Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.569
Filtrar
1.
Biomaterials ; 312: 122720, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39084098

RESUMEN

Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.


Asunto(s)
Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nanopartículas , Osteoartritis , Péptidos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Osteoartritis/terapia , Osteoartritis/patología , Nanopartículas/química , Humanos , Diferenciación Celular/efectos de los fármacos , Péptidos/química , Trasplante de Células Madre Mesenquimatosas/métodos , Condrogénesis/efectos de los fármacos , Ratones , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Cartílago Articular/patología , Cartílago Articular/efectos de los fármacos , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/farmacología , Ingeniería de Tejidos/métodos , Regeneración/efectos de los fármacos
2.
Stem Cell Res Ther ; 15(1): 308, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285485

RESUMEN

BACKGROUND: Articular cartilage degeneration can result from injury, age, or arthritis, causing significant joint pain and disability without surgical intervention. Currently, the only FDA cell-based therapy for articular cartilage injury is Autologous Chondrocyte Implantation (ACI); however, this procedure is costly, time-intensive, and requires multiple treatments. Mesenchymal stromal cells (MSCs) are an attractive alternative autologous therapy due to their availability and ability to robustly differentiate into chondrocytes for transplantation with good safety profiles. However, treatment outcomes are variable due to donor-to-donor variability as well as intrapopulation heterogeneity and unstandardized MSC manufacturing protocols. Process improvements that reduce cell heterogeneity while increasing donor cell numbers with improved chondrogenic potential during expansion culture are needed to realize the full potential of MSC therapy. METHODS: In this study, we investigated the potential of MSC metabolic modulation during expansion to enhance their chondrogenic commitment by varying the nutrient composition, including glucose, pyruvate, glutamine, and ascorbic acid in culture media. We tested the effect of metabolic modulation in short-term (one passage) and long-term (up to seven passages). We measured metabolic state, cell size, population doubling time, and senescence and employed novel tools including micro-magnetic resonance relaxometry (µMRR) relaxation time (T2) to characterize the effects of AA on improved MSC expansion and chondrogenic potential. RESULTS: Our data show that the addition of 1 mM L-ascorbic acid-2-phosphate (AA) to cultures for one passage during MSC expansion prior to initiation of differentiation improves chondrogenic differentiation. We further demonstrate that AA treatment reduced the proportion of senescent cells and cell heterogeneity also allowing for long-term expansion that led to a > 300-fold increase in yield of MSCs with enhanced chondrogenic potential compared to untreated cells. AA-treated MSCs with improved chondrogenic potential showed a robust shift in metabolic profile to OXPHOS and higher µMRR T2 values, identifying critical quality attributes that could be implemented in MSC manufacturing for articular cartilage repair. CONCLUSIONS: Our results suggest an improved MSC manufacturing process that can enhance chondrogenic potential by targeting MSC metabolism and integrating process analytic tools during expansion.


Asunto(s)
Cartílago Articular , Condrocitos , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Cartílago Articular/metabolismo , Humanos , Condrocitos/metabolismo , Condrocitos/citología , Condrogénesis/efectos de los fármacos , Diferenciación Celular , Células Cultivadas , Proliferación Celular , Trasplante de Células Madre Mesenquimatosas/métodos , Animales
3.
Nanomedicine (Lond) ; 19(18-20): 1675-1688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39254481

RESUMEN

Aim: RADA16-PLGA composite scaffolds constructed with simultaneous loading of BMSCs and TGF-ß3 and explored their ability for chondrogenic differentiation in vitro.Methods: The performance of the composite scaffolds is assessed by rheometer assay, electron microscopic structural observation and ELISA release assay. The biosafety of the composite scaffolds is assessed by cytocompatibility assay and cell migration ability. The chondrogenic differentiation ability of composite scaffolds is evaluated by Alisin blue staining, PCR and immunofluorescence staining.Results: The composite scaffold has a good ECM-like structure, the ability to control the release of TGF-ß3 and good biocompatibility. More importantly, the composite scaffolds can induce the differentiation of BMSCs to chondrocytes.Conclusion: Composite scaffolds are expected to enhance the endogenous NP repair process.


[Box: see text].


