adaptive immune response in vivo, effectively clearing primary IAIs and inducing long-term immune memory to prevent recurrence. Our study introduces a potent light-induced immunomodulatory nanoplatform capable of reversing the biofilm-induced immunosuppressive microenvironment and disrupting biofilm-mediated protective barriers, offering a promising immunotherapeutic strategy for addressing challenging S. aureus IAIs.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Peróxido de Hidrógeno/farmacología , Manganeso/uso terapéutico , Compuestos de Manganeso/farmacología , Especies Reactivas de Oxígeno/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Óxidos/farmacología , Biopelículas , Inmunidad , Terapia de Inmunosupresión , Oxígeno/farmacología , Antibacterianos/farmacología
20.
ACS Appl Bio Mater ; 7(3): 1790-1800, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38424007

RESUMEN

A sustainable approach for pharmaceutically important pyrimidine derivatives is achieved by using biogenically produced single-phase δ-MnO2 NPs under external ligand-free conditions. The phytochemicals that comprise the extract of Areca Nut Husk (ANH) have been discovered to serve as reducing agents. The role of phytochemicals is not only to aid in the reduction of Mn(VII) into Mn(IV), but they also have an important role in stabilizing the catalyst. The establishment of δ-MnO2 NPs was confirmed inveterate by FE-SEM, p-XRD, ICP-OES (Mn content = 43.17% w/w), EDX, and with an active Mn content of 43.17% w/w. A series of pyrimidine derivatives were prepared in good yields using a one-pot multicomponent synthesis approach under atmospheric conditions. In addition, hot filtration tests, control experiments, gram-scale synthesis, and mechanistic investigations were demonstrated. Additionally, antimicrobial activity studies of δ-MnO2 NPs and pyrimidine derivatives against the Gram-negative bacteria E. coli, growth curve and minimum inhibitory concentration were studied.


Asunto(s)
Antiinfecciosos , Nanopartículas , Escherichia coli , Compuestos de Manganeso/farmacología , Óxidos , Nanopartículas/uso terapéutico , Pirimidinas/farmacología , Antiinfecciosos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA