Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Environ Res ; 253: 119167, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762006

RESUMEN

Phthalate esters (PAEs) have become one of the most concerned emerging organic pollutants in the world, due to the toxicity to human health, and hard to remove it efficiently. In this study, the degradation performance of DBP and DEHP in the soil by water bath heating activated sodium persulfate (PS) method under different factors were studied, in which the degradation rate of DBP and DEHP were improved with the increasing of temperature, PS concentration and water/soil ratio, and higher diffusion efficiency treatments methods, due to the improved mass transfer from organic phase to aqueous media. However, the degradation rate of DEHP was much lower than that of DBP, because DEHP in the soil was more difficult to contact with SO4•- for reaction on soil surface, and the degradation rate of PAEs in soil was significantly lower than that in water. Redundancy analysis of degradation rate of DBP and DEHP in water demonstrated that the key factors that determine the degradation rate is time for DBP, and cosolvent dosage for DEHP, indicating that the solubility and diffusion rate of PAEs from soil to aqueous are predominance function. This study provides comprehensive scenes in PAEs degradation with persulfate oxidation activated by thermal in soil, reveal the difference of degradation between DBP and DEHP is structure-dependent. So that we provide fundamental understanding and theoretical operation for subsequent filed treatment of various structural emerging pollutants PAEs contaminated soil with thermal activated persulfate.


Asunto(s)
Oxidación-Reducción , Ácidos Ftálicos , Contaminantes del Suelo , Suelo , Sulfatos , Sulfatos/química , Ácidos Ftálicos/química , Contaminantes del Suelo/química , Suelo/química , Ésteres/química , Compuestos de Sodio/química , Calor
2.
Dalton Trans ; 51(3): 969-977, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34931203

RESUMEN

This work is devoted to the study of the features of isomorphism in compounds of a Ca-Na-Bi-P-O-F system with a crystalline structure of the mineral apatite, as well as its effect on the biocompatibility of substances in relation to human cells in an in vitro model. A Ca10-2xBixNax(PO4)6F2 system (x = 0, 1, 2, 3, 4, and 5) is characterized by continuous isomorphism, which follows from the minimum deviations of the unit cell parameters from the Vegard and Rötgers rules. The refinement of the crystal structure showed that the cations are unevenly distributed between the 4f and 6h positions of the crystal structure of apatite: the bismuth ions are predominantly localized in the 6h position, while the sodium ions are concentrated in the 4f position. A standard MTT test of the biocompatibility of compounds with x = 1, 2, 3, and 4, and at x = 1 showed an anomaly in the form of an increased relative cell growth rate. This paper discusses the possible crystal-chemical and morphological reasons for this phenomenon.


Asunto(s)
Apatitas/química , Materiales Biocompatibles , Bismuto/química , Compuestos de Calcio/química , Modelos Moleculares , Estructura Molecular , Compuestos de Sodio/química
3.
Acta Chim Slov ; 68(4): 833-848, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34918766

RESUMEN

The removal of mixture of two azo dyes, Acid blue 29 and Ponceau xylidine, was studied by heterogeneous Fenton and Fenton-type processes using hydrogen peroxide and sodium persulphate as oxidants in the presence of and nano and micro- particles as catalysts. The synthesised nano- particles were characterised using analytical techniques viz. FT-IR, TEM, EDX, powder XRD and VSM. We have examined the effects of particle size on the COD removal efficiency and the reusability of the catalyst after optimising pH, and concentrations of catalyst and oxidant. Combination of nano-  and hydrogen peroxide possessed higher COD removal efficiency, which was accelerated in acidic pH and inhibited at pH > 6. Total consumption of hydrogen peroxide confirmed the efficiency of the optimised parameters. The mechanism of the formation of intermediate ions and products are proposed. COD removal and consumption of hydrogen peroxide follow pseudo-first-order kinetics. The toxicity of the solutions was assessed using Aliivibrio fischeri light loss and Escherichia coli growth inhibition assays. Both the assays showed different toxicity levels for the same solution.


