Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.363
Filtrar
1.
Int J Nanomedicine ; 19: 5059-5070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836007

RESUMEN

Purpose: The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods: We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results: The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion: Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.


Asunto(s)
Preparaciones de Acción Retardada , Doxorrubicina , Portadores de Fármacos , Liberación de Fármacos , Compuestos Férricos , Microgeles , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Humanos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Células MCF-7 , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Microgeles/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Alginatos/química , Aminas/química , Carboximetilcelulosa de Sodio/química , Nanopartículas/química , Zinc/química , Compuestos de Zinc/química , Supervivencia Celular/efectos de los fármacos
2.
PLoS One ; 19(5): e0304032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38787828

RESUMEN

Heterostructure engineering is an effective technology to improve photo-electronic properties of two dimensional layered semiconductors. In this paper, based on first principles method, we studied the structure, stability, energy band, and optical properties of ZnSe/SnSe heterostructure change with film layer. Results show that all heterostructures are the type-II band arrangement, and the interlayer interaction is characterized by van der Waals. The electron concentration and charge density difference implies the electron (holes) transition from SnSe to monolayer ZnSe. By increasing the layer of SnSe films, the quantum effects are weakened leading to the band gap reduced, and eventually show metal properties. The optical properties also have obvious change, the excellent absorption ability of ZnSe/SnSe heterostructures mainly near the infrared spectroscopy. These works suggest that ZnSe/SnSe heterostructure has significant potential for future optoelectronic applications.


Asunto(s)
Compuestos de Selenio , Compuestos de Zinc , Compuestos de Selenio/química , Compuestos de Zinc/química , Semiconductores
3.
Int J Biol Macromol ; 269(Pt 1): 131994, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697431

RESUMEN

Nowadays, dye water pollution is becoming increasingly severe. Composite of MXene, ZnS, and chitosan-cellulose material (MX/ZnS/CC) was developed to remove anionic dyes through the synergistic effect of adsorption and photocatalytic degradation. MXene was introduced as the cocatalyst to form Schottky heterostructure with ZnS for improving the separation efficiency of photocarriers and photocatalytic performance. Chitosan-cellulose material mainly served as the dye adsorbent, while also could improve material stability and assist in generation of free radicals for dye degradation. The physics and chemistry properties of MX/ZnS/CC composite were systematically inspected through various characterizations. MX/ZnS/CC composite exhibited good adsorption ability to anionic dyes with adsorption capacity up to 1.29 g/g, and excellent synergistic effects of adsorption and photodegradation with synergistic removal capacity up to 5.63 g/g. MX/ZnS/CC composite performed higher synergistic removal ability and better optical and electrical properties than pure MXene, ZnS, chitosan-cellulose material, and MXene/ZnS. After compounding, the synergistic removal percentage of dyes increased by a maximum of 309 %. MX/ZnS/CC composite mainly adsorbs anionic dyes through electrostatic interactions and catalyzes the generation of •O2-, h+, and •OH to degrade dyes, which has been successfully used to remove anionic dyes from environmental water, achieving a 100 % removal of 50 mg/L dye.


Asunto(s)
Celulosa , Quitosano , Colorantes , Contaminantes Químicos del Agua , Compuestos de Zinc , Quitosano/química , Adsorción , Celulosa/química , Compuestos de Zinc/química , Colorantes/química , Colorantes/aislamiento & purificación , Catálisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Sulfuros/química , Purificación del Agua/métodos , Fotólisis , Aniones/química
4.
Nano Lett ; 24(22): 6706-6713, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775232

RESUMEN

Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.


Asunto(s)
Encéfalo , Puntos Cuánticos , Puntos Cuánticos/química , Encéfalo/diagnóstico por imagen , Fotones , Animales , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Compuestos de Cadmio/química , Sulfuros/química , Ratones , Compuestos de Zinc/química , Telurio/química , Compuestos de Selenio/química , Humanos
5.
Sci Rep ; 14(1): 10066, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698009

RESUMEN

The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the ß-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of ß-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.