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Células Madre Mesenquimatosas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Andamios del Tejido , Factor de Crecimiento Transformador beta3 , Factor de Crecimiento Transformador beta3/farmacología , Factor de Crecimiento Transformador beta3/metabolismo , Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Andamios del Tejido/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Animales , Humanos , Ingeniería de Tejidos/métodos , Células Cultivadas , Concentración de Iones de Hidrógeno , Ácido Poliglicólico/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanopartículas/química
4.
Biomed Pharmacother ; 179: 117349, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39191028

RESUMEN

OBJECT: Adipose-derived mesenchymal stem cells (ADSCs) have received significant attention in the field of cartilage tissue repair. Angelica sinensis polysaccharide (ASP) can enhance both the proliferation and differentiation of mesenchymal stem cells. Therefore, we intend to explore the effect of ASP on chondrogenic differentiation of ADSCs in vitro, and elucidate the underlying mechanisms. METHOD: ADSCs were treated with different concentrations of ASP to determine the optimal concentration. The chondrogenic differentiation of ADSCs was evaluated using Alcian blue staining, qRT-PCR, western blot, and IF staining. Transcriptome sequencing was performed to identify the expression profiles of ADSCs before and after ASP treatment, followed by bioinformatic analyses including differential expression analysis, enrichment analysis, and construction of PPI networks to identify differentially expressed genes (DEGs) associated with ASP and chondrogenic differentiation. RESULT: Surface markers of isolated rat-derived ADSCs were identified by CD44+CD90+CD45-CD106-, and exhibited the capacity for lipogenic, osteogenic, and chondrogenic differentiation. With increasing concentration of ASP treatment, there was an upregulation in the activity and acidic mucosubstance of ADSCs. The levels of Aggrecan, COL2A1, and Sox9 showed an increase in ADSCs after 28 days of 80 µg/ml ASP treatment. Transcriptome sequencing revealed that ASP-associated DEGs regulate extracellular matrix synthesis, immune response, inflammatory response, and cell cycle, and are involved in the NF-κB, AGE-RAGE, and calcium pathways. Moreover, Edn1, Frzb, Mdk, Nog, and Sulf1 are hub genes in DEGs. Notably, ASP upregulated MDK levels in ADSCs, while knockdown of MDK mitigated ASP-induced elevations in acidic mucosubstance, chondrogenic differentiation-related markers (Aggrecan, COL2A1, and Sox9), and the activity of the PI3K/AKT pathway. CONCLUSION: ASP enhances the proliferation and chondrogenic differentiation of ADSCs by activating the MDK-mediated PI3K/AKT pathway.


Asunto(s)
Angelica sinensis , Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , Polisacáridos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Polisacáridos/farmacología , Condrogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Angelica sinensis/química , Transducción de Señal/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Ratas , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Cultivadas , Masculino
5.
ACS Appl Bio Mater ; 7(9): 5925-5938, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39135543

RESUMEN

Trauma or repeated damage to joints can result in focal cartilage defects, significantly elevating the risk of osteoarthritis. Damaged cartilage has an inherently limited self-healing capacity and remains an urgent unmet clinical need. Consequently, there is growing interest in biodegradable hydrogels as potential scaffolds for the repair or reconstruction of cartilage defects. Here, we developed a biodegradable and macroporous hybrid double-network (DN) cryogel by combining two independently cross-linked networks of multiarm polyethylene glycol (PEG) acrylate and alginate.Hybrid DN cryogels are formed using highly biocompatible click reactions for the PEG network and ionic bonding for the alginate network. By judicious selection of various structurally similar cross-linkers to form the PEG network, we can generate hybrid DN cryogels with customizable degradation kinetics. The resulting PEG-alginate hybrid DN cryogels have an interconnected macroporous structure, high mechanical strength, and rapid swelling kinetics. The interconnected macropores in the cryogels support efficient mesenchymal stem cell infiltration at a high density. Finally, we demonstrate that PEG-alginate hybrid DN cryogels allow sustained release of chondrogenic growth factors and support chondrogenic differentiation of mouse mesenchymal stem cells. This study provides a novel method to generate macroporous hybrid DN cryogels with customizable degradation rates and a potential scaffold for cartilage tissue engineering.