Asunto(s)
Colorantes/química , Peróxido de Hidrógeno/química , Hierro/química , Aliivibrio fischeri/efectos de los fármacos , Compuestos Azo/química , Compuestos Azo/aislamiento & purificación , Compuestos Azo/farmacología , Catálisis , Colorantes/aislamiento & purificación , Colorantes/farmacología , Escherichia coli/efectos de los fármacos , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Cinética , Nanopartículas del Metal/química , Naftalenos/química , Naftalenos/aislamiento & purificación , Naftalenos/farmacología , Oxidación-Reducción , Tamaño de la Partícula , Compuestos de Sodio/química , Sulfatos/química
4.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884702

RESUMEN

The hydrogen bond structure of water was examined by comparing the temperature dependent OH-stretching bands of water and aqueous NaClO4, KClO4, Na2SO4, and K2SO4 solutions. Results called attention to the role of cations on top of the importance of anions determining the emerging structure of a multi-layered system consisting single water rings or multi-ring water-clusters.


Asunto(s)
Percloratos/química , Compuestos de Potasio/química , Compuestos de Sodio/química , Sulfatos/química , Agua/química , Enlace de Hidrógeno , Temperatura
5.
J Am Soc Mass Spectrom ; 32(7): 1644-1647, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34170666

RESUMEN

Fast photochemical oxidation of proteins (FPOP) has demonstrated the ability to inform on the higher order structure of proteins. Recent technological advances have extended FPOP to live cells (IC-FPOP) using multiple cell lines and in vivo (IV-FPOP) using C. elegans. These innovations allow proteins to be studied in their native cellular environment. Hydroxyl radicals are generated via the photoloysis of hydrogen peroxide. Hydrogen peroxide is a signaling molecule that can induce changes to some proteins in the cell limiting the proteins that can be studied by IC-FPOP. Here, we evaluate the sulfate radical anion as a footprinting label in IC-FPOP with sodium persulfate as the precursor. Our findings show a 1.5-fold increase in the number of modified proteins compared to IC-FPOP using hydroxyl radicals at the same precursor concentration demonstrating the amenability of this radical with IC-FPOP.


Asunto(s)
Indicadores y Reactivos/química , Proteínas , Sulfatos/química , Células HEK293 , Humanos , Oxidantes Fotoquímicos , Oxidación-Reducción , Huella de Proteína/métodos , Proteínas/análisis , Proteínas/química , Compuestos de Sodio/química
6.
Phys Chem Chem Phys ; 23(26): 14212-14223, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34159996

RESUMEN

Lipid membranes are a key component of contemporary living systems and are thought to have been essential to the origin of life. Most research on membranes has focused on situations restricted to ambient physiological or benchtop conditions. However, the influence of more extreme conditions, such as the deep subsurface on Earth or extraterrestrial environments are less well understood. The deep subsurface environments of Mars, for instance, may harbor high concentrations of chaotropic salts in brines, yet we know little about how these conditions would influence the habitability of such environments for cellular life. Here, we investigated the combined effects of high concentrations of salts, including sodium and magnesium perchlorate and sulfate, and high hydrostatic pressure on the stability and structure of model biomembranes of varying complexity. To this end, a variety of biophysical techniques have been applied, which include calorimetry, fluorescence spectroscopies, small-angle X-ray scattering, dynamic light scattering, and microscopy techniques. We show that the structure and phase behavior of lipid membranes is sensitively dictated by the nature of the salt, in particular its anion and its concentration. We demonstrate that, with the exception of magnesium perchlorate, which can also induce cubic lipid arrangements, long-chain saturated lipid bilayer structures can still persist at high salt concentrations across a range of pressures. The lateral organization of complex heterogeneous raft-like membranes is affected by all salts. For simple, in particular bacterial membrane-type bilayer systems with unsaturated chains, vesicular structures are still stable at Martian brine conditions, also up to the kbar pressure range, demonstrating the potential compatibility of environments containing such ionic and pressure extremes to lipid-encapsulated life.


