Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Sci Rep ; 13(1): 1250, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690664

RESUMEN

Vibrio cholerae causes cholera, an acute diarrhoeal disease. The virulence in V. cholerae is regulated by the quorum-sensing mechanism and response regulator LuxO positively regulates the expression of virulence determinants adhesion, biofilm formation, and cholera toxin production. Previous in-silico studies revealed that 2-methoxy-4-vinylphenol could bind to the ATP binding site of LuxO and the complex was compact and stable in pHs like intestinal pHs. Here, we have explored the polymeric nano-formulation of 2-methoxy-4-vinylphenol using cellulose acetate phthalate for controlled drug release and their effectiveness in attenuating the expression of V. cholerae virulence. Physico-chemical characterization of the formulation showed particles with a mean size of 91.8 ± 14 nm diameter and surface charge of - 14.7 ± 0.07 mV. The uniform round polymeric nanoparticles formed displayed about 51% burst release of the drug at pH 7 by 3rd h, followed by a controlled linear release in alkaline pH. The polymeric nanoparticles demonstrated a tenfold increase in intestinal membrane permeability ex-vivo. At lower concentrations, the 2-methoxy-4-vinylphenol polymeric nanoparticles were non-cytotoxic to Int 407 cells. In-vitro analysis at pH 6, pH 7, pH 8, and pH 9 revealed that cellulose acetate phthalate-2-methoxy-4-vinylphenol nanoparticles were non-bactericidal at concentrations up to 500 µg/mL. At 31.25 µg/mL, the nanoparticles inhibited about 50% of the biofilm formation of V. cholerae MTCC 3905 and HYR14 strains. At this concentration, the adherence of V. cholerae MTCC 3905 and HYR14 to Int 407 cell lines were also significantly affected. Gene expression analysis revealed that the expression of tcp, qrr, and ct at pH 6, 7, 8, and 9 has reduced. The CAP-2M4VP nanoparticles have demonstrated the potential to effectively reduce the virulence of V. cholerae in-vitro.


Asunto(s)
Cólera , Polímeros de Estímulo Receptivo , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Proteínas Bacterianas/metabolismo , Compuestos de Vinilo/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216354

RESUMEN

Rhamnolipids are becoming an important class of glycolipid biosurfactants. Herein, we describe for the first time the enzymatic synthesis of rhamnose fatty acid esters by the transesterification of rhamnose with fatty acid vinyl esters, using lipase from Pseudomonas stutzeri as a biocatalyst. The use of this lipase allows excellent catalytic activity in the synthesis of 4-O-acylrhamnose (99% conversion and full regioselectivity) after 3 h of reaction using tetrahydrofuran (THF) as the reaction media and an excess of vinyl laurate as the acyl donor. The role of reaction conditions, such as temperature, the substrates molar ratio, organic reaction medium and acyl donor chain-length, was studied. Optimum conditions were found using 35 °C, a molar ratio of 1:3 (rhamnose:acyldonor), solvents with a low logP value, and fatty acids with chain lengths from C4 to C18 as acyl donors. In hydrophilic solvents such as THF and acetone, conversions of up to 99-92% were achieved after 3 h of reaction. In a more sustainable solvent such as 2-methyl-THF (2-MeTHF), high conversions were also obtained (86%). Short and medium chain acyl donors (C4-C10) allowed maximum conversions after 3 h, and long chain acyl donors (C12-C18) required longer reactions (5 h) to get 99% conversions. Furthermore, scaled up reactions are feasible without losing catalytic action and regioselectivity. In order to explain enzyme regioselectivity and its ability to accommodate ester chains of different lengths, homology modelling, docking studies and molecular dynamic simulations were performed to explain the behaviour observed.


Asunto(s)
Ésteres/metabolismo , Lipasa/metabolismo , Pseudomonas stutzeri/metabolismo , Ramnosa/metabolismo , Biocatálisis , Enzimas Inmovilizadas/metabolismo , Esterificación/fisiología , Ácidos Grasos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lauratos/metabolismo , Solventes/metabolismo , Compuestos de Vinilo/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-34634490

RESUMEN

Glycerophospholipids are major components of cell membranes and have enormous variation in the composition of fatty acyl chains esterified on the sn-1 and sn-2 position as well as the polar head groups on the sn-3 position of the glycerol backbone. Phospholipase A2 (PLA2) enzymes constitute a superfamily of enzymes which play a critical role in metabolism and signal transduction by hydrolyzing the sn-2 acyl chains of glycerophospholipids. In human cell membranes, in addition to the conventional diester phospholipids, a significant amount is the sn-1 ether-linked phospholipids which play a critical role in numerous biological activities. However, precisely how PLA2s distinguish the sn-1 acyl chain linkage is not understood. In the present study, we expanded the technique of lipidomics to determine the unique in vitro specificity of three major human PLA2s, including Group IVA cytosolic cPLA2, Group VIA calcium-independent iPLA2, and Group V secreted sPLA2 toward the linkage at the sn-1 position. Interestingly, cPLA2 prefers sn-1 vinyl ether phospholipids known as plasmalogens over conventional ester phospholipids and the sn-1 alkyl ether phospholipids. iPLA2 showed similar activity toward vinyl ether and ester phospholipids at the sn-1 position. Surprisingly, sPLA2 preferred ester phospholipids over alkyl and vinyl ether phospholipids. By taking advantage of molecular dynamics simulations, we found that Trp30 in the sPLA2 active site dominates its specificity for diester phospholipids.


Asunto(s)
Fosfolipasas A2/genética , Éteres Fosfolípidos/metabolismo , Fosfolípidos/genética , Compuestos de Vinilo/metabolismo , Calcio/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Glicerofosfolípidos/química , Glicerofosfolípidos/metabolismo , Humanos , Hidrólisis , Cinética , Fosfolipasas A2/metabolismo , Fosfolípidos/metabolismo , Especificidad por Sustrato/genética , Compuestos de Vinilo/química
4.
J Med Chem ; 64(16): 12322-12358, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34378914

RESUMEN

Rhodesain is a major cysteine protease of Trypanosoma brucei rhodesiense, a pathogen causing Human African Trypanosomiasis, and a validated drug target. Recently, we reported the development of α-halovinylsulfones as a new class of covalent reversible cysteine protease inhibitors. Here, α-fluorovinylsulfones/-sulfonates were optimized for rhodesain based on molecular modeling approaches. 2d, the most potent and selective inhibitor in the series, shows a single-digit nanomolar affinity and high selectivity toward mammalian cathepsins B and L. Enzymatic dilution assays and MS experiments indicate that 2d is a slow-tight binder (Ki = 3 nM). Furthermore, the nonfluorinated 2d-(H) shows favorable metabolism and biodistribution by accumulation in mice brain tissue after intraperitoneal and oral administration. The highest antitrypanosomal activity was observed for inhibitors with an N-terminal 2,3-dihydrobenzo[b][1,4]dioxine group and a 4-Me-Phe residue in P2 (2e/4e) with nanomolar EC50 values (0.14/0.80 µM). The different mechanisms of reversible and irreversible inhibitors were explained using QM/MM calculations and MD simulations.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Sulfonas/farmacología , Ácidos Sulfónicos/farmacología , Tripanocidas/farmacología , Compuestos de Vinilo/farmacología , Animales , Cisteína Endopeptidasas/química , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/metabolismo , Inhibidores de Cisteína Proteinasa/toxicidad , Pruebas de Enzimas , Femenino , Células HeLa , Humanos , Cinética , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Unión Proteica , Relación Estructura-Actividad , Sulfonas/síntesis química , Sulfonas/metabolismo , Sulfonas/toxicidad , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/metabolismo , Ácidos Sulfónicos/toxicidad , Tripanocidas/síntesis química , Tripanocidas/metabolismo , Tripanocidas/toxicidad , Trypanosoma brucei brucei/efectos de los fármacos , Compuestos de Vinilo/síntesis química , Compuestos de Vinilo/metabolismo , Compuestos de Vinilo/toxicidad
5.
Eur J Pharm Biopharm ; 154: 387-396, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32717391

RESUMEN

Many amorphous solid dispersions (ASDs) are thermodynamically unstable. Thus, the active pharmaceutical ingredient (API) might crystallize over time. The crystallization kinetics and therewith the long-term stability of ASDs depends on the storage conditions temperature and relative humidity (RH) as they determine the molecular mobility of the API in the polymer. To quantify the molecular mobility, the rheological behavior of two different ASDs with ibuprofen and either poly(vinyl acetate) or poly(vinylpyrrolidone-co-vinyl acetate) was analyzed as function of temperature and relative humidity by means of an oscillatory rheometer. The plasticizing effect of ibuprofen and absorbed water on the zero-shear viscosity of the polymer could be fully explained by the reduction of the glass-transition temperature of the mixture compared to the one of the pure polymer. Moreover, this work proposes an approach to predict the zero-shear viscosity of an ASD based on only the temperature dependence of the zero-shear viscosity of the pure polymer as well as the predicted water content in the ASD at certain RH using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT).