Asunto(s)
Alginatos , Materiales Biocompatibles , Criogeles , Ensayo de Materiales , Polietilenglicoles , Ingeniería de Tejidos , Criogeles/química , Alginatos/química , Polietilenglicoles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Porosidad , Animales , Ratones , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Reactivos de Enlaces Cruzados/química , Cartílago , Tamaño de la Partícula , Andamios del Tejido/química , Condrogénesis/efectos de los fármacos
6.
Chem Biol Interact ; 400: 111183, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098741

RESUMEN

Nicotine is developmentally toxic. Prenatal nicotine exposure (PNE) affects the development of multiple fetal organs and causes susceptibility to a variety of diseases in offspring. In this study, we aimed to investigate the effect of PNE on cartilage development and osteoarthritis susceptibility in female offspring rats. Wistar rats were orally gavaged with nicotine on days 9-20 of pregnancy. The articular cartilage was obtained at gestational day (GD) 20 and postnatal week (PW) 24, respectively. Further, the effect of nicotine on chondrogenic differentiation was explored by the chondrogenic differentiation model in human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). The PNE group showed significantly shallower Safranin O staining and lower Collagen 2a1 content of articular cartilage in female offspring rats. Further, we found that PNE activated pyroptosis in the articular cartilage at GD20 and PW24. In vitro experiments revealed that nicotine inhibited chondrogenic differentiation and activated pyroptosis. After interfering with nod-like receptors3 (NLRP3) expression by SiRNA, it was found that pyroptosis mediated the chondrogenic differentiation inhibition of WJ-MSCs induced by nicotine. In addition, we found that α7-nAChR antagonist α-BTX reversed nicotine-induced NLRP3 and P300 high expression. And, P300 SiRNA reversed the increase of NLRP3 mRNA expression and histone acetylation level in its promoter region induced by nicotine. In conclusion, PNE caused chondrodysplasia and poor articular cartilage quality in female offspring rats. PNE increased the histone acetylation level of NLRP3 promoter region by α7-nAChR/P300, which resulting in the high expression of NLRP3. Further, NLRP3 mediated the inhibition of chondrogenic differentiation by activating pyroptosis.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Proteína con Dominio Pirina 3 de la Familia NLR , Nicotina , Efectos Tardíos de la Exposición Prenatal , Piroptosis , Ratas Wistar , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Nicotina/farmacología , Nicotina/toxicidad , Femenino , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Embarazo , Piroptosis/efectos de los fármacos , Ratas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Condrogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Humanos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/citología
7.
J Biomed Mater Res B Appl Biomater ; 112(9): e35473, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198004

RESUMEN

Tissue engineering technology offers a promising solution for ear reconstruction; however, it faces the challenge of foreign body reaction and neocartilage malformation. This study investigates the impact of interleukin-4 (IL-4), an anti-inflammatory factor, on cartilage regeneration of hydrogel encapsulating autologous auricular chondrocytes in a rabbit subcutaneous environment. Initially, we assessed the influence of IL-4 on chondrocyte proliferation and determined the appropriate concentration using the CCK-8 test in vitro. Subsequently, we loaded IL-4 into gelatin methacryloyl (GelMA) hydrogel containing chondrocytes and measured its release profile through ELISA. The constructs were then implanted autologously into rabbits' subcutis, and after 3, 7, 14, and 28 days, cartilage matrix formation was evaluated by histological examinations, and gene expression levels were detected by qRT-PCR. Results demonstrated that IL-4 promotes chondrocyte proliferation in vitro, and maximum release from constructs occurred during the first week. In the rabbit subcutaneous implantation model, IL-4-loaded constructs (20 ng/mL) maintained a superior chondrocytic phenotype compared to controls with increased expression of anti-inflammatory factors. These findings highlight IL-4 as a potential strategy for promoting chondrogenesis in a subcutaneous environment and improving ear reconstruction.


Asunto(s)
Condrocitos , Condrogénesis , Cartílago Auricular , Gelatina , Hidrogeles , Interleucina-4 , Ingeniería de Tejidos , Animales , Conejos , Gelatina/química , Gelatina/farmacología , Condrogénesis/efectos de los fármacos , Interleucina-4/metabolismo , Interleucina-4/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Condrocitos/metabolismo , Condrocitos/citología , Metacrilatos/química , Metacrilatos/farmacología , Proliferación Celular/efectos de los fármacos
8.
Biomater Sci ; 12(18): 4806-4822, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39150417

RESUMEN

Rotator cuff injuries present a clinical challenge for repair due to current limitations in functional regeneration of the native tendon-to-bone enthesis. A biomaterial that can regionally instruct unique tissue-specific phenotypes offers potential to promote enthesis repair. We have recently demonstrated the mechanical benefits of a stratified triphasic biomaterial made up of tendon- and bone-mimetic collagen scaffold compartments connected via a continuous hydrogel, and we now explore the potential of a biologically favorable enthesis hydrogel for this application. Here we report in vitro behavior of human mesenchymal stem cells (hMSCs) within thiolated gelatin (Gel-SH) hydrogels in response to chondrogenic stimuli as well as paracrine signals derived from MSC-seeded bone and tendon scaffold compartments. Chondrogenic differentiation media promoted upregulation of cartilage and entheseal fibrocartilage matrix markers COL2, COLX, and ACAN as well as the enthesis-associated transcription factors SCX, SOX9, and RUNX2 in hMSCs within Gel-SH. Similar effects were observed in response to TGF-ß3 and BMP-4, enthesis-associated growth factors known to play a role in entheseal development and maintenance. Conditioned media generated by hMSCs seeded in tendon- and bone-mimetic collagen scaffolds influenced patterns of gene expression regarding enthesis-relevant growth factors, matrix markers, and tendon-to-bone transcription factors for hMSCs within the material. Together, these findings demonstrate that a Gel-SH hydrogel provides a permissive environment for enthesis tissue engineering and highlights the significance of cellular crosstalk between adjacent compartments within a spatially graded biomaterial.


Asunto(s)
Diferenciación Celular , Fibrocartílago , Gelatina , Hidrogeles , Células Madre Mesenquimatosas , Comunicación Paracrina , Humanos , Gelatina/química , Hidrogeles/química , Hidrogeles/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Comunicación Paracrina/efectos de los fármacos , Fibrocartílago/química , Fibrocartílago/efectos de los fármacos , Fibrocartílago/metabolismo , Condrogénesis/efectos de los fármacos , Manguito de los Rotadores , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Factor de Transcripción SOX9/metabolismo , Andamios del Tejido/química , Lesiones del Manguito de los Rotadores/terapia , Agrecanos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
9.
Int J Biol Macromol ; 278(Pt 2): 134608, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134192

RESUMEN

The avascular nature of cartilage tissue limits inherent regenerative capacity to counter any damage and this has become a substantial burden to the health of individuals. As a result, there is a high demand to repair and regenerate cartilage. Existing tissue engineering approaches for cartilage regeneration typically produce either microporous or nano-fibrous scaffolds lacking the desired biological outcome due to lack of biomimetic dual architecture of microporous construct with nano-fibrous interconnected structures like the native cartilage. Most of these scaffolds also fail to suppress ROS generation and provide sustained bioenergetics to cells, resulting in the loss of metabolic activity under avascular microenvironment of cartilage. A dual architecture microporous construct with nano-fibrous interconnected network of cellulose aerogel reinforced with arginine-coated graphene oxide (CNF-GO-Arg aerogel) was developed for cartilage regeneration. The designed dual-architectured CNF-GO-Arg aerogel using dual ice templating assembly demonstrates 80 % strain recovery ability under compression. The release of Arginine from CNF-GO-Arg aerogel supported 41 % reduction in intracellular ROS activity and promoted chondrogenic differentiation of hMSCs by shifting mitochondrial bioenergetics towards oxidative phosphorylation indicated by JC-1 dye staining. Overall developed CNF-GO-Arg aerogel provided multifunctionality via biomimetic morphology, cellular bioenergetics, and suppressed ROS generation to address the need for regeneration of cartilage.


Asunto(s)
Arginina , Cartílago , Celulosa , Grafito , Andamios del Tejido , Celulosa/química , Celulosa/farmacología , Grafito/química , Grafito/farmacología , Humanos , Andamios del Tejido/química , Arginina/química , Arginina/farmacología , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Ingeniería de Tejidos/métodos , Metabolismo Energético/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Especies Reactivas de Oxígeno/metabolismo , Condrogénesis/efectos de los fármacos , Geles/química , Regeneración/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología
10.
J Mater Chem B ; 12(35): 8672-8687, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39115288

RESUMEN

Articular cartilage damage represents a prevalent clinical disease in orthopedics, with its regeneration and repair constituting a central focus in ongoing research endeavors. While hydrogel technology has achieved notable progress in the field of cartilage regeneration, addressing the repair of larger cartilage defects remains a significant and formidable challenge. In pursuit of achieving the repair of extensive cartilage defects, this study designed a polydopamine-modified chondroitin sulfate hydrogel loaded with SDF-1α (P-SCMA). This hydrogel, capable of directly providing glycosaminoglycans (GAGs), served as a platform for carrying growth factors and attracting mesenchymal stem cells for the in situ reconstruction of extensive cartilage defects. The results indicate that the P-SCMA hydrogel is capable of not only directly providing GAGs but also sustainably releasing SDF-1α. In the early stages, it promotes cell adhesion and proliferation and induces cell homing, while in the later stages, it further induces chondrogenesis by inhibiting the Wnt/ß-catenin pathway. This bioactive hydrogel, which possesses the functions of providing GAGs, promoting cell proliferation, inducing cell homing and chondrogenesis, is capable of promoting cartilage repair in multiple ways, providing new perspectives for the repair of extensive cartilage defects.