Asunto(s)
Medio Ambiente Extraterrestre/química , Fosfolípidos/química , Presión Atmosférica , Compuestos de Magnesio/química , Sulfato de Magnesio/química , Marte , Conformación Molecular , Percloratos/química , Sales (Química)/química , Compuestos de Sodio/química , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Sulfatos/química , Termodinámica
7.
Carbohydr Polym ; 259: 117775, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674017

RESUMEN

Triple-helical aggregates (THAs) have been proven to affect the biological activities and functional properties of triple-helix polysaccharides. Thus, it's urgent to seek a method to reduce the size of THAs while preserving independent triple helices (ITHs). In this study, the effects of alkali-neutralization (AN) treatment on THAs and ITHs of curdlan were studied. The positive values of the Congo red test data (R2>0.99) fitted using a Logistic model indicated that AN treatment (CNaOH/HCl>0.28 mol/L) facilitated the disaggregation of THAs. Congo red test, sedimentation test, and turbidity test showed that AN treatment (CNaOH/HCl = 1.0 mol/L) significantly reduced the size of THAs to approximately 1 µm while effectively increasing the relative amount of ITHs to approximately 199 %. Fourier transform infrared spectroscopy and X-ray diffraction analysis showed that AN treatment basically unchanged the primary structure of curdlan chains, but affected the crystalline structure and the intermolecular and intramolecular hydrogen bonding of curdlan.


Asunto(s)
Álcalis/química , beta-Glucanos/química , Conformación de Carbohidratos , Rojo Congo/química , Nefelometría y Turbidimetría , Tamaño de la Partícula , Compuestos de Sodio/química , Espectroscopía Infrarroja por Transformada de Fourier
8.
Carbohydr Polym ; 257: 117638, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33541663

RESUMEN

This study concerns the performance evaluation of 6-carboxyl chitin for its wound healing application. 6-Carboxyl chitins were prepared by the oxidation of chitin at C-6 with NaClO/TEMPO/NaBr after α-chitin was pretreated in NaOH/urea solution. The products with different molecular weights were obtained by changing reaction conditions. They all were completely oxidized at C-6 and N-acetylated at C-2 according to FT-IR and NMR results. 6-Carboxyl chitins could stimulate significantly the proliferation of human skin fibroblasts (HSF) and human keratinocytes (HaCaT), and the bioactivities were concentration and Mws dependent. Within the scope of the study, 10-40 kDa of Mws and 10-100 µg/mL of concentrations were most suitable for the HSF proliferation, but the proliferation of HaCaT increased with decreasing the concentration and Mw. In addition, 6-carboxyl chitins could also induce macrophages and fibroblasts to secrete growth factors. Therefore, 6-carboxyl chitins could be expected to be an active ingredient for wound healing.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Quitina/química , Bromuros/química , Cloratos/química , Óxidos N-Cíclicos/química , Fibroblastos/efectos de los fármacos , Humanos , Técnicas In Vitro , Queratinocitos/efectos de los fármacos , Peso Molecular , Oxígeno/química , Compuestos de Sodio/química , Células THP-1 , Cicatrización de Heridas
9.
Molecules ; 26(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562554

RESUMEN

Waste lignin is a potential source of renewable fuels and other chemical precursors under catalytic pyrolysis. For this purpose, four mixed metal oxide catalytic mixtures (Cat) derived from Na2CO3, CeO2 and ZrO2 were synthesised in varying compositions and utilised in a fixed bed reactor for catalytic vapour upgrading of Etek lignin pyrolysis products at 600 °C. The catalytic mixtures were analysed and characterised using XRD analysis, whilst pyrolysis products were analysed for distribution of products using FTIR, GC-MS and EA. Substantial phenolic content (20 wt%) was obtained when using equimolar catalytic mixture A (Cat_A), however the majority of these phenols were guaiacol derivatives, suggesting the catalytic mixture employed did not favour deep demethoxylation. Despite this, addition of 40-50% ceria to NaZrO2 resulted in a remarkable reduction of coke to 4 wt%, compared to ~9 wt% of NaZrO2. CeO2 content higher than 50% favoured the increase in conversion of the holo-cellulose fraction, enriching the bio-oil in aldehydes, ketones and cyclopentanones. Of the catalytic mixtures studied, equimolar metal oxides content (Cat_A) appears to showcase the optimal characteristics for phenolics production and coking reduction.


Asunto(s)
Cerio/química , Lignina/química , Óxidos/química , Pirólisis , Compuestos de Sodio/química , Residuos/análisis , Circonio/química , Catálisis , Fenol/química
10.
Meat Sci ; 174: 108417, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33387830

RESUMEN

Sodium chloride (NaCl) is an indispensable ingredient in meat products, but the consumption of high doses of sodium contained in their formulations may bring about negative health implications. The replacement of NaCl by other salts in meat products has been a technological challenge. Accordingly, this review highlights the importance of NaCl over other sodium and non­sodium salts in the saltiness perception and proposes the use of reduced-size and shapes of NaCl to maximize saltiness perception, while using less NaCl dosages in meat products. However, the effect of matrix components (water, proteins and fats) on the final salty taste is of special consideration. To counteract the effect of the matrix components, two main routes of incorporation of different NaCl types in meat products are discussed: encapsulation and protection of NaCl by the hydrophobic component of the meat product. Given the limited number of publications using this potential strategy, more studies on the application of these technological strategies are required.


Asunto(s)
Productos de la Carne/análisis , Cloruro de Sodio/química , Gusto , Animales , Humanos , Tamaño de la Partícula , Cloruro de Sodio Dietético , Compuestos de Sodio/química
11.
Anal Chem ; 93(2): 1120-1125, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33295754

RESUMEN

Metal nanoclusters (NCs) have attracted extensive interest in electrochemiluminescence (ECL) field, but it is still a significant challenge to prepare high ECL efficiency NCs, which tremendously precludes their application in sensing and imaging. Herein, we report poly(3,4-ethylenedioxythiophene) (PEDOT) as a functional ligand for NCs with a "kill three birds with one stone" role, acting as a stabilizer like existing templates, excitingly, excellent electrical conductivity to accelerate the injection of interfacial electrons, and outstanding electrocatalytic activity toward coreactants (S2O82-), which breaks the convention that traditional ligands act as a double-edged sword in ECL field. As an illustration, PEDOT-hosted Ag NCs were prepared with an unprecedented ECL intensity with S2O82- as a cathodic coreactant, which indicates that this novel ligand strategy will bring exciting opportunities, not only in opening up new horizons for rational development of high ECL efficiency metal NCs but also in advancing their potential applications in light-emitting devices and clinical biosensing. As a proof of concept, the PEDOT-hosted Ag NCs were applied as neoteric ECL emitters to achieve sensitive detection of dopamine (DA), which showcased a wide linear response from 1 nM to 10 mM and a low detection limit of 0.17 nM.


Asunto(s)
Técnicas Biosensibles , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Dopamina/análisis , Técnicas Electroquímicas , Mediciones Luminiscentes , Polímeros/química , Compuestos de Sodio/química , Sulfatos/química , Electrodos , Nanopartículas del Metal/química , Tamaño de la Partícula , Plata/química , Propiedades de Superficie
12.
Biotechnol Appl Biochem ; 68(4): 789-800, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32701174

RESUMEN

In this study, a novel pH-sensitive hydrogel beads that is based on gelatin/sodium alginate/chitosan (GEL/SA/CS) loaded with propolis ethanolic extracts (PE) were synthesized. The swelling behavior of GEL/SA/CS hydrogel beads was studied in different pH solutions and compared with unloaded CS (GEL/SA) hydrogel beads. The in vitro release studies have been revealed using four different pH (1.3, 5.0, 6.0, and 6.8), a saliva environment (pH 6.8), a simulated gastric fluid (SGF) (pH 1.3), and a simulated intestinal fluid (SIF) (pH 6.8) to simulate the physiological conditions in gastrointestinal (GI) tract. Propolis-loaded hydrogel beads were found to be stable at pH 1.3, 5.0, 6.0, simulated saliva, SGF, and SIF mediums, whereas the beads lose their stability at pH 6.8 buffer solution. Tested microorganisms displayed greater sensitivity to PE-loaded hydrogel beads compared with pure propolis. Contrary to antimicrobial activity results, antibiofilm activity results of PE-loaded GEL/SA and GEL/SA/CS hydrogel beads were found at low levels. According to the obtained results, the propolis-loaded GEL/SA/CS hydrogel beads synthesized within this study can be used in the treatment of GI tract diseases such as oral mucositis, gastric ulcer, ulcerative colitis, and GI cancer, as controlled releasing carriers of propolis.


