Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Biophys J ; 123(19): 3346-3354, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091025

RESUMEN

Traumatic brain injury (TBI) is an established risk factor for developing neurodegenerative disease. However, how TBI leads from acute injury to chronic neurodegeneration is limited to postmortem models. There is a lack of connections between in vitro and in vivo TBI models that can relate injury forces to both macroscale tissue damage and brain function at the cellular level. Needle-induced cavitation (NIC) is a technique that can produce small cavitation bubbles in soft tissues, which allows us to relate small strains and strain rates in living tissue to ensuing acute cell death, tissue damage, and tissue remodeling. Here, we applied NIC to mouse brain slices to create a new model of TBI with high spatial and temporal resolution. We specifically targeted the hippocampus, which is a brain region critical for learning and memory and an area in which injury causes cognitive pathologies in humans and rodent models. By combining NIC with patch-clamp electrophysiology, we demonstrate that NIC in the cornu ammonis 3 region of the hippocampus dynamically alters synaptic release onto cornu ammonis 1 pyramidal neurons in a cannabinoid 1 receptor-dependent manner. Further, we show that NIC induces an increase in extracellular matrix protein GFAP associated with neural repair that is mitigated by cannabinoid 1 receptor antagonism. Together, these data lay the groundwork for advanced approaches in understanding how TBI impacts neural function at the cellular level and the development of treatments that promote neural repair in response to brain injury.


Asunto(s)
Hipocampo , Ratones Endogámicos C57BL , Animales , Ratones , Hipocampo/patología , Hipocampo/metabolismo , Masculino , Neuroglía/metabolismo , Neuroglía/patología , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Proteína Ácida Fibrilar de la Glía/metabolismo , Células Piramidales/metabolismo , Células Piramidales/patología , Conmoción Encefálica/patología , Conmoción Encefálica/metabolismo , Conmoción Encefálica/fisiopatología
2.
J Neuroinflammation ; 21(1): 194, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097742

RESUMEN

Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.


Asunto(s)
Disfunción Cognitiva , Microglía , PPAR gamma , Pioglitazona , Animales , Masculino , Ratones , Conmoción Encefálica/metabolismo , Conmoción Encefálica/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , PPAR gamma/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167344, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39004380

RESUMEN

The complex pathology of mild traumatic brain injury (mTBI) is a main contributor to the difficulties in achieving a successful therapeutic regimen. Thyroxine (T4) administration has been shown to prevent the cognitive impairments induced by mTBI in mice but the mechanism is poorly understood. To understand the underlying mechanism, we carried out a single cell transcriptomic study to investigate the spatiotemporal effects of T4 on individual cell types in the hippocampus and frontal cortex at three post-injury stages in a mouse model of mTBI. We found that T4 treatment altered the proportions and transcriptomes of numerous cell types across tissues and timepoints, particularly oligodendrocytes, astrocytes, and microglia, which are crucial for injury repair. T4 also reversed the expression of mTBI-affected genes such as Ttr, mt-Rnr2, Ggn12, Malat1, Gnaq, and Myo3a, as well as numerous pathways such as cell/energy/iron metabolism, immune response, nervous system, and cytoskeleton-related pathways. Cell-type specific network modeling revealed that T4 mitigated select mTBI-perturbed dynamic shifts in subnetworks related to cell cycle, stress response, and RNA processing in oligodendrocytes. Cross cell-type ligand-receptor networks revealed the roles of App, Hmgb1, Fn1, and Tnf in mTBI, with the latter two ligands having been previously identified as TBI network hubs. mTBI and/or T4 signature genes were enriched for human genome-wide association study (GWAS) candidate genes for cognitive, psychiatric and neurodegenerative disorders related to mTBI. Our systems-level single cell analysis elucidated the temporal and spatial dynamic reprogramming of cell-type specific genes, pathways, and networks, as well as cell-cell communications as the mechanisms through which T4 mitigates cognitive dysfunction induced by mTBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lóbulo Frontal , Hipocampo , Tiroxina , Animales , Ratones , Hipocampo/metabolismo , Hipocampo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/genética , Tiroxina/farmacología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Masculino , Modelos Animales de Enfermedad , Transcriptoma , Ratones Endogámicos C57BL , Redes Reguladoras de Genes/efectos de los fármacos , Astrocitos/metabolismo , Microglía/metabolismo , Microglía/patología , Conmoción Encefálica/metabolismo , Conmoción Encefálica/genética , Conmoción Encefálica/patología , Conmoción Encefálica/complicaciones , Transducción de Señal/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/patología
4.
Brain Behav Immun ; 120: 557-570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972487