Asunto(s)
Quimiocina CXCL12 , Condrogénesis , Sulfatos de Condroitina , Hidrogeles , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Condrogénesis/efectos de los fármacos , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacología , Animales , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Proliferación Celular/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Humanos , Preparaciones de Acción Retardada/química , Células Cultivadas
11.
Proc Natl Acad Sci U S A ; 121(33): e2405454121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106310

RESUMEN

Regeneration of hyaline cartilage in human-sized joints remains a clinical challenge, and it is a critical unmet need that would contribute to longer healthspans. Injectable scaffolds for cartilage repair that integrate both bioactivity and sufficiently robust physical properties to withstand joint stresses offer a promising strategy. We report here on a hybrid biomaterial that combines a bioactive peptide amphiphile supramolecular polymer that specifically binds the chondrogenic cytokine transforming growth factor ß-1 (TGFß-1) and crosslinked hyaluronic acid microgels that drive formation of filament bundles, a hierarchical motif common in natural musculoskeletal tissues. The scaffold is an injectable slurry that generates a porous rubbery material when exposed to calcium ions once placed in cartilage defects. The hybrid material was found to support in vitro chondrogenic differentiation of encapsulated stem cells in response to sustained delivery of TGFß-1. Using a sheep model, we implanted the scaffold in shallow osteochondral defects and found it can remain localized in mechanically active joints. Evaluation of resected joints showed significantly improved repair of hyaline cartilage in osteochondral defects injected with the scaffold relative to defects injected with the growth factor alone, including implantation in the load-bearing femoral condyle. These results demonstrate the potential of the hybrid biomimetic scaffold as a niche to favor cartilage repair in mechanically active joints using a clinically relevant large-animal model.


Asunto(s)
Condrogénesis , Andamios del Tejido , Factor de Crecimiento Transformador beta1 , Animales , Andamios del Tejido/química , Ovinos , Factor de Crecimiento Transformador beta1/metabolismo , Condrogénesis/efectos de los fármacos , Polímeros/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Cartílago Articular/efectos de los fármacos , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Humanos , Materiales Biocompatibles/química , Condrocitos/efectos de los fármacos , Cartílago Hialino/metabolismo
12.
Acta Biomater ; 186: 108-124, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067644

RESUMEN

Type I collagen (Col I) and hyaluronic acid (HA), derived from the extracellular matrix (ECM), have found widespread application in cartilage tissue engineering. Nevertheless, the potential of cell-free collagen-based scaffolds to induce in situ hyaline cartilage regeneration and the related mechanisms remain undisclosed. Here, we chose Col I and HA to construct Col I hydrogel and Col I-HA composite hydrogel with similar mechanical properties, denoted as Col and ColHA, respectively. Their potential to induce cartilage regeneration was investigated. The results revealed that collagen-based hydrogels could regenerate hyaline cartilage without any additional cells or growth factors. Notably, ColHA hydrogel stood out in this regard. It elicited a moderate activation, recruitment, and reprogramming of macrophages, thus efficiently mitigating local inflammation. Additionally, ColHA hydrogel enhanced stem cell recruitment, facilitated their chondrogenic differentiation, and inhibited chondrocyte fibrosis, hypertrophy, and catabolism, thereby preserving cartilage homeostasis. This study augments our comprehension of cartilage tissue induction theory by enriching immune-related mechanisms, offering innovative prospects for the design of cartilage defect repair scaffolds. STATEMENT OF SIGNIFICANCE: The limited self-regeneration ability and post-injury inflammation pose significant challenges to articular cartilage repair. Type I collagen (Col I) and hyaluronic acid (HA) are extensively used in cartilage tissue engineering. However, their specific roles in cartilage regeneration remain poorly understood. This study aimed to elucidate the functions of Col I and Col I-HA composite hydrogels (ColHA) in orchestrating inflammatory responses and promoting cartilage regeneration. ColHA effectively activated and recruited macrophages, reprogramming them from an M1 to an M2 phenotype, thus alleviating local inflammation. Additionally, ColHA facilitated stem cell homing, induced chondrogenesis, and concurrently inhibited fibrosis, hypertrophy, and catabolism, collectively contributing to the maintenance of cartilage homeostasis. These findings underscore the clinical potential of ColHA for repairing cartilage defects.


Asunto(s)
Homeostasis , Cartílago Hialino , Ácido Hialurónico , Hidrogeles , Regeneración , Hidrogeles/química , Hidrogeles/farmacología , Animales , Regeneración/efectos de los fármacos , Cartílago Hialino/efectos de los fármacos , Homeostasis/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Condrogénesis/efectos de los fármacos , Ratones , Inmunomodulación/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Colágeno Tipo I/metabolismo , Diferenciación Celular/efectos de los fármacos , Andamios del Tejido/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
13.
J Nanobiotechnology ; 22(1): 453, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080653

RESUMEN

Bioactive agents have demonstrated regenerative potential for cell-free bone tissue engineering. Nevertheless, certain challenges persist, including ineffective delivery methods and confined therapeutic potency. Here, we demonstrated that the biomimetic calcium phosphate coating system (BioCaP) could effectively uptake and slowly release the incorporated bioactive agents compared to the surface absorption system via osteoclast-mediated degradation of BioCaP coatings. The release kinetics were determined as a function of time. The release rate was stable without remarkable burst release during the first 1 day, followed by a sustained release from day 7 to day 19. Then, we developed the bi-functional BioCaP-coated silk fibroin scaffolds enabling the effective co-delivery of TGF-ß3 and BMP-2 (SFI-T/SFI-B) and the corresponding slow release of TGF-ß3 and BMP-2 exhibited superior potential in promoting chondrogenesis and osteogenesis without impairing cell vitality in vitro. The SFI-T/SFI-B scaffolds could improve cartilage and bone regeneration in 5 × 4 mm rabbit osteochondral (OC) defect. These findings indicate that the biomimetic calcium-phosphate coated silk fibroin scaffolds with slowly co-released TGF-ß3 and BMP-2 effectively promote the repair of OC defects, hence facilitating the future clinical translation of controlled drug delivery in tissue engineering.


Asunto(s)
Proteína Morfogenética Ósea 2 , Regeneración Ósea , Fosfatos de Calcio , Fibroínas , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido , Factor de Crecimiento Transformador beta3 , Fibroínas/química , Fibroínas/farmacología , Animales , Proteína Morfogenética Ósea 2/farmacología , Factor de Crecimiento Transformador beta3/farmacología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Conejos , Andamios del Tejido/química , Regeneración Ósea/efectos de los fármacos , Ingeniería de Tejidos/métodos , Osteogénesis/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Bombyx , Masculino
14.
Int J Biol Macromol ; 277(Pt 1): 133995, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038571

RESUMEN

This study investigated the efficacy of using chitosan/alginate nanoparticles loaded with recombinant human bone morphogenetic-2 (rhBMP-2) and SMAD4 encoding plasmid to enhance the chondrogenesis of human bone marrow mesenchymal stem cells (hBM-MSCs) seeded on an extracellular matrix (ECM). The research treatments included the stem cells treated with the biological cocktail (BC), negative control (NC), hBM-MSCs with chondrogenic medium (MCM), hBM-MSCs with naked rhBMP-2 and chondrogenic medium (NB/C), and hBM-MSCs with naked rhBMP-2 and chondrogenic medium plus SMAD4 encoding plasmid transfected with polyethyleneimine (PEI) (NB/C/S/P). The cartilage differentiation was performed with real-time quantitative PCR analysis and alizarin blue staining. The data indicated that the biological cocktail (BC) exhibited significantly higher expression of cartilage-related genes compared to significant differences with MCM and negative control (NC) on chondrogenesis. In the (NB/C/S/P), the expression levels of SOX9 and COLX were lower than those in the BC group. The expression pattern of the ACAN gene was similar to COL2A1 changes suggesting that it holds promising potential for cartilage regeneration.