Asunto(s)
Antiinfecciosos , Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Mezclas Complejas , Hidrogeles , Própolis , Compuestos de Aluminio/química , Compuestos de Aluminio/farmacocinética , Compuestos de Aluminio/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacocinética , Antiinfecciosos/farmacología , Quitosano/química , Quitosano/farmacocinética , Quitosano/farmacología , Mezclas Complejas/química , Mezclas Complejas/farmacocinética , Mezclas Complejas/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Gelatina/química , Gelatina/farmacocinética , Gelatina/farmacología , Hidrogeles/química , Hidrogeles/farmacocinética , Hidrogeles/farmacología , Própolis/química , Própolis/farmacocinética , Própolis/farmacología , Compuestos de Sodio/química , Compuestos de Sodio/farmacocinética , Compuestos de Sodio/farmacología
13.
J Am Chem Soc ; 142(52): 21751-21757, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33337859

RESUMEN

Although more attention has been attracted to the therapy based on reactive oxygen species (ROS) for tumor therapy in recent years, such as photodynamic therapy and chemodynamic therapy, the limited ROS production rate leads to their poor treatment effect owing to the relatively low content of O2 and H2O2 in tumor microenvironments, confined light penetration depth, strict Fenton reaction conditions (pH 3-4), and so on. Therefore, it is urgent to explore the new agents with highly efficient ROS generation capacity. Herein, we first prepared phospholipid coated Na2S2O8 nanoparticles (PNSO NPs) as new ROS generation agents for in situ generating Na+ and S2O82- through gradual degradation, which can then be changed to toxic •SO4- (a novel reported ROS) and •OH regardless of the amount of H2O2 and pH value in the tumor microenvironment (TME). As the generation of a large amount of Na+, PNSO NPs can bypass the ion transport rules of cells through endocytosis to deliver large amounts of Na+ into the cells, resulting in a surge of osmolarity and rapid cell rupture and lysis. Osmotic pressure induced by PNSO NPs will further lead to an unusual manner of cell death: caspase-1-related pyroptosis. Moreover, all of above effects will cause high immunogenic cell death, regulate the immunosuppressed TME, and then activate systemic antitumor immune responses to combat tumor metastasis and recurrence. We believe PNSO NPs will be new and potential ROS generation agents, and this work will broaden the thinking of the exploring of new antitumor nanodrugs.


Asunto(s)
Inmunoterapia/métodos , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sodio/química , Compuestos de Sodio/farmacología , Sulfatos/química , Sulfatos/farmacología , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Concentración Osmolar , Fosfolípidos/química , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
14.
Molecules ; 25(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066471

RESUMEN

C-6 oxidized chitosan is of great interest in obtaining a new moisture retention polymer like hyaluronic acid. The direct C-6 specific oxidation of chitosan mediated by the TEMPO/NaClO/NaBr system has proven to be difficult because of the high crystalline and high C-2 amino group content. In this work, the pre-modification of chitosan by N-succinylation was investigated and followed by the TEMPO-mediated C-6 specific oxidation under homogeneous conditions. The desired 6-oxidized N-succinyl chitosan product was obtained within 15 min with a yield of about 92%. The structure of these chitosan derivatives was confirmed by FTIR and NMR spectroscopy. Moreover, it was observed that the selective oxidation led to a great improvement in water solubility and moisture retention ability. These results present a wide range of possibilities for expanding the utilization of chitosan resources.


Asunto(s)
Quitosano/química , Óxidos N-Cíclicos/química , Bromuros/química , Rastreo Diferencial de Calorimetría , Catálisis , Espectroscopía de Resonancia Magnética , Estructura Molecular , Oxidación-Reducción , Compuestos de Sodio/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Difracción de Rayos X
15.
Chemosphere ; 261: 127844, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33113647

RESUMEN

Biochar supported nanosized iron (nFe(0)/BC) was synthesized and used as a persulfate (PS) activator to degradation tetracycline (TC). The influence of the initial pH values, PS and nFe(0)/BC dosage, initial TC concentration, and coexist anions were investigated. In the nFe(0)/BC-PS system, TC could be effectively removed at various pH values (3.0-9.0). The degradation efficiency of TC (100 mg/L) was 97.68% using nFe(0)/BC (0.4 g/L) and persulfate (1 mM) at pH 5.0. Coexisting ions (HCO3- and NO3-) had an inhibitory effect on TC degradation. The removal of TC could be fitted by a pseudo-second-order model. Electron-Spin Resonance (ESR) analysis and scavenging tests suggested that sulfate radicals (SO4·-) and hydroxyl radicals (HO·) were responsible for TC degradation. Details of the advanced oxidation process (AOP)-induced degradation pathways of TC were determined based on liquid chromatography mass-spectrometry (LC-MS) analysis. The nFe(0)/BC could still maintain 86.38% of its original removal capacity after five cycles. The findings of this study proved that nFe(0)/BC can be applied to activate PS for the treatment of pollution caused by TC.