RESUMEN

Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.


Asunto(s)
Ácido Ascórbico , Microglía , Transportadores de Sodio Acoplados a la Vitamina C , Animales , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo , Transportadores de Sodio Acoplados a la Vitamina C/genética , Microglía/metabolismo , Ratones , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Ratones Transgénicos , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/metabolismo , Masculino , Encéfalo/metabolismo , Neuronas/metabolismo , Conmoción Encefálica/metabolismo , Línea Celular
5.
Acta Neuropathol Commun ; 12(1): 113, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992700

RESUMEN

BACKGROUND: Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS: Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS: We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aß1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS: Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Endocannabinoides , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Ratones , Endocannabinoides/metabolismo , Disfunción Cognitiva/metabolismo , Serotonina/metabolismo , Biomarcadores/metabolismo , Masculino , Conmoción Encefálica/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Síntomas Prodrómicos , Péptidos beta-Amiloides/metabolismo
6.
Biomolecules ; 14(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39062567

RESUMEN

Finding an effective treatment for traumatic brain injury is challenging for multiple reasons. There are innumerable different causes and resulting levels of damage for both penetrating and non-penetrating traumatic brain injury each of which shows diverse pathophysiological progressions. More concerning is that disease progression can take decades before neurological symptoms become obvious. Currently, the primary treatment for non-penetrating mild traumatic brain injury, also called concussion, is bed rest despite the fact the majority of emergency room visits for traumatic brain injury are due to this mild form. Furthermore, one-third of mild traumatic brain injury cases progress to long-term serious symptoms. This argues for the earliest therapeutic intervention for all mild traumatic brain injury cases which is the focus of this review. Calcium levels are greatly increased in damaged brain regions as a result of the initial impact due to tissue damage as well as disrupted ion channels. The dysregulated calcium level feedback is a diversity of ways to further augment calcium neurotoxicity. This suggests that targeting calcium levels and function would be a strong therapeutic approach. An effective calcium-based traumatic brain injury therapy could best be developed through therapeutic programs organized in professional team sports where mild traumatic brain injury events are common, large numbers of subjects are involved and professional personnel are available to oversee treatment and documentation. This review concludes with a proposal with that focus.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Calcio , Humanos , Calcio/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Animales , Conmoción Encefálica/metabolismo
7.
Pharmacol Biochem Behav ; 243: 173838, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067532