Asunto(s)
Humedad , Ibuprofeno/química , Polivinilos/química , Pirrolidinas/química , Compuestos de Vinilo/química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Cristalización/métodos , Excipientes/química , Excipientes/metabolismo , Ibuprofeno/metabolismo , Polivinilos/metabolismo , Pirrolidinas/metabolismo , Reología/métodos , Solubilidad , Compuestos de Vinilo/metabolismo , Viscosidad
6.
Proc Natl Acad Sci U S A ; 117(14): 7792-7798, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209662

RESUMEN

A significant fraction of the glycerophospholipids in the human body is composed of plasmalogens, particularly in the brain, cardiac, and immune cell membranes. A decline in these lipids has been observed in such diseases as Alzheimer's and chronic obstructive pulmonary disease. Plasmalogens contain a characteristic 1-O-alk-1'-enyl ether (vinyl ether) double bond that confers special biophysical, biochemical, and chemical properties to these lipids. However, the genetics of their biosynthesis is not fully understood, since no gene has been identified that encodes plasmanylethanolamine desaturase (E.C. 1.14.99.19), the enzyme introducing the crucial alk-1'-enyl ether double bond. The present work identifies this gene as transmembrane protein 189 (TMEM189). Inactivation of the TMEM189 gene in human HAP1 cells led to a total loss of plasmanylethanolamine desaturase activity, strongly decreased plasmalogen levels, and accumulation of plasmanylethanolamine substrates and resulted in an inability of these cells to form labeled plasmalogens from labeled alkylglycerols. Transient expression of TMEM189 protein, but not of other selected desaturases, recovered this deficit. TMEM189 proteins contain a conserved protein motif (pfam10520) with eight conserved histidines that is shared by an alternative type of plant desaturase but not by other mammalian proteins. Each of these histidines is essential for plasmanylethanolamine desaturase activity. Mice homozygous for an inactivated Tmem189 gene lacked plasmanylethanolamine desaturase activity and had dramatically lowered plasmalogen levels in their tissues. These results assign the TMEM189 gene to plasmanylethanolamine desaturase and suggest that the previously characterized phenotype of Tmem189-deficient mice may be caused by a lack of plasmalogens.


Asunto(s)
Lípidos/genética , Oxidorreductasas/genética , Plasmalógenos/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Línea Celular , Humanos , Ratones , Oxidación-Reducción , Oxidorreductasas/metabolismo , Fenotipo , Plasmalógenos/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Compuestos de Vinilo/metabolismo
7.
J Med Chem ; 63(6): 3298-3316, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32125159

RESUMEN

Cruzain, an essential cysteine protease of the parasitic protozoan, Trypanosoma cruzi, is an important drug target for Chagas disease. We describe here a new series of reversible but time-dependent inhibitors of cruzain, composed of a dipeptide scaffold appended to vinyl heterocycles meant to provide replacements for the irreversible reactive "warheads" of vinyl sulfone inactivators of cruzain. Peptidomimetic vinyl heterocyclic inhibitors (PVHIs) containing Cbz-Phe-Phe/homoPhe scaffolds with vinyl-2-pyrimidine, vinyl-2-pyridine, and vinyl-2-(N-methyl)-pyridine groups conferred reversible, time-dependent inhibition of cruzain (Ki* = 0.1-0.4 µM). These cruzain inhibitors exhibited moderate to excellent selectivity versus human cathepsins B, L, and S and showed no apparent toxicity to human cells but were effective in cell cultures of Trypanosoma brucei brucei (EC50 = 1-15 µM) and eliminated T. cruzi in infected murine cardiomyoblasts (EC50 = 5-8 µM). PVHIs represent a new class of cruzain inhibitors that could progress to viable candidate compounds to treat Chagas disease and human sleeping sickness.


