Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 906
Filtrar
1.
PLoS Pathog ; 18(1): e1010264, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073379

RESUMEN

Herpes simplex virus type 1 (HSV-1) has evolved mechanisms to exploit the host cytoskeleton during entry, replication and exit from cells. In this study, we determined the role of actin and the molecular motor proteins, myosin II and myosin V, in the transport and release of HSV-1 from axon termini, or growth cones. Using compartmentalized neuronal devices, we showed that inhibition of actin polymerization, but not actin branching, significantly reduced the release of HSV-1 from axons. Furthermore, we showed that inhibition of myosin V, but not myosin II, also significantly reduced the release of HSV-1 from axons. Using confocal and electron microscopy, we determined that viral components are transported along axons to growth cones, despite actin or myosin inhibition. Overall, our study supports the role of actin in virus release from axonal growth cones and suggests myosin V as a likely candidate involved in this process.


Asunto(s)
Citoesqueleto de Actina/virología , Conos de Crecimiento/virología , Herpes Simple/virología , Liberación del Virus/fisiología , Animales , Transporte Axonal/fisiología , Conos de Crecimiento/ultraestructura , Herpesvirus Humano 1 , Ratas , Ratas Wistar
2.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328171

RESUMEN

Since the pioneering work of Ramón y Cajal, scientists have sought to unravel the complexities of axon development underlying neural circuit formation. Micrometer-scale axonal growth cones navigate to targets that are often centimeters away. To reach their targets, growth cones react to dynamic environmental cues that change in the order of seconds to days. Proper axon growth and guidance are essential to circuit formation, and progress in imaging has been integral to studying these processes. In particular, advances in high- and super-resolution microscopy provide the spatial and temporal resolution required for studying developing axons. In this Review, we describe how improved microscopy has revolutionized our understanding of axonal development. We discuss how novel technologies, specifically light-sheet and super-resolution microscopy, led to new discoveries at the cellular scale by imaging axon outgrowth and circuit wiring with extreme precision. We next examine how advanced microscopy broadened our understanding of the subcellular dynamics driving axon growth and guidance. We finally assess the current challenges that the field of axonal biology still faces for imaging axons, and examine how future technology could meet these needs.


Asunto(s)
Axones/fisiología , Axones/ultraestructura , Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Animales , Humanos , Microscopía/métodos
3.
Autophagy ; 17(4): 855-871, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32286126

RESUMEN

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) - the predominant neuronal sub-type afflicted in PD - have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells.Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4',6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified eagle's medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.


Asunto(s)
Autofagia , Técnicas de Cultivo de Célula , Neuronas Dopaminérgicas/citología , Células Madre Pluripotentes Inducidas/citología , Mitofagia , Autofagia/efectos de los fármacos , Autofagia/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Mesencéfalo/citología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Mitofagia/genética , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/genética , Piridinas/farmacología , Pirimidinas/farmacología , Factores de Tiempo
4.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-32385223

RESUMEN

For more than a century, mechanical forces have been predicted to govern many biological processes during development, both at the cellular level and in tissue homeostasis. The cytomechanics of the thin and highly extended neuronal axons have intrigued generations of biologists and biophysicists. However, our knowledge of the biophysics of neurite growth and development is far from complete. Due to its motile behavior and its importance in axonal pathfinding, the growth cone has received significant attention. A considerable amount of information is now available on the spatiotemporal regulation of biochemical signaling and remodeling of the growth cone cytoskeleton. However, the cytoskeletal organization and dynamics in the axonal shaft were poorly explored until recently. Driven by advances in microscopy, there has been a surge of interest in the axonal cytoskeleton in the last few years. A major emerging area of investigation is the relationship between the axonal cytoskeleton and the diverse mechanobiological responses of neurons. This review attempts to summarize our current understanding of the axonal cytoskeleton and its critical role in governing axonal mechanics in the context of neuronal development.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Conos de Crecimiento/metabolismo , Filamentos Intermedios/metabolismo , Mecanotransducción Celular , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Fenómenos Biomecánicos , Conos de Crecimiento/ultraestructura , Humanos , Filamentos Intermedios/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Neurogénesis/fisiología , Sinapsis/ultraestructura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura
5.
Sci Rep ; 10(1): 5207, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251310

RESUMEN

Abnormalities in actin cytoskeleton have been linked to Friedreich's ataxia (FRDA), an inherited peripheral neuropathy characterised by an early loss of neurons in dorsal root ganglia (DRG) among other clinical symptoms. Despite all efforts to date, we still do not fully understand the molecular events that contribute to the lack of sensory neurons in FRDA. We studied the adult neuronal growth cone (GC) at the cellular and molecular level to decipher the connection between frataxin and actin cytoskeleton in DRG neurons of the well-characterised YG8R Friedreich's ataxia mouse model. Immunofluorescence studies in primary cultures of DRG from YG8R mice showed neurons with fewer and smaller GCs than controls, associated with an inhibition of neurite growth. In frataxin-deficient neurons, we also observed an increase in the filamentous (F)-actin/monomeric (G)-actin ratio (F/G-actin ratio) in axons and GCs linked to dysregulation of two crucial modulators of filamentous actin turnover, cofilin-1 and the actin-related protein (ARP) 2