Asunto(s)
Ampicilina , Técnicas Biosensibles , Quitosano , Manganeso , Sulfuros , Compuestos de Zinc , Ampicilina/análisis , Ampicilina/química , Quitosano/química , Técnicas Biosensibles/métodos , Compuestos de Zinc/química , Manganeso/química , Sulfuros/química , Antibacterianos/análisis , Antibacterianos/química , beta-Lactamasas/análisis , beta-Lactamasas/metabolismo , beta-Lactamasas/química , Leche/química , Límite de Detección , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Animales
6.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692166

RESUMEN

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Asunto(s)
Indoles , Rayos Infrarrojos , Isoindoles , Lisosomas , Mitocondrias , Nanopartículas , Compuestos Organometálicos , Fotoquimioterapia , Compuestos de Zinc , Compuestos de Zinc/química , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Indoles/química , Indoles/farmacología , Lisosomas/metabolismo , Humanos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Nanopartículas/química , Línea Celular Tumoral , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Oxígeno Singlete/metabolismo , Femenino , Ácido Fólico/química
7.
Ultrason Sonochem ; 105: 106858, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564910

RESUMEN

Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.


Asunto(s)
Antineoplásicos , Electrodos , Grafito , Compuestos de Nitrógeno , Sulfuros , Ondas Ultrasónicas , Compuestos de Zinc , Compuestos de Zinc/química , Sulfuros/química , Antineoplásicos/química , Grafito/química , Flutamida/análisis , Flutamida/química , Técnicas Electroquímicas/métodos , Técnicas de Química Sintética , Electroquímica , Límite de Detección , Catálisis , Nanocompuestos/química , Nanoestructuras/química
8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673765

RESUMEN

Quantum dots (QDs) are a novel type of nanomaterial that has unique optical and physical characteristics. As such, QDs are highly desired because of their potential to be used in both biomedical and industrial applications. However, the mass adoption of QDs usage has raised concerns among the scientific community regarding QDs' toxicity. Although many papers have reported the negative impact of QDs on a cellular level, the exact mechanism of the QDs' toxicity is still unclear. In this investigation, we study the adverse effects of QDs by focusing on one of the most important cellular processes: actin polymerization and depolymerization. Our results showed that QDs act in a biphasic manner where lower concentrations of QDs stimulate the polymerization of actin, while high concentrations of QDs inhibit actin polymerization. Furthermore, we found that QDs can bind to filamentous actin (F-actin) and cause bundling of the filament while also promoting actin depolymerization. Through this study, we found a novel mechanism in which QDs negatively influence cellular processes and exert toxicity.


Asunto(s)
Actinas , Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Sulfuros , Compuestos de Zinc , Puntos Cuánticos/química , Actinas/metabolismo , Compuestos de Zinc/química , Sulfuros/química , Compuestos de Cadmio/química , Compuestos de Selenio/química , Polimerizacion , Animales , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Humanos
9.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675664

RESUMEN

The integration of a multidimensional treatment dominated by active ingredients of traditional Chinese medicine (TCM), including enhanced chemotherapy and synergistically amplification of oxidative damage, into a nanoplatform would be of great significance for furthering accurate and effective cancer treatment with the active ingredients of TCM. Herein, in this study, we designed and synthesized four matrine-proteolysis-targeting chimeras (PROTACs) (depending on different lengths of the chains named LST-1, LST-2, LST-3, and LST-4) based on PROTAC technology to overcome the limitations of matrine. LST-4, with better anti-tumor activity than matrine, still degrades p-Erk and p-Akt proteins. Moreover, LST-4 NPs formed via LST-4 self-assembly with stronger anti-tumor activity and glutathione (GSH) depletion ability could be enriched in lysosomes through their outstanding enhanced permeability and retention (EPR) effect. Then, we synthesized LST-4@ZnPc NPs with a low-pH-triggered drug release property that could release zinc(II) phthalocyanine (ZnPc) in tumor sites. LST-4@ZnPc NPs combine the application of chemotherapy and phototherapy, including both enhanced chemotherapy from LST-4 NPs and the synergistic amplification of oxidative damage, through increasing the reactive oxygen species (ROS) by photodynamic therapy (PDT), causing an GSH decrease via LST-4 mediation to effectively kill tumor cells. Therefore, multifunctional LST-4@ZnPc NPs are a promising method for killing cancer cells, which also provides a new paradigm for using natural products to kill tumors.