Asunto(s)
Inhibidores de Cisteína Proteinasa/farmacología , Peptidomiméticos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tripanocidas/farmacología , Compuestos de Vinilo/farmacología , Animales , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/metabolismo , Diseño de Fármacos , Pruebas de Enzimas , Humanos , Cinética , Ratones , Simulación del Acoplamiento Molecular , Mioblastos Cardíacos/efectos de los fármacos , Peptidomiméticos/síntesis química , Peptidomiméticos/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Piridinas/síntesis química , Piridinas/metabolismo , Piridinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Pirimidinas/farmacología , Tripanocidas/síntesis química , Tripanocidas/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Compuestos de Vinilo/síntesis química , Compuestos de Vinilo/metabolismo
8.
Sci Rep ; 9(1): 16007, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690766

RESUMEN

Here we report a novel structure-based microbial screening method for vinyl compound discovery, DISCOVER (direct screening method based on coupling reactions for vinyl compound producers). Through a two-step screening procedure based on selective coupling reactions of terminal alkenes, the thiol-ene reaction (1st step of screening) and Mizoroki-Heck reaction, followed by iodine test (2nd step of screening), microbes producing vinyl compounds like itaconic acid (IA) can be isolated from soil samples. In the 1st step of screening, soil sources are plated on agar medium supplemented with an antimicrobial agent, α-thioglycerol (TG), and a radical initiator, VA-044 (VA). In the 2nd step of screening, vinyl compounds produced in the cultures are labelled with iodobenzene via the Mizoroki-Heck reaction, followed by an iodine test, leading to the detection and characterisation of labelled products. We evaluated the validity of DISCOVER using IA and its producer Aspergillus terreus. Experimental data supported our hypothesis that IA reacts with TG in the medium via the thiol-ene reaction and consequently, A. terreus rapidly forms colonies on the agar medium because of the loss of the antimicrobial activity of TG. Using DISCOVER, high throughput and selective isolation of A. terreus strains producing IA was possible from soils.


Asunto(s)
Aspergillus/metabolismo , Compuestos de Vinilo/metabolismo , Aspergillus/química , Aspergillus/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Glicerol/análogos & derivados , Glicerol/química , Glicerol/farmacología , Yodobencenos/química , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Suelo/química , Microbiología del Suelo , Succinatos/química , Succinatos/aislamiento & purificación , Compuestos de Vinilo/análisis
9.
ACS Chem Biol ; 14(8): 1698-1707, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31310712

RESUMEN

Optimized and stringent chemical methods to profile nascent RNA expression are still in demand. Herein, we expand the toolkit for metabolic labeling of RNA through application of inverse electron demand Diels-Alder (IEDDA) chemistry. Structural examination of metabolic enzymes guided the design and synthesis of vinyl-modified nucleosides, which we systematically tested for their ability to be installed through cellular machinery. Further, we tested these nucleosides against a panel of tetrazines to identify those which are able to react with a terminal alkene, but are stable enough for selective conjugation. The selected pairings then facilitated RNA functionalization with biotin and fluorophores. We found that this chemistry not only is amenable to preserving RNA integrity but also endows the ability to both tag and image RNA in cells. These key findings represent a significant advancement in methods to profile the nascent transcriptome using chemical approaches.


Asunto(s)
Nucleósidos/metabolismo , ARN/metabolismo , Compuestos de Vinilo/metabolismo , Reacción de Cicloadición , Células HEK293 , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Cinética , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Nucleósidos/síntesis química , Teoría Cuántica , ARN/química , Compuestos de Vinilo/síntesis química
10.
Curr Drug Deliv ; 16(6): 538-547, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30674259