Asunto(s)
Carbón Orgánico/química , Hierro/química , Nanopartículas/química , Compuestos de Sodio/química , Sulfatos/química , Tetraciclina/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Radical Hidroxilo/química , Modelos Teóricos , Oxidación-Reducción , Aguas Residuales/química
16.
J Mater Chem B ; 8(37): 8684-8694, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32856659

RESUMEN

Commercially available drug-eluting embolization beads (100-500 µm) reduced the occurrence of adverse events related to an anticancer drug, but were unascertained to remarkably benefit the transcatheter arterial chemoembolization (TACE) treatment of intermediate-stage liver cancer. Dextran-coated arsenite nanoparticles with the size ranging from 400 to 600 nm were developed as a nanosized drug-eluting bead (NDEB) for chemoembolization therapy of the rabbit VX2 liver tumor. We fully characterized their relevant physicochemistry and drug release properties. Their hemolysis was investigated before vessel embolization. The introduction of the NDEB allowed continuous embolization of tumor feeding vessels and sustained release of arsenic trioxide, thereby causing severe tumor necrosis and reduced vascularity. Sonography including B mode ultrasound, color Doppler flow imaging (CDFI) and dynamic contrast-enhanced ultrasound (CEUS) were performed to evaluate the tumor vascularity and viability. Additionally, its hepatotoxicity was tolerable at a medium dose. NDEB-TACE might be an effective therapeutic strategy for interventional therapy.


Asunto(s)
Trióxido de Arsénico/uso terapéutico , Portadores de Fármacos/química , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Animales , Trióxido de Arsénico/química , Arsenitos/química , Quimioembolización Terapéutica/métodos , Dextranos/química , Liberación de Fármacos , Gadolinio/química , Conejos , Compuestos de Sodio/química
17.
Chemosphere ; 258: 127268, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32569955

RESUMEN

In this work, UVA radiation that is part of solar light is taken as the irradiation source and radicals (HO, SO4- and HO2/O2-) are generated through activation of hydrogen peroxide (H2O2), sodium persulfate (Na2S2O8) and Bismuth catalyst (BiOCl), respectively. The distinguished performance in removing acetaminophen (ACTP), a model pharmaceutical pollutant, by these three radicals was compared for the first time. Effect of pH, halide ions concentration and interfacial mechanism have been investigated in detail. Interestingly, results show that heterogeneous UVA/BiOCl process has higher degradation efficiency than homogeneous UVA/H2O2 and UVA/Na2S2O8 systems whatever the solution's pH. To explain these results, second order reaction rate constant (kradical, ACTP) have been determined with laser flash photolysis (LFP) or radical scavenging experiments. The strongly interfacial-depended HO2/O2- radicals have the lowest second order rate constant with ACTP but highest steady state concentration. BiOCl is much easier activated by UVA, and outstanding ACTP mineralization can be achieved. Combination of BiOCl and Na2S2O8 exhibits synergistic effects rather than antagonism effects with H2O2. This study highlights the relative effective utilization of solar light through interfacial directed BiOCl photocatalysis and its synergistic effects with traditional oxidants.


Asunto(s)
Acetaminofén/análisis , Peróxido de Hidrógeno/química , Oxidantes/química , Compuestos de Sodio/química , Sulfatos/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Bismuto/química , Catálisis , Radical Hidroxilo/química , Modelos Teóricos , Oxidación-Reducción
18.
Phys Chem Chem Phys ; 22(22): 12644-12650, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32458929