RESUMEN

Mild traumatic brain injury (mTBI) increases the risk of affective disorders, anxiety and substance use disorder. The lateral habenula (LHb) plays an important role in pathophysiology of psychiatric disorders. Recently, we demonstrated a causal link between mTBI-induced LHb hyperactivity due to excitation/inhibition (E/I) imbalance and motivational deficits in male mice using a repetitive closed head injury mTBI model. A major neuromodulatory system that is responsive to traumatic brain injuries, influences affective states and also modulates LHb activity is the dynorphin/kappa opioid receptor (Dyn/KOR) system. However, the effects of mTBI on KOR neuromodulation of LHb function are unknown. Here, we first used retrograde tracing in male and female Cre mouse lines and identified several major KOR-expressing and two prominent Dyn-expressing inputs projecting to the mouse LHb, highlighting the medial prefrontal cortex (mPFC) and the ventromedial nucleus of the hypothalamus (VMH) as the main LHb-projecting Dyn inputs that regulate KOR signaling to the LHb. We then functionally evaluated the effects of in vitro KOR modulation of spontaneous synaptic activity within the LHb of male and female sham and mTBI mice at 4 week post-injury. We observed sex-specific differences in spontaneous release of glutamate and GABA from presynaptic terminals onto LHb neurons with higher levels of presynaptic glutamate and GABA release in females compared to male mice. However, KOR effects on the spontaneous E/I ratios and synaptic drive ratio within the LHb did not differ between male and female sham and mTBI mice. KOR activation generally suppressed spontaneous glutamatergic transmission without altering GABAergic transmission, resulting in a significant but sex-similar reduction in net spontaneous E/I and synaptic drive ratios in LHb neurons of sham mice. Following mTBI, while responses to KOR activation at LHb glutamatergic synapses remained intact, LHb GABAergic synapses acquired an additional sensitivity to KOR-mediated inhibition where we observed a reduction in GABA release probability in response to KOR stimulation in LHb neurons of mTBI mice. Further analysis of percent change in spontaneous synaptic ratios induced by KOR activation revealed that independent of sex mTBI switches KOR-driven synaptic inhibition of LHb neurons (normally observed in sham mice) in a subset of mTBI mice toward synaptic excitation resulting in mTBI-induced divergence of KOR actions within the LHb. Overall, we uncovered the sources of major Dyn/KOR-expressing synaptic inputs projecting to the mouse LHb. We demonstrate that an engagement of intra-LHb Dyn/KOR signaling provides a global KOR-driven synaptic inhibition within the mouse LHb independent of sex. The additional engagement of KOR-mediated action on LHb GABAergic transmission by mTBI could contribute to the E/I imbalance after mTBI, with Dyn/KOR signaling serving as a disinhibitory mechanism for LHb neurons of a subset of mTBI mice.


Asunto(s)
Conmoción Encefálica , Habénula , Receptores Opioides kappa , Animales , Masculino , Receptores Opioides kappa/metabolismo , Femenino , Ratones , Habénula/metabolismo , Conmoción Encefálica/metabolismo , Conmoción Encefálica/fisiopatología , Sinapsis/metabolismo , Dinorfinas/metabolismo , Ácido Glutámico/metabolismo , Transmisión Sináptica , Ratones Endogámicos C57BL
8.
J Neuroinflammation ; 21(1): 156, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872143

RESUMEN

Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aß) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aß pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aß pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1ß, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.


Asunto(s)
Conmoción Encefálica , Ratones Transgénicos , Animales , Ratones , Conmoción Encefálica/patología , Conmoción Encefálica/inmunología , Conmoción Encefálica/metabolismo , Conmoción Encefálica/complicaciones , Femenino , Masculino , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Neuroinmunomodulación/fisiología , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/inmunología , Caracteres Sexuales
9.
Lipids Health Dis ; 23(1): 200, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937745

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS: Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS: In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS: Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.


Asunto(s)
Encéfalo , Ceramidas , Esfingolípidos , Esfingomielina Fosfodiesterasa , Esfingosina , Animales , Ratones , Esfingolípidos/sangre , Esfingolípidos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Ceramidas/sangre , Ceramidas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/sangre , Esfingomielina Fosfodiesterasa/genética , Esfingosina/análogos & derivados , Esfingosina/sangre , Esfingosina/metabolismo , Modelos Animales de Enfermedad , Masculino , Esfingomielinas/sangre , Esfingomielinas/metabolismo , Conmoción Encefálica/sangre , Conmoción Encefálica/metabolismo , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/patología , Lisofosfolípidos/sangre , Lisofosfolípidos/metabolismo
10.
Brain Res ; 1838: 148998, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754802