Asunto(s)
Alcaloides , Glutatión , Indoles , Isoindoles , Matrinas , Quinolizinas , Especies Reactivas de Oxígeno , Alcaloides/química , Alcaloides/farmacología , Especies Reactivas de Oxígeno/metabolismo , Quinolizinas/química , Quinolizinas/farmacología , Glutatión/metabolismo , Humanos , Animales , Indoles/química , Indoles/farmacología , Ratones , Línea Celular Tumoral , Compuestos de Zinc/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fotoquimioterapia/métodos , Proteolisis , Nanopartículas/química
10.
Chemosphere ; 357: 141864, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588901

RESUMEN

Sustainable, efficient, and environmentally friendly ways to tailor the carbonaceous materials from bio sources with desired functionalities remain a challenge around the world. In this study, we represent a novel approach to synthesize carbon hybrid material based on Zinc Oxide/carbon (ZnO/C) hybrid systems by catalytic hydrothermal process via crosslinking reaction through nucleation and growth of ZnO particles at the functional groups of oxidized carbon material. This research explored the volarization of Condensed Corn Distillers Soluble (CDS) as a carbon precursor to synthesize biobased carbon spheres. Surface modification of the produced carbon spheres took place using zinc chloride (ZnCl2) during hydrothermal carbonization (HTC). Zinc chloride (ZnCl2) was used to function as a catalyst during HTC and functioned as a ZnO source to synthesize (ZnO/C) hybrid systems. Design Expert software v13 was used to design the hydrothermal carbonization (HTC) experiments and response surface methodology was used to find the optimized conditions for the preparation of carbon hybrid systems. The hydrothermal synthesis process introduced 3D stone like zinc oxide particles onto the carbon matrix. These particles were self-assembled onto the carbon framework to produce carbon hybrid systems with unique physical, chemical, structural and functional properties. Herein, the obtained carbon hybrid systems (ZnO/C) were investigated and discussed in detail. ZnO/C hybrid systems were analyzed for surface morphology using scanning electron microscopy (SEM) that presented a 3D spherical interconnected phase and XRD analyses were used for phase crystallinity that showed new crystalline phases such as hopeite and zincite after the ZnCl2 incorporation. Surface functional groups were also analyzed by FTIR and results confirmed the presence of hydrophilic groups such as -OH, CC, and COOH on the surface of ZnO/C hybrid carbon systems. This study provided the insightful guidance for tailoring novel design of multifunctional carbon material as an adsorbent/catalyst for various applications of sustainable remediation.


Asunto(s)
Carbono , Restauración y Remediación Ambiental , Zea mays , Óxido de Zinc , Óxido de Zinc/química , Zea mays/química , Carbono/química , Catálisis , Restauración y Remediación Ambiental/métodos , Compuestos de Zinc/química , Propiedades de Superficie , Cloruros/química
11.
Chem Commun (Camb) ; 60(37): 4958-4961, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38629343

RESUMEN

Potential-selective electrochemiluminescence (ECL) with tunable maximum-emission-potential ranging from 0.95 to 0.30 V is achieved using AgInS2/ZnS nanocrystals, which is promising in the design of multiplexed bioassay on commercialized ECL setups. The model system AgInS2/ZnS/N2H4 exhibits efficient ECL around 0.30 V and can be exploited for sensitive immunoassays with less electrochemical interference and crosstalk.


Asunto(s)
Técnicas Electroquímicas , Mediciones Luminiscentes , Nanopartículas , Sulfuros , Compuestos de Zinc , Sulfuros/química , Compuestos de Zinc/química , Inmunoensayo/métodos , Nanopartículas/química , Indio/química , Plata/química , Compuestos de Plata/química , Humanos , Nanopartículas del Metal/química
12.
Talanta ; 274: 126075, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604042

RESUMEN

6-mercaptopurine (6-MP) as the effective anti-cancer drug was used for the treatment of Crohn's disease and acute lymphoblastic leukaemia, but the response to maintenance therapy was variable with individual differences. In order to control the dosage and decrease the side effects of 6-MP, a sensitive and stable assay was urgently needed for 6-MP monitoring. Herein, RuZn NPs with electrochemical oxidation property and oxidase-like activity was proposed for dual-mode 6-MP monitoring. Burr-like RuZn NPs were prepared and explored to not only exhibit an electrochemical oxidation signal at 0.78 V, but also displayed excellent oxidase-like performances. RuZn NPs were utilized for the dual-mode monitoring of 6-MP, attributing to the formation of Ru-SH covalent bonding. The colorimetric method showed good linearity from 10 µM to 5 mM with the limit of detection (LOD) of 300 nM, while the electrochemical method provided a higher sensitivity with the LOD of 37 nM in range from 100 nM to 200 µM. This work provided a new way for the fabrication of dual-functional nanotags with electroactivity and oxidase-like property, and opened a dual-mode approach for the 6-MP detection applications with complementary and satisfactory results.