Asunto(s)
Alginatos , Proteína Morfogenética Ósea 2 , Cartílago Articular , Quitosano , Condrogénesis , Matriz Extracelular , Células Madre Mesenquimatosas , Nanopartículas , Regeneración , Transducción de Señal , Proteína Smad4 , Andamios del Tejido , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Alginatos/química , Alginatos/farmacología , Humanos , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Cartílago Articular/citología , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Nanopartículas/química , Condrogénesis/efectos de los fármacos , Andamios del Tejido/química , Proteína Smad4/metabolismo , Proteína Smad4/genética , Transducción de Señal/efectos de los fármacos , Matriz Extracelular/metabolismo , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Proteínas Recombinantes/farmacología , Factor de Crecimiento Transformador beta
15.
Int J Biol Macromol ; 276(Pt 1): 133868, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009266

RESUMEN

Intervertebral disc degeneration is a clinical disease that reduces the quality of patient's life. The degeneration usually initiates in the nucleus pulposus (NP), hence the use of hydrogels represents a promising therapeutic approach. However, the viscoelastic nature of hydrogel and its ability to provide biomimetic architecture and biochemical cues influence the regeneration capability. This study focused on tuning the physical nature of a glycosaminoglycan hydrogel (κ-carrageenan) as well as the release kinetics of a chondrogenic factor (kartogenin - KGN) through physical cross-linking. For this, κ-carrageenan was cross linked with 2.5 % and 5 % potassium chloride (KCl) for 15 and 30 min and loaded with KGN molecule at 50 µM and 100 µM. The tight network structure with low water retention and degradation property was seen in hydrogel cross-linked with increased KCl concentration and time. However, optimal degradation along with NP mimicking viscoelastic nature was exhibited by 5 wt% KCl treated hydrogel (H3 hydrogel). All hydrogel groups exhibited burst KGN release at 24 h followed by a sustained release for 5 days. However, hydrogel cross-linked with 5 wt% KCl enhanced chondrogenic differentiation, mainly at lower KGN dose. In summary, this study shows the potential application of biomimetic KGN laden carrageenan hydrogel in NP regeneration.


Asunto(s)
Carragenina , Hidrogeles , Núcleo Pulposo , Ácidos Ftálicos , Regeneración , Carragenina/química , Carragenina/farmacología , Núcleo Pulposo/efectos de los fármacos , Hidrogeles/química , Regeneración/efectos de los fármacos , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacología , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Condrogénesis/efectos de los fármacos , Humanos , Diferenciación Celular/efectos de los fármacos , Anilidas
16.
Colloids Surf B Biointerfaces ; 242: 114080, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39003847

RESUMEN

Engineering new biomedical materials with tailored physicochemical, mechanical and biological virtues in order to differentiate stem cells into chondrocytes for cartilage regeneration has garnered much scientific interest. In this study, core/shell nanofibrous scaffold based on poly(ɛ-caprolactone) (PCL) as a core material and alginate sulfate (AlgS)-poly(vinyl alcohol) (PVA) blend as shell materials (AlgS-PVA/PCL) was fabricated by emulsion electrospinning. In this vein, the influence of AlgS to PVA ratio (30:70, 50:50), organic to aqueous phase ratio (1:2, 1:3 and 1:5) and acid concentration (0, 10, 20, 30, 40 and 50 %) on nanofibers morphology were investigated. SEM images depicted that AlgS to PVA ratio of 30:70 and 50:50, organic to aqueous phase ratio of 1:3 and 1:5 and acid concentration of 30 % led to uniform, bead-free fibrous mats. AlgS-PVA/PCL scaffolds with AlgS to PVA ratio of 30:70 and organic to aqueous phase ratio of 1:3, showed admirable mechanical features, high porosity (>90 %) with desirable swelling ratio in wet condition. In vitro assays indicated that the AlgS-PVA/PCL scaffold surface had desirable interaction with stem cells and promotes cells attachment, proliferation and differentiation. Thus, we envision that this salient structure could be an intriguing construction as a cartilage tissue-engineered scaffold.


Asunto(s)
Alginatos , Diferenciación Celular , Condrogénesis , Nanofibras , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Nanofibras/química , Alginatos/química , Alginatos/farmacología , Diferenciación Celular/efectos de los fármacos , Andamios del Tejido/química , Condrogénesis/efectos de los fármacos , Poliésteres/química , Alcohol Polivinílico/química , Animales , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos
17.
J Am Chem Soc ; 146(31): 21555-21567, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39054767

RESUMEN

Transforming growth factor (TGF)-ß1 is a multifunctional protein that is essential in many cellular processes that include fibrosis, inflammation, chondrogenesis, and cartilage repair. In particular, cartilage repair is important to avoid physical disability since this tissue does not have the inherent capacity to regenerate beyond full development. We report here on supramolecular coassemblies of two peptide amphiphile molecules, one containing a TGF-ß1 mimetic peptide, and another which is one of two constitutional isomers lacking bioactivity. Using human articular chondrocytes, we investigated the bioactivity of the supramolecular copolymers of each isomer displaying either the previously reported linear form of the mimetic peptide or a novel cyclic analogue. Based on fluorescence depolarization and 1H NMR spin-lattice relaxation times, we found that coassemblies containing the cyclic compound and the most dynamic isomer exhibited the highest intracellular TGF-ß1 signaling and gene expression of cartilage extracellular matrix components. We conclude that control of supramolecular motion is emerging as an important factor in the binding of synthetic molecules to receptors that can be tuned through chemical structure.