RESUMEN

Altered extracellular amino acid concentrations following concussion or mild traumatic brain injury can result in delayed neuronal damage through overactivation of NMDA glutamatergic receptors. However, the consequences of repeated concussions prior to complete recovery are not well understood. In this study, we utilized in vivo cerebral microdialysis and a weight-drop model to investigate the acute neurochemical response to single and repeated concussions in adult rats that were fully conscious. A microdialysis probe was inserted into the hippocampus and remained in place during impact. Primary outcomes included concentrations of glutamate, GABA, taurine, glycine, glutamine, and serine, while secondary outcomes were righting times and excitotoxic indices. Compared to sham injury, the first concussion resulted in significant increases in glutamate, GABA, taurine, and glycine levels, longer righting times, and higher excitotoxic indices. Following the second concussion, righting times were significantly longer, suggesting cumulative effects of repeated concussion while only partial increases were observed in glutamate and taurine levels. GABA and glycine levels, and excitotoxic indices were comparable to sham injury. These findings suggest that single and repeated concussions may induce acute increases in several amino acids, while repeated concussions could exacerbate neurological symptoms despite less pronounced neurochemical changes.


Asunto(s)
Conmoción Encefálica , Modelos Animales de Enfermedad , Microdiálisis , Ratas Sprague-Dawley , Animales , Conmoción Encefálica/metabolismo , Microdiálisis/métodos , Masculino , Ratas , Hipocampo/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Taurina/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo
11.
Brain Res ; 1839: 149040, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815643

RESUMEN

Traumatic brain injury (TBI) is a complex pathophysiological process that results in a variety of neurotransmitter, behavioral, and cognitive deficits. The locus coeruleus-norepinephrine (LC-NE) system is a critical regulator of arousal levels and higher executive processes affected by TBI including attention, working memory, and decision making. LC-NE axon injury and impaired signaling within the prefrontal cortex (PFC) is a potential contributor to the neuropsychiatric symptoms after single, moderate to severe TBI. The majority of TBIs are mild, yet long-term cognitive deficits and increased susceptibility for further injury can accumulate after each repetitive mild TBI. As a potential treatment for restoring cognitive function and daytime sleepiness after injury psychostimulants, including methylphenidate (MPH) that increase levels of NE within the PFC, are being prescribed "off-label". The impact of mild and repetitive mild TBI on the LC-NE system remains limited. Therefore, we determined the extent of LC-NE and arousal dysfunction and response to therapeutic doses of MPH in rats following experimentally induced single and repetitive mild TBI. Microdialysis measures of basal NE efflux from the medial PFC and arousal measures were significantly lower after repetitive mild TBI. Females showed higher baseline PFC-NE efflux than males following single and repetitive mild TBI. In response to MPH challenge, males exhibited a blunted PFC-NE response and persistent arousal levels following repetitive mild TBI. These results provide critical insight into the role of catecholamine system dysfunction associated with cognitive deficits following repeated injury, outcome differences between sex/gender, and lack of success of MPH as an adjunctive therapy to improve cognitive function following injury.


Asunto(s)
Conmoción Encefálica , Estimulantes del Sistema Nervioso Central , Metilfenidato , Norepinefrina , Corteza Prefrontal , Ratas Sprague-Dawley , Animales , Masculino , Norepinefrina/metabolismo , Femenino , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Metilfenidato/farmacología , Conmoción Encefálica/metabolismo , Conmoción Encefálica/fisiopatología , Conmoción Encefálica/tratamiento farmacológico , Ratas , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/fisiopatología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Nivel de Alerta/efectos de los fármacos , Nivel de Alerta/fisiología , Microdiálisis/métodos
12.
J Neuroinflammation ; 21(1): 130, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750510

RESUMEN

Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.