RESUMEN

BACKGROUND: Fenofibrate (FNB) is an effective drug for the treatment of hypertriglyceridemia, hypercholesterolemia as well as mixed hyperlipidemia. However, due to its poor aqueous solubility, FNB has the problem of poor oral absorption followed by low bioavailability. OBJECTIVE: The aim of this research was to construct FNB amorphous solid dispersion employing PVP VA64 as the carrier by hot-melt extrusion method, in order to improve the oral bioavailability. Additionally, the cell transport experiment was conducted to further investigate the mechanism of promoted osmotic absorption. METHODS: The physical state of the obtained solid dispersion was characterized using SEM, DSC and XRD. Besides, in vitro Caco-2 cells were used to evaluate the cytotoxicity of the carrier and mimic gastrointestinal drug permeation. At last, in vitro dissolution test and in vivo bioavailability study were also carried out. RESULTS: The prepared FNB solid dispersion was found to be an amorphous state after hot-melt extrusion process. In vitro cytotoxicity test on Caco-2 cells confirmed the excellent biocompatibility of the carrier PVP VA64. Besides, transwell cell transport assay and in vitro dissolution test revealed that FNB released from amorphous solid dispersion was equipped with an improved transmembrane transport and dissolution rate. Moreover, pharmacokinetic study in beagle dogs showed that comparing with commercial micronized product Lipanthyl®, the oral bioavailability of FNB solid dispersion was significantly enhanced (2.45 fold). CONCLUSION: In conclusion, PVP VA64 can be regarded as a promising polymer to enhance the bioavailability of poorly water-soluble drugs such as FNB processed by hot-melt extrusion. Besides, investigations on the mechanism of the enhanced penetration are expected to lay a foundation on the subsequent development of effective and practical solid dispersion.


Asunto(s)
Fenofibrato/química , Calor , Pirrolidinas/química , Compuestos de Vinilo/química , Animales , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Perros , Fenofibrato/metabolismo , Fenofibrato/farmacocinética , Humanos , Pirrolidinas/metabolismo , Compuestos de Vinilo/metabolismo
11.
Neuroimage Clin ; 20: 537-542, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30175040

RESUMEN

Background: The aim of this study was to investigate the potential of combined textural feature analysis of contrast-enhanced MRI (CE-MRI) and static O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET for the differentiation between local recurrent brain metastasis and radiation injury since CE-MRI often remains inconclusive. Methods: Fifty-two patients with new or progressive contrast-enhancing brain lesions on MRI after radiotherapy (predominantly stereotactic radiosurgery) of brain metastases were additionally investigated using FET PET. Based on histology (n = 19) or clinicoradiological follow-up (n = 33), local recurrent brain metastases were diagnosed in 21 patients (40%) and radiation injury in 31 patients (60%). Forty-two textural features were calculated on both unfiltered and filtered CE-MRI and summed FET PET images (20-40 min p.i.), using the software LIFEx. After feature selection, logistic regression models using a maximum of five features to avoid overfitting were calculated for each imaging modality separately and for the combined FET PET/MRI features. The resulting models were validated using cross-validation. Diagnostic accuracies were calculated for each imaging modality separately as well as for the combined model. Results: For the differentiation between radiation injury and recurrence of brain metastasis, textural features extracted from CE-MRI had a diagnostic accuracy of 81% (sensitivity, 67%; specificity, 90%). FET PET textural features revealed a slightly higher diagnostic accuracy of 83% (sensitivity, 88%; specificity, 75%). However, the highest diagnostic accuracy was obtained when combining CE-MRI and FET PET features (accuracy, 89%; sensitivity, 85%; specificity, 96%). Conclusions: Our findings suggest that combined FET PET/CE-MRI radiomics using textural feature analysis offers a great potential to contribute significantly to the management of patients with brain metastases.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Radioisótopos de Flúor , Imagen por Resonancia Magnética/métodos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Traumatismos por Radiación/diagnóstico por imagen , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/metabolismo , Femenino , Radioisótopos de Flúor/metabolismo , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Recurrencia Local de Neoplasia/metabolismo , Traumatismos por Radiación/metabolismo , Tirosina/metabolismo , Compuestos de Vinilo/metabolismo , Adulto Joven
12.
J Biol Chem ; 293(22): 8710-8711, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29858391

RESUMEN

Plasmalogens-phospholipids containing a characteristic vinyl ether group-are precursors of lipids important for cellular signaling such as arachidonic acid. Plasmalogen catabolism involves cleavage of the vinyl ether bond, but the identity of the corresponding enzyme that cleaves the sn-1 vinyl ether bond was unknown. New research shows that cytochrome c, with some help from another lipid, catalyzes the oxidative cleavage of this bond. This discovery, and the subsequent mechanistic dissection, provides exciting new directions for lipid signaling research.