Asunto(s)
Nanopartículas del Metal , Compuestos de Rutenio/química , Compuestos de Zinc/química , Electrones , Oxidación-Reducción , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Antineoplásicos/química
13.
Environ Sci Pollut Res Int ; 31(19): 27935-27948, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38523212

RESUMEN

Herein, microwave-assisted activated carbon (MW-AC) was fabricated from peanut shells using a ZnCl2 activator and utilized for the first time to eliminate benzene vapor as a volatile organic compound (VOC). During the MW-AC production process, which involved two steps-microwave treatment and muffle furnace heating-we investigated the effects of various factors and achieved the highest iodine number of 1250 mg/g. This was achieved under optimal operating conditions, which included a 100% impregnation ratio, CO2 as the gas in the microwave environment, a microwave power set at 500 W, a microwave duration of 10 min, an activation temperature of 500 °C and an activation time of 45 min. The structural and morphological properties of the optimized MW-AC were assessed through SEM, FTIR, and BET analysis. The dynamic adsorption process of benzene on the optimized MW-AC adsorbent, which has a significant BET surface area of 1204.90 m2/g, was designed using the Box-Behnken approach within the response surface methodology. Under optimal experimental conditions, including a contact duration of 80 min, an inlet concentration of 18 ppm, and a temperature of 26 °C, the maximum adsorption capacity reached was 568.34 mg/g. The experimental data are better described by the pseudo-second-order kinetic model, while it is concluded that the equilibrium data are better described by the Langmuir isotherm model. MW-AC exhibited a reuse efficiency of 86.54% for benzene vapor after five consecutive recycling processes. The motivation of the study highlights the high adsorption capacity and superior reuse efficiency of MW-AC adsorbent with high BET surface area against benzene pollutant. According to our results, the developed MW-AC presents itself as a promising adsorbent candidate for the treatment of VOCs in various industrial applications.


Asunto(s)
Arachis , Benceno , Carbón Orgánico , Microondas , Compuestos de Zinc , Adsorción , Benceno/química , Carbón Orgánico/química , Compuestos de Zinc/química , Arachis/química , Compuestos Orgánicos Volátiles/química , Cloruros/química , Cinética , Contaminantes Atmosféricos/química
14.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552695

RESUMEN

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Asunto(s)
Benzo(a)pireno , Carbón Orgánico , Lignina , Aceite de Sésamo , Sesamum , Carbón Orgánico/química , Lignina/química , Benzo(a)pireno/química , Adsorción , Aceite de Sésamo/química , Sesamum/química , Compuestos de Zinc/química , Cloruros/química
15.
Int J Biol Macromol ; 267(Pt 1): 131228, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554923

RESUMEN

The extremely low antioxidant, photocatalytic, and antibacterial properties of cellulose limit its application in the biomedical and environmental sectors. To improve these properties, nanohybrides were prepared by mixing carboxylated cellulose nanocrystals (CCNCs) and zinc nitrate hexahydrate. Data from FTIR, XRD, DLS, and SEM spectra showed that, ZnO nanoparticles, with a size ranging from 94 to 351 nm and the smallest nanoparticle size of 164.18 nm, were loaded onto CCNCs. CCNCs/ZnO1 nanohybrids demonstrated superior antibacterial, photocatalytic, and antioxidant performance. More considerable antibacterial activity was shown with a zone of inhibition ranging from 26.00 ± 1.00 to 40.33 ± 2.08 mm and from 31.66 ± 3.51 to 41.33 ± 1.15 mm against Gram-positive and Gram-negative bacteria, respectively. Regarding photodegradation properties, the maximum value (∼91.52 %) of photocatalytic methylene blue degradation was observed after 75 min exposure to a UV lamp. At a concentration of 125.00 µm/ml of the CCNC/ZnO1 nanohybrids sample, 53.15 ± 1.03 % DPPH scavenging activity was obtained with an IC50 value of 117.66 µm/ml. A facile, cost-effective, one-step synthesis technique was applied to fabricate CCNCs/ZnO nanohybrids at mild temperature using Oxytenanthera abyssinica carboxylated cellulose nanocrystals as biotemplate. The result showed that CCNCs/ZnO nanohybrids possess potential applications in developing advanced functional materials for dye removal and antibacterial and antioxidant applications.