Asunto(s)
Acuaporina 4 , Astrocitos , Transportador 2 de Aminoácidos Excitadores , Ratones Transgénicos , Tauopatías , Proteínas tau , Animales , Humanos , Masculino , Ratones , Acuaporina 4/metabolismo , Acuaporina 4/genética , Astrocitos/metabolismo , Astrocitos/patología , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ratones Endogámicos C57BL , Fenotipo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/genética
13.
BMC Neurol ; 24(1): 149, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698312

RESUMEN

BACKGROUND: Females of reproductive age with concussion report a greater number of symptoms that can be more severe and continue for longer than age matched males. Underlying mechanisms for sex differences are not well understood. Short non-coding Ribonucleic Acids (sncRNAs) are candidate salivary biomarkers for concussion and have been studied primarily in male athletes. Female sex hormones influence expression of these biomarkers, and it remains unclear whether a similar pattern of sncRNA expression would be observed in females following concussion. This study aims to evaluate recovery time, the ratio of salivary sncRNAs and symptom severity across different hormone profiles in females presenting to emergency departments (ED) with concussion and, to investigate the presence of low energy availability (LEA) as a potential modifier of concussion symptoms. METHODS: This prospective cohort study recruits participants from New Zealand EDs who are biologically female, of reproductive age (16-50 years) and with a confirmed diagnosis of concussion from an ED healthcare professional. Participants are excluded by ED healthcare professionals from study recruitment as part of initial routine assessment if they have a pre-diagnosed psychiatric condition, neurological condition (i.e., epilepsy, cerebral palsy) or more than three previously diagnosed concussions. Participants provide a saliva sample for measurement of sncRNA's, and online survey responses relating to hormone profile and symptom recovery at 7-day intervals after injury until they report a full return to work/study. The study is being performed in accordance with ethical standards of the Declaration of Helsinki with ethics approval obtained from the Health and Disability Ethics Committee (HDEC #2021 EXP 11655), Auckland University of Technology Ethics Committee (AUTEC #22/110) and locality consent through Wellington hospital research office. DISCUSSION: If saliva samples confirm presence of sncRNAs in females with concussion, it will provide evidence of the potential of saliva sampling as an objective tool to aid in diagnosis of, and confirmation of recovery from, concussion. Findings will determine whether expression of sncRNAs is influenced by steroid hormones in females and may outline the need for sex specific application and interpretation of sncRNAs as a clinical and/or research tool. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR) registration number ACTRN12623001129673.


Asunto(s)
Conmoción Encefálica , Servicio de Urgencia en Hospital , Saliva , Humanos , Femenino , Saliva/metabolismo , Saliva/química , Conmoción Encefálica/diagnóstico , Conmoción Encefálica/metabolismo , Nueva Zelanda/epidemiología , Adulto , Adulto Joven , Adolescente , Estudios Prospectivos , Persona de Mediana Edad , Biomarcadores/análisis , Biomarcadores/metabolismo , Estudios de Cohortes , MicroARNs/metabolismo
14.
Brain ; 147(6): 2214-2229, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38802114

RESUMEN

Mild traumatic brain injury (mTBI) has emerged as a potential risk factor for the development of neurodegenerative conditions such as Alzheimer's disease and chronic traumatic encephalopathy. Blast mTBI, caused by exposure to a pressure wave from an explosion, is predominantly experienced by military personnel and has increased in prevalence and severity in recent decades. Yet the underlying pathology of blast mTBI is largely unknown. We examined the expression and localization of AQP4 in human post-mortem frontal cortex and observed distinct laminar differences in AQP4 expression following blast exposure. We also observed similar laminar changes in AQP4 expression and localization and delayed impairment of glymphatic function that emerged 28 days following blast injury in a mouse model of repetitive blast mTBI. In a cohort of veterans with blast mTBI, we observed that blast exposure was associated with an increased burden of frontal cortical MRI-visible perivascular spaces, a putative neuroimaging marker of glymphatic perivascular dysfunction. These findings suggest that changes in AQP4 and delayed glymphatic impairment following blast injury may render the post-traumatic brain vulnerable to post-concussive symptoms and chronic neurodegeneration.