Asunto(s)
Condrocitos , Condrogénesis , Péptidos Cíclicos , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/química , Factor de Crecimiento Transformador beta1/farmacología , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/citología , Condrogénesis/efectos de los fármacos
18.
J Biomater Sci Polym Ed ; 35(13): 2049-2067, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38994903

RESUMEN

Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. In vitro assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.


Asunto(s)
Condrogénesis , Dendrímeros , Diclofenaco , Inflamación , Nanopartículas , Estroncio , Condrogénesis/efectos de los fármacos , Estroncio/química , Estroncio/farmacología , Animales , Diclofenaco/farmacología , Diclofenaco/química , Dendrímeros/química , Dendrímeros/farmacología , Nanopartículas/química , Inflamación/tratamiento farmacológico , Conejos , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Hidrogeles/química , Hidrogeles/farmacología , Propiedades de Superficie , Gelatina/química , Cartílago/efectos de los fármacos , Cartílago/fisiología , Liberación de Fármacos , Ingeniería de Tejidos , Portadores de Fármacos/química
19.
Biointerphases ; 19(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39051723

RESUMEN

Once damaged, cartilage has poor intrinsic capacity to repair itself. Current cartilage repair strategies cannot restore the damaged tissue sufficiently. It is hypothesized that biomimetic scaffolds, which can recapitulate important properties of the cartilage extracellular matrix, play a beneficial role in supporting cell behaviors such as growth, cartilage differentiation, and integration with native cartilage, ultimately facilitating tissue recovery. Adipose-derived stem cells regenerated cartilage upon the sequential release of transforming growth factor ß1(TGFß1) and fibroblast growth factor 2(FGF2) using a nanofibrous scaffold, in order to get the recovery of functional cartilage. Experiments in vitro have demonstrated that the release sequence of growth factors FGF2 to TGFß1 is the most essential to promote adipose-derived stem cells into chondrocytes that then synthesize collagen II. Mouse subcutaneous implantation indicated that the treatment sequence of FGF2 to TGFß1 was able to significantly induce multiple increase in cartilage regeneration in vivo. This result demonstrates that the group treated with FGF2 to TGFß1 released from a nanofibrous scaffold provides a good strategy for cartilage regeneration by making a favorable microenvironment for cell growth and cartilage regeneration.


Asunto(s)
Diferenciación Celular , Factor 2 de Crecimiento de Fibroblastos , Nanofibras , Células Madre , Andamios del Tejido , Factor de Crecimiento Transformador beta1 , Animales , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Ratones , Nanofibras/química , Diferenciación Celular/efectos de los fármacos , Andamios del Tejido/química , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Condrogénesis/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago/citología , Cartílago/fisiología , Tejido Adiposo/citología , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Células Cultivadas , Ingeniería de Tejidos/métodos
20.
ACS Appl Mater Interfaces ; 16(29): 37683-37697, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38980692

RESUMEN

Tissue engineering is theoretically considered a promising approach for repairing osteochondral defects. Nevertheless, the insufficient osseous support and integration of the cartilage layer and the subchondral bone frequently lead to the failure of osteochondral repair. Drawing from this, it was proposed that incorporating glycine-modified attapulgite (GATP) into poly(1,8-octanediol-co-citrate) (POC) scaffolds via the one-step chemical cross-linking is proposed to enhance cartilage and subchondral bone defect repair simultaneously. The effects of the GATP incorporation ratio on the physicochemical properties, chondrocyte and MC3T3-E1 behavior, and osteochondral defect repair of the POC scaffold were also evaluated. In vitro studies indicated that the POC/10% GATP scaffold improved cell proliferation and adhesion, maintained cell phenotype, and upregulated chondrogenesis and osteogenesis gene expression. Animal studies suggested that the POC/10% GATP scaffold has significant repair effects on both cartilage and subchondral bone defects. Therefore, the GATP-incorporated scaffold system with dual-lineage bioactivity showed potential application in osteochondral regeneration.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Ratones , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Regeneración Ósea/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Conejos , Huesos/efectos de los fármacos , Regeneración/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...