Asunto(s)
Citocromos c/metabolismo , Hidrolasas/metabolismo , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo , Plasmalógenos/metabolismo , Compuestos de Vinilo/química , Animales , Citocromos c/química , Humanos , Lípidos/análisis , Oxidación-Reducción , Compuestos de Vinilo/metabolismo
13.
Mol Biotechnol ; 60(7): 492-505, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29796788

RESUMEN

Natural production of anti-cancer drug taxol from Taxus has proved to be environmentally unsustainable and economically unfeasible. Currently, bioengineering the biosynthetic pathway of taxol is an attractive alternative production approach. 10-deacetylbaccatin III-10-O-acetyl transferase (DBAT) was previously characterized as an acyltransferase, using 10-deacetylbaccatin III (10-DAB) and acetyl CoA as natural substrates, to form baccatin III in the taxol biosynthesis. Here, we report that other than the natural acetyl CoA (Ac-CoA) substrate, DBAT can also utilize vinyl acetate (VA), which is commercially available at very low cost, acylate quickly and irreversibly, as acetyl donor in the acyl transfer reaction to produce baccatin III. Furthermore, mutants were prepared via a semi-rational design in this work. A double mutant, I43S/D390R was constructed to combine the positive effects of the different single mutations on catalytic activity, and its catalytic efficiency towards 10-DAB and VA was successfully improved by 3.30-fold, compared to that of wild-type DBAT, while 2.99-fold higher than the catalytic efficiency of WT DBAT towards 10-DAB and Ac-CoA. These findings can provide a promising economically and environmentally friendly method for exploring novel acyl donors to engineer natural product pathways.


Asunto(s)
Acetiltransferasas/genética , Alcaloides/biosíntesis , Antineoplásicos Fitogénicos/biosíntesis , Taxus/enzimología , Acetiltransferasas/química , Acetiltransferasas/metabolismo , Alcaloides/economía , Antineoplásicos Fitogénicos/economía , Bioingeniería , Vías Biosintéticas , Biología Computacional , Análisis Costo-Beneficio , Ingeniería Genética , Modelos Moleculares , Mutagénesis , Paclitaxel/biosíntesis , Paclitaxel/economía , Especificidad por Sustrato , Taxoides/economía , Taxoides/metabolismo , Taxus/química , Taxus/genética , Taxus/metabolismo , Compuestos de Vinilo/química , Compuestos de Vinilo/metabolismo
14.
J Biol Chem ; 293(22): 8693-8709, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29530984

RESUMEN

Plasmalogens are phospholipids critical for cell function and signaling that contain a vinyl ether linkage at the sn-1 position and are highly enriched in arachidonic acid (AA) at the sn-2 position. However, the enzyme(s) responsible for the cleavage of the vinyl ether linkage in plasmalogens has remained elusive. Herein, we report that cytochrome c, in the presence of either cardiolipin (CL), O2 and H2O2, or oxidized CL and O2, catalyzes the oxidation of the plasmalogen vinyl ether linkage, promoting its hydrolytic cleavage and resultant production of 2-AA-lysolipids and highly reactive α-hydroxy fatty aldehydes. Using stable isotope labeling in synergy with strategic chemical derivatizations and high-mass-accuracy MS, we deduced the chemical mechanism underlying this long sought-after reaction. Specifically, labeling with either 18O2 or H218O, but not with H218O2, resulted in M + 2 isotopologues of the α-hydroxyaldehyde, whereas reactions with both 18O2 and H218O identified the M + 4 isotopologue. Furthermore, incorporation of 18O from 18O2 was predominantly located at the α-carbon. In contrast, reactions with H218O yielded 18O linked to the aldehyde carbon. Importantly, no significant labeling of 2-AA-lysolipids with 18O2, H218O, or H218O2 was present. Intriguingly, phosphatidylinositol phosphates (PIP2 and PIP3) effectively substituted for cardiolipin. Moreover, cytochrome c released from myocardial mitochondria subjected to oxidative stress cleaved plasmenylcholine in membrane bilayers, and this was blocked with a specific mAb against cytochrome c Collectively, these results identify the first plasmalogenase in biology, reveal the production of previously unanticipated signaling lipids by cytochrome c, and present new perspectives on cellular signaling during oxidative stress.


Asunto(s)
Citocromos c/metabolismo , Hidrolasas/metabolismo , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo , Plasmalógenos/metabolismo , Compuestos de Vinilo/química , Animales , Citocromos c/química , Caballos , Humanos , Hidrólisis , Lípidos/análisis , Masculino , Oxidación-Reducción , Conejos , Compuestos de Vinilo/metabolismo
15.
J Lipid Res ; 59(5): 901-909, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29540573

RESUMEN

Plasmanylethanolamine desaturase (PEDS) (EC 1.14.99.19) introduces the 1-prime double bond into plasmalogens, one of the most abundant phospholipids in the human body. This labile membrane enzyme has not been purified and its coding sequence is unknown. Previous assays for this enzyme used radiolabeled substrates followed by multistep processing. We describe here a straight-forward method for the quantification of PEDS in enzyme incubation mixtures using pyrene-labeled substrates and reversed-phase HPLC with fluorescence detection. After stopping the reaction with hydrochloric acid in acetonitrile, the mixture was directly injected into the HPLC system without the need of lipid extraction. The substrate, 1-O-pyrenedecyl-2-acyl-sn-glycero-3-phosphoethanolamine, and the lyso-substrate, 1-O-pyrenedecyl-sn-glycero-3-phosphoethanolamine, were prepared from RAW-12 cells deficient in PEDS activity and were compared for their performance in the assay. Plasmalogen levels in mouse tissues and in cultured cells did not correlate with PEDS levels, indicating that the desaturase might not be the rate limiting step for plasmalogen biosynthesis. Among selected mouse organs, the highest activities were found in kidney and in spleen. Incubation of intact cultivated mammalian cells with 1-O-pyrenedecyl-sn-glycerol, extraction of lipids, and treatment with hydrochloric or acetic acid in acetonitrile allowed sensitive monitoring of PEDS activity in intact cells.


Asunto(s)
Cromatografía Líquida de Alta Presión , Oxidorreductasas/análisis , Plasmalógenos/química , Pirenos/química , Espectrometría de Fluorescencia , Compuestos de Vinilo/química , Animales , Células Cultivadas , Ratones , Estructura Molecular , Oxidorreductasas/deficiencia , Oxidorreductasas/metabolismo , Plasmalógenos/biosíntesis , Pirenos/metabolismo , Especificidad por Sustrato , Compuestos de Vinilo/metabolismo
16.
Proteomics ; 18(9): e1700447, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29522652

RESUMEN

Five different letters and post cards as well as the shirt worn by Anton Chekhov on his death bed, stored in the State Literary-Memorial Museum-Reserve A. P. Chekhov Melikhovo (nearby Moscow), have been analyzed by applying EVA (an ethyl vinyl acetate foil studded with crushed strong anion and cation exchangers and with C8 resins) diskettes to these surfaces. Three different eluates (under acidic and basic conditions and with acetonitrile) were analyzed by high resolution mass spectrometry. The environmental microbiota present on samples and the Mycobacterium tuberculosis strain were described by a meta-proteomics approach. Eight identified M. tuberculosis proteins confirmed the presence of the bacterium and the cause of Chekhov's death, in addition to several sequenced peptides belonging to other bacterial species. The human plasma proteins and human keratins, detected on a tiny blood spot on the shirt, demonstrated the power of the combined approach.


Asunto(s)
Personajes , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/metabolismo , Proteómica/métodos , Tuberculosis/metabolismo , Compuestos de Vinilo/metabolismo , Historia del Siglo XX , Humanos , Médicos , Tuberculosis/microbiología
17.
Bioorg Med Chem Lett ; 28(6): 1090-1092, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29471992

RESUMEN

Divinyl-132,173-cyclopheophorbide-a enol was in vivo produced as a metabolite of divinyl-chlorophyll-a by protists and in vitro prepared by the intramolecular cyclization of methyl divinyl-pyropheophorbide-a, one of the divinyl-chlorophyll-a derivatives. The 1H NMR spectra in CDCl3 showed that the obtained product took exclusively its enol form in the solution. The intramolecular cyclization of chlorin π-system at the C132 and C173 positions affected the optical properties of such chlorophyll derivatives including the non-fluorescent emission of the enol.


Asunto(s)
Clorofila/análogos & derivados , Compuestos de Vinilo/química , Clorofila/síntesis química , Clorofila/química , Clorofila/metabolismo , Conformación Molecular , Compuestos de Vinilo/metabolismo
18.
Appl Microbiol Biotechnol ; 102(4): 1859-1867, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29297101

RESUMEN

Ethene (ETH)-grown inocula of Nocardioides JS614 grow on vinyl chloride (VC), vinyl fluoride (VF), or vinyl bromide (VB) as the sole carbon and energy source, with faster growth rates and higher cell yields on VC and VF than on VB. However, whereas acetate-grown inocula of JS614 grow on VC and VF after a lag period, growth on VB did not occur unless supplemental ethene oxide (EtO) was present in the medium. Despite inferior growth on VB, the maximum rate of VB consumption by ETH-grown cells was ~ 50% greater than the rates of VC and VF consumption, but Br- release during VB consumption was non-stoichiometric with VB consumption (~ 66%) compared to 100% release of Cl- and F- during VC and VF consumption. Evidence was obtained for VB turnover-dependent toxicity of cell metabolism in JS614 with both acetate-dependent respiration and growth being significantly reduced by VB turnover, but no VC or VF turnover-dependent toxicity of growth was detected. Reduced growth rate and cell yield of JS614 on VB probably resulted from a combination of inefficient metabolic processing of the highly unstable VB epoxide (t0.5 = 45 s), accompanied by growth inhibitory effects of VB metabolites on acetate-dependent metabolism. The exact role(s) of EtO in promoting growth of alkene repressed JS614 on VB remains unresolved, with evidence of EtO inducing epoxide consuming activity prior to an increase in alkene oxidizing activity and supplementing reductant supply when VB is the growth substrate.


Asunto(s)
Actinobacteria/crecimiento & desarrollo , Actinobacteria/metabolismo , Cloruro de Vinilo/metabolismo , Compuestos de Vinilo/metabolismo , Carbono/metabolismo , Metabolismo Energético
19.
Microb Pathog ; 116: 130-134, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29325866

RESUMEN

The influence of 2-(2-nitrovinyl) furan on the activities of selected bacteriostatic and bactericidal antibiotics was investigated. Minimum inhibitory concentration and fractional inhibitory concentration index were determined to evaluate the interaction between 2-(2-nitrovinyl) furan and the antibiotics. 2-(2-nitrovinyl) furan exhibited additive interactions with chloramphenicol, erythromycin, lincomycin and gemifloxacin. However, synergistic interaction was observed with amoxicillin, ampicillin and ciprofloxacin. Superoxide anion content of Escherichia coli exposed to antibiotics with/without 2-(2-nitrovinyl) furan increased significantly (p < .05). Furthermore, reduced glutathione decreased significantly with a corresponding increase in glutathione disulphide. In addition, malondialdehyde, a product of lipid peroxidation, increased significantly in E. coli exposed to antibiotics and 2-(2-nitrovinyl) furan. It can be deduced from this study that 2-(2-nitrovinyl) furan enhanced bacteriostatic and bactericidal antibiotics-mediated bacterial death possibly by potentiating reactive oxygen species generation and oxidative stress.


Asunto(s)
Antibacterianos/metabolismo , Interacciones Farmacológicas , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Furanos/metabolismo , Estrés Oxidativo , Compuestos de Vinilo/metabolismo , Glutatión/análisis , Malondialdehído/análisis , Pruebas de Sensibilidad Microbiana , Superóxidos/análisis
20.
Angew Chem Int Ed Engl ; 56(1): 243-247, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27930843

RESUMEN

The cleavage of a protecting group from a protein or drug under bioorthogonal conditions enables accurate spatiotemporal control over protein or drug activity. Disclosed herein is that vinyl ethers serve as protecting groups for alcohol-containing molecules and as reagents for bioorthogonal bond-cleavage reactions. A vinyl ether moiety was installed in a range of molecules, including amino acids, a monosaccharide, a fluorophore, and an analogue of the cytotoxic drug duocarmycin. Tetrazine-mediated decaging proceeded under biocompatible conditions with good yields and reasonable kinetics. Importantly, the nontoxic, vinyl ether duocarmycin double prodrug was successfully decaged in live cells to reinstate cytotoxicity. This bioorthogonal reaction presents broad applicability and may be suitable for in vivo applications.


Asunto(s)
Alcoholes/metabolismo , Tetrazoles/metabolismo , Compuestos de Vinilo/metabolismo , Alcoholes/química , Línea Celular Tumoral , Reacción de Cicloadición , Electrones , Células Hep G2 , Humanos , Cinética , Estructura Molecular , Teoría Cuántica , Tetrazoles/química , Compuestos de Vinilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...