RESUMEN

The effects of salts on protein systems are not yet fully understood. We investigated the ionic dynamics of three halide salts (NaI, NaBr, and NaCl) with two protein models, namely poly(N-isopropylacrylamide) (PNIPAM) and poly(N,N-diethylacrylamide) (PDEA), using multinuclear NMR, dispersion corrected density functional theory (DFT-D) calculations and dynamic light scattering (DLS) methods. The variation in ionic line-widths and chemical shifts induced by the polymers clearly illustrates that anions rather than cations interact directly with the polymers. From the variable temperature measurements of the NMR transverse relaxation rates of anions, which characterize the polymer-anion interaction intensities, the evolution behaviors of Cl-/Br-/I- during phase transitions are similar in each polymer system but differ between the two polymer systems. The NMR transverse relaxation rates of anions change synchronously with the phase transition of PNIPAM upon heating, but they drop rapidly and vanish about 3-4.5 °C before the phase transition of PDEA. By combining the DFT-D and DLS data, the relaxation results imply that anions escape from the interacting sites with PDEA prior to full polymer dehydration or collapse, which can be attributed to the lack of anion-NH interactions. The different dynamic evolutions of the anions in the PNIPAM and PDEA systems give us an important clue for understanding the micro-mechanism of protein folding in a complex salt aqueous solvent.


Asunto(s)
Acrilamidas/química , Resinas Acrílicas/química , Teoría Funcional de la Densidad , Polímeros/química , Proteínas/química , Bromuros/química , Dispersión Dinámica de Luz , Modelos Moleculares , Cloruro de Sodio/química , Compuestos de Sodio/química , Yoduro de Sodio/química , Temperatura
19.
Ecotoxicol Environ Saf ; 198: 110653, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32325258

RESUMEN

Turning biomass into biochar as a multifunctional carbon-based material for water remediation has attracted much research attention. Sawdust and rice husk were selected as feedstock for biochar (BC) production, aiming to explore their performance as a catalyst to activate persulfate (PS) for degrading acid orange 7 (AO7). There was an excellent synergistic effect in the combined BC/PS system. Sawdust biochar (MX) showed a faster and more efficient performance for the AO7 degradation due to its abundant oxygen functional groups, compared to rice husk biochar (DK). In the BC/PS system, AO7 was well decolorized and mineralized. Based on the two-dimensional correlation analysis method, the azo conjugation structure and naphthalene ring of AO7 molecule changed first then benzene ring changed during the reaction. Moreover, AO7 decolorization efficiency increased with the increase of PS concentration and biochar dosage, and the deacrease of pH. Biochar deactivated after used twice. When the biochar reached its adsorption equilibrium of AO7, the AO7 could not be degraded in the BC/PS system. SO4- and OH participated in the reaction together and OH played the main role in activating PS to AO7 decolorization based on the radical scavengers experiment. All of results indicate using biochar to activate PS for degradation of AO7 contaminated water is a promising method.


Asunto(s)
Compuestos Azo/análisis , Bencenosulfonatos/análisis , Carbón Orgánico/química , Compuestos de Sodio/química , Sulfatos/química , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Catálisis , Oxidación-Reducción
20.
Mater Sci Eng C Mater Biol Appl ; 109: 110530, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228940

RESUMEN

Peripheral nerve injuries often cause different degrees of sensory and motor function loss. Currently, the repair effect of the "gold standard", autologous nerve transplantation, is unsatisfactory. Tissue engineering has the potential to tissue manipulation, regeneration, and growth, but achieving personalization and precision remains a challenge. In this study, we used 3D bioprinting to construct a nerve scaffold composed of gelatin/alginate hydrogel containing rat Schwann cells. On day 1 after printing, the Schwann cell survival rate was 91.87 ± 0.55%. Cells could be cultured in the hydrogel for 7 days, and were well attached to the surface of the scaffold. On days 4 and 7, the 3D bioprinted scaffold released higher levels of nerve growth factor (NGF) than 2D culture group. Further, the mRNA levels of NGF, brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), and platelet-derived growth factor (PDGF) expressed on day 4 by Schwann cells were higher in the 3D bioprinted scaffold culture than in 2D culture. After 4 weeks of implantation, the cell-containing scaffold still showed partial lattice structure and positive S-100ß immunofluorescence. These results indicated that the 3D bioprinted gelatin-sodium alginate/Schwann-cell composite scaffold improved cell adhesion and related factor expression. This 3D bioprinted composite scaffold showed good biocompatibility and could be a promising candidate in neural tissue engineering in the future.


Asunto(s)
Alginatos/química , Compuestos de Aluminio/química , Gelatina/química , Ensayo de Materiales , Impresión Tridimensional , Células de Schwann/metabolismo , Compuestos de Sodio/química , Andamios del Tejido/química , Animales , Línea Celular , Ratas , Células de Schwann/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...