Asunto(s)
Antibacterianos , Celulosa , Depuradores de Radicales Libres , Nanopartículas , Nitratos , Óxido de Zinc , Celulosa/química , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Nanopartículas/química , Catálisis , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/síntesis química , Compuestos de Zinc/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Pruebas de Sensibilidad Microbiana
16.
Anal Sci ; 40(6): 1051-1059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461465

RESUMEN

A fluorescent sensing material based on the ternary core-shell quantum dots with outstanding optical properties and a bio-inspired molecularly imprinted polymer (MIP) as a recognition element has been prepared for selective detection of rifampicin (RFP). Firstly, AgInS2/ZnS core/shell quantum dots (ZAIS QDs) were prepared by a hydrothermal process. Then, the fluorescent sensor was prepared by coating these QDs by a dopamine-based MIP layer. The fluorescence of MIP@ZAIS QDs was quenched by RFP probably due to the photoinduced electron transfer process. The quenching constant was much higher for MIP@ZAIS QDs than the non-imprinted polymer@QDs, indicating that MIP@ZAIS QDs could selectively recognize RFP. Under the optimized conditions, the sensor had a good linear relationship at the RFP concentration range of 5.0 to 300 nM and the limit of detection was 1.25 nM. The respond time of the MIP@ZAIS QDs was 5 min, and the imprinting factor was 6.3. It also showed good recoveries ranging from 98 to 101%, for analysis of human plasma samples. The method is simple and effective for the detection of RFP and offers a practical application for the rapid analysis of human plasma samples.


Asunto(s)
Polímeros Impresos Molecularmente , Puntos Cuánticos , Rifampin , Sulfuros , Compuestos de Zinc , Puntos Cuánticos/química , Compuestos de Zinc/química , Sulfuros/química , Rifampin/sangre , Rifampin/análisis , Rifampin/química , Polímeros Impresos Molecularmente/química , Humanos , Colorantes Fluorescentes/química , Impresión Molecular , Espectrometría de Fluorescencia , Indio/química , Compuestos de Plata/química , Límite de Detección , Polímeros/química
17.
Environ Res ; 251(Pt 1): 118624, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447602

RESUMEN

Controlled-release micronutrient supplementation to provide better bioavailable zinc (Zn) under alkaline soil conditions is a concept of commercial pertinence for sustainable agriculture. High pH stable nano-scaled ZnS is the material under study in the present investigation where the adsorption dynamics and dissolution kinetics of sono-chemically synthesized zinc sulfide nanoparticles (ZnS NPs) were evaluated in comparison to ZnSO4 in Lufa 2.2 soil for supplementation of Zn. The mechanism of adsorption of ZnS NPs and ZnSO4 onto Lufa 2.2 soil was well explained by fitting into the Freundlich adsorption model and pseudo-second order equation. ZnS NPs reflected the stronger ability to get adsorbed on the Lufa 2.2 soil as compared to metal ions, due to higher surface reactivity of NPs and higher Kf value (0.557) than ZnSO4 (0.463). Time relevant enhancement in extractability of Zn from ZnS NPs amended soil and diminution in extractability of Zn from ZnSO4 spiked soil was observed in bioavailability studies. The increased labile pool of Zn from ZnS NPs amended soil over time was due to their slow dissolution in soil and could be adjusted to consider as "sustained released ZnS NPs". Dissolution of ZnS nanoparticles (NPs) in Lufa 2.2 soil adhered to the first-order extraction model, exhibiting extended half-lives of 27.72 days (low dose) and 28.87 days (high dose). This supported prolonged stability, increased reactivity, and reduced ecological risk compared to conventional Zn salt fertilizers, promoting enhanced crop productivity.