Asunto(s)
Acuaporina 4 , Traumatismos por Explosión , Sistema Glinfático , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Acuaporina 4/metabolismo , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/patología , Traumatismos por Explosión/metabolismo , Conmoción Encefálica/metabolismo , Conmoción Encefálica/complicaciones , Conmoción Encefálica/patología , Conmoción Encefálica/fisiopatología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Lóbulo Frontal/diagnóstico por imagen , Sistema Glinfático/metabolismo , Sistema Glinfático/patología , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Veteranos
15.
Behav Brain Res ; 467: 115002, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38636779

RESUMEN

Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers. Aberrant PFC catecholamine activity has been documented following TBI and may underlie TBI-induced risky behavior. The present study characterized the effects of rmTBI on risk/reward decision making behavior and catecholamine transmitter regulatory proteins within the PFC. Rats were exposed to sham, single (smTBI), or three closed-head controlled cortical impact (CH-CCI) injuries and assessed for injury-induced effects on risk/reward decision making using a probabilistic discounting task (PDT). In the first week post-final surgery, mTBI increased risky choice preference. By the fourth week, males exhibited increased latencies to make risky choices following rmTBI, demonstrating a delayed effect on processing speed. When levels of tyrosine hydroxylase (TH) and the norepinephrine reuptake transporter (NET) were measured within subregions of the PFC, females exhibited dramatic increases of TH levels within the orbitofrontal cortex (OFC) following smTBI. However, both males and females demonstrated reduced levels of OFC NET following rmTBI. These results indicate the OFC is susceptible to catecholamine instability after rmTBI and suggests that not all areas of the PFC contribute equally to TBI-induced imbalances. Overall, the CH-CCI model of rmTBI has revealed time-dependent and sex-specific changes in risk/reward decision making and catecholamine regulation following repetitive mild head injuries.


Asunto(s)
Conmoción Encefálica , Catecolaminas , Toma de Decisiones , Corteza Prefrontal , Recompensa , Asunción de Riesgos , Animales , Masculino , Femenino , Toma de Decisiones/fisiología , Catecolaminas/metabolismo , Corteza Prefrontal/metabolismo , Conmoción Encefálica/metabolismo , Conmoción Encefálica/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo , Ratas Sprague-Dawley , Ratas , Modelos Animales de Enfermedad , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo
16.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673871

RESUMEN

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Asunto(s)
Ketamina , Microglía , Ratas Sprague-Dawley , Sinapsis , Animales , Ketamina/administración & dosificación , Ketamina/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Ratas , Masculino , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Traumatismos Cerrados de la Cabeza/patología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Cuerpos Geniculados/patología , Cuerpos Geniculados/efectos de los fármacos , Conmoción Encefálica/patología , Conmoción Encefálica/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Sinapsinas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación
17.
Brain Res ; 1835: 148908, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582416

RESUMEN

BDNF, a neurotrophic factor, and its receptors have been implicated in the pathophysiology of mild traumatic brain injury (mTBI). The brainstem houses many vital functions, that are also associated with signs and symptoms of mTBI, but has been understudied in mTBI animal models. We determined the extent to which neurotrophic protein and associated receptor expression is affected within the brainstem of adult rats following mTBI. Their behavioral function was assessed and temporal expression of the 'negative' regulators of neuronal function (p75, t-TrkB, and pro-BDNF) and 'positive' neuroprotective (FL-TrkB and m-BDNF) protein isoforms were determined via western blot and immunohistochemistry at 1, 3, 7, and 14 post-injury days (PID) following mTBI or sham (control) procedure. Within the brainstem, p75 expression increased at PID 1 vs. sham animals. t-TrkB and pro-BDNF expression increased at PID 7 and 14. The 'positive' protein isoforms of FL-TrkB and m-BDNF expression were increased only at PID 7. The ratio of t-TrkB:FL-TrkB (negative:positive) was substantial across groups and time points, suggesting a negative impact of neurotrophic signaling on neuronal function. Additional NeuN experiments revealed cell death occurring within a subset of neurons within the medulla. While behavioral measures improved by PID 7-14, negative neurotrophic biochemical responses persisted. Despite the assertion that mTBI produces "mild" injury, evidence of cell death was observed in the medulla. Ratios of TrkB and BDNF isoforms with conflicting functions suggest that future work should specifically measure each subtype since they induce opposing downstream effects on neuronal function.


Asunto(s)
Tronco Encefálico , Factor Neurotrófico Derivado del Encéfalo , Ratas Sprague-Dawley , Receptor trkB , Animales , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Tronco Encefálico/metabolismo , Ratas , Conmoción Encefálica/metabolismo , Modelos Animales de Enfermedad , Neuronas/metabolismo , Isoformas de Proteínas/metabolismo , Factores de Tiempo , Proteínas del Tejido Nervioso/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo
18.
J Neurotrauma ; 41(13-14): e1793-e1806, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38482809

RESUMEN

Neurophysiological diaschisis presents in traumatic brain injury (TBI) as functional impairment distant to the lesion site caused by axonal neuroexcitation and deafferentation. Diaschisis studies in TBI models have evaluated acute phase functional and microstructural changes. Here, in vivo biochemical changes and cerebral blood flow (CBF) dynamics following TBI are studied with magnetic resonance. Behavioral assessments, magnetic resonance spectroscopy (MRS), and CBF measurements on rats followed cortical impact TBI. Data were acquired pre-TBI and 1-3 h, 2-days, 7-days, and 14-days post-TBI. MRS was performed on the ipsilateral and contralateral sides in the cortex, striatum, and thalamus. Metabolites measured by MRS included N-acetyl aspartate (NAA), aspartate (Asp), lactate (Lac), glutathione (GSH), and glutamate (Glu). Lesion volume expanded for 2 days post-TBI and then decreased. Ipsilateral CBF dropped acutely versus baseline on both sides (-62% ipsilateral, -48% contralateral, p < 0.05) but then recovered in cortex, with similar changes in ipsilateral striatum. Metabolic changes versus baseline included increased Asp (+640% by Day 7 post-TBI, p < 0.05) and Lac (+140% on Day 2 post-TBI, p < 0.05) in ipsilateral cortex, while GSH (-67% acutely, p < 0.05) and NAA decreased (-50% on Day 2, p < 0.05). In contralateral cortex Lac decreased (-73% acutely, p < 0.05). Analysis of variance showed significance for Side (p < 0.05), Time after TBI (p < 0.05), and interactions (p < 0.005) for Asp, GSH, Lac, and NAA. Transient decreases of GSH (-30%, p < 0.05, acutely) and NAA (-23% on Day 2, p < 0.05) occurred in ipsilateral striatum with reduced GSH (-42%, p < 0.005, acutely) in the contralateral striatum. GSH was decreased in ipsilateral thalamus (-59% ipsilateral on Day 2, p < 0.05). Delayed increases of total choline were seen in the contralateral thalamus were noted as well (+21% on Day 7 post-TBI, p < 0.05). Both CBF and neurometabolite concentration changes occurred remotely from the TBI site, both ipsilaterally and contralaterally. Decreased Lac levels on the contralateral cortex following TBI may be indicative of reduced anaerobic metabolism during the acute phase. The timing and locations of the changes suggest excitatory and inhibitory signaling processes are affecting post-TBI metabolic fluctuations.


Asunto(s)
Ratas Sprague-Dawley , Animales , Ratas , Masculino , Circulación Cerebrovascular/fisiología , Espectroscopía de Resonancia Magnética , Conmoción Encefálica/metabolismo , Conmoción Encefálica/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo
19.
Exp Neurol ; 374: 114702, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301863

RESUMEN

Repetitive mild traumatic brain injuries (r-mTBI) sustained in the military or contact sports have been associated with the accumulation of extracellular tau in the brain, which may contribute to the pathogenesis of neurodegenerative tauopathies. The expression of the apolipoprotein E4 (apoE4) isoform has been associated with higher levels of tau in the brain, and worse clinical outcomes after r-mTBI, though the influence of apoE genotype on extracellular tau dynamics in the brain is poorly understood. We recently demonstrated that extracellular tau can be eliminated across blood-brain barrier (BBB), which is progressively impaired following r-mTBI. The current studies investigated the influence of repetitive mild TBI (r-mTBI) and apoE genotype on the elimination of extracellular solutes from the brain. Following intracortical injection of biotin-labeled tau into humanized apoE-Tr mice, the levels of exogenous tau residing in the brain of apoE4 mice were elevated compared to other isoforms, indicating reduced tau elimination. Additionally, we found exposure to r-mTBI increased tau residence in apoE2 mice, similar to our observations in E2FAD animals. Each of these findings may be the result of diminished tau efflux via LRP1 at the BBB, as LRP1 inhibition significantly reduced tau uptake in endothelial cells and decreased tau transit across an in vitro model of the BBB (basolateral-to-apical). Notably, we showed that injury and apoE status, (particularly apoE4) resulted in chronic alterations in BBB integrity, pericyte coverage, and AQP4 polarization. These aberrations coincided with an atypical reactive astrocytic gene signature indicative of diminished CSF-ISF exchange. Our work found that CSF movement was reduced in the chronic phase following r-mTBI (>18 months post injury) across all apoE genotypes. In summary, we show that apoE genotype strongly influences cerebrovascular homeostasis, which can lead to age-dependent deficiencies in the elimination of toxic proteins from the brain, like tau, particularly in the aftermath of head trauma.


Asunto(s)
Apolipoproteína E4 , Conmoción Encefálica , Ratones , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Ratones Transgénicos , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Conmoción Encefálica/metabolismo
20.
ACS Chem Neurosci ; 15(2): 300-314, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38179922

RESUMEN

Traumatic brain injury (TBI) is a major health concern in the United States and globally, contributing to disability and long-term neurological problems. Lipid dysregulation after TBI is underexplored, and a better understanding of lipid turnover and degradation could point to novel biomarker candidates and therapeutic targets. Here, we investigated overlapping lipidome changes in the brain and blood using a data-driven discovery approach to understand lipid alterations in the brain and serum compartments acutely following mild TBI (mTBI) and the potential efflux of brain lipids to peripheral blood. The cortices and sera from male and female Sprague-Dawley rats were analyzed via ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) in both positive and negative ion modes following single and repetitive closed head impacts. The overlapping lipids in the data sets were identified with an in-house data dictionary for investigating lipid class changes. MS-based lipid profiling revealed overall increased changes in the serum compartment, while the brain lipids primarily showed decreased changes. Interestingly, there were prominent alterations in the sphingolipid class in the brain and blood compartments after single and repetitive injury, which may suggest efflux of brain sphingolipids into the blood after TBI. Genetic algorithms were used for predictive panel selection to classify injured and control samples with high sensitivity and specificity. These overlapping lipid panels primarily mapped to the glycerophospholipid metabolism pathway with Benjamini-Hochberg adjusted q-values less than 0.05. Collectively, these results detail overlapping lipidome changes following mTBI in the brain and blood compartments, increasing our understanding of TBI-related lipid dysregulation while identifying novel biomarker candidates.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Ratas , Masculino , Femenino , Animales , Conmoción Encefálica/metabolismo , Lipidómica , Ratas Sprague-Dawley , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Esfingolípidos/metabolismo , Biomarcadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...