Asunto(s)
Disponibilidad Biológica , Contaminantes del Suelo , Suelo , Sulfuros , Compuestos de Zinc , Zinc , Sulfuros/química , Compuestos de Zinc/química , Adsorción , Zinc/química , Cinética , Suelo/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Nanopartículas/química , Nanopartículas del Metal/química , Solubilidad
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123818, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157742

RESUMEN

This paper presents a novel room temperature phosphorescence sensor (IMIPs-ZnS QDs RTP sensor) based on inorganic surface molecularly imprinted polymers and Mn-doped ZnS quantum dots (QDs) for the rapid detection of trace melamine (MEL) in commercial milk products. The surface of Mn-ZnS QDs was modified with 3-(mercaptopropyl) trimethoxy silane (MPTS). Then, MEL, 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were used as a template/target molecule, functional monomer, and cross-linker, respectively. IMIPs-ZnS QDs RTP sensor was characterized using spectrofluorimeter, UV-Vis spectrophotometer, FT-IR, transmission electron microscope (TEM), and X-ray photoelectron spectrometer (XPS). Detection time and linear range for IMIPs-ZnS QDs RTP sensor were 30 min and 4.0-79.2 µM with a correlation coefficient value of 0.9946, respectively. Furthermore, LOD and LOQ values were calculated using Stern-Volmer equation as 0.29 and 0.97 µM, respectively. Thus, IMIPs-ZnS QDs RTP sensor was successfully applied for the detection of MEL residue in milk samples. Recovery values were in the range of 88.62-90.22 % with relatively high precision values (0.57-0.92 % RSD). Our findings indicate that the developed IMIPs-ZnS QDs RTP sensor exhibits high sensitivity and selectivity towards the MEL in milk sample containing potentially relatively high number of interfering compounds.


Asunto(s)
Puntos Cuánticos , Triazinas , Animales , Puntos Cuánticos/química , Compuestos de Zinc/química , Leche , Espectroscopía Infrarroja por Transformada de Fourier , Sulfuros/química
19.
ChemistryOpen ; 12(10): e202300094, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37803419

RESUMEN

The choice of capping agents used during the synthesis process of quantum dots (QDs) can significantly influence their fate and fundamental properties. Hence, choosing an appropriate capping agent is a critical step in both synthesis and biomedical application of QDs. In this research, ZnS QDs were synthesized via chemical precipitation process and three commonly employed capping agents, namely mercaptoethanol (ME), mercaptoacetic acid (MAA), and cysteamine (CA), were used to stabilize the QDs. This study was aimed to examine how these capping agents impact the physicochemical and optical characteristics of ZnS QDs, as well as their interactions with biological systems. The findings revealed that the capping agents had considerable effects on the behavior and properties of ZnS QDs. MAA-QD exhibited superior crystal lattice, smaller size, and significant quantum yield (QY). In contrast, CA-QDs demonstrated the lowest QY and the highest tendency for aggregation. ME-QDs exhibited intermediate characteristics, along with an acceptable level of cytotoxicity, rapid uptake by cells, and efficient escape from lysosomes. Consequently, it is advisable to select capping agents in accordance with the specific objectives of the research.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Sulfuros/química , Compuestos de Zinc/química , Lisosomas
20.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834208

RESUMEN

Quantum dots (QDs) are a type of nanoparticle with excellent optical properties, suitable for many optical-based biomedical applications. However, the potential of quantum dots to be used in clinical settings is limited by their toxicity. As such, much effort has been invested to examine the mechanism of QDs' toxicity. Yet, the current literature mainly focuses on ROS- and apoptosis-mediated cell death induced by QDs, which overlooks other aspects of QDs' toxicity. Thus, our study aimed to provide another way by which QDs negatively impact cellular processes by investigating the possibility of protein structure and function modification upon direct interaction. Through shotgun proteomics, we identified a number of QD-binding proteins, which are functionally associated with essential cellular processes and components, such as transcription, translation, vesicular trafficking, and the actin cytoskeleton. Among these proteins, we chose to closely examine the interaction between quantum dots and actin, as actin is one of the most abundant proteins in cells and plays crucial roles in cellular processes and structural maintenance. We found that CdSe/ZnS QDs spontaneously bind to G-actin in vitro, causing a static quenching of G-actin's intrinsic fluorescence. Furthermore, we found that this interaction favors the formation of a QD-actin complex with a binding ratio of 1:2.5. Finally, we also found that CdSe/ZnS QDs alter the secondary structure of G-actin, which may affect G-actin's function and properties. Overall, our study provides an in-depth mechanistic examination of the impact of CdSe/ZnS QDs on G-actin, proposing that direct interaction is another aspect of QDs' toxicity.


Asunto(s)
Puntos Cuánticos , Compuestos de Selenio , Actinas , Compuestos de Zinc/química , Sulfuros/química , Compuestos de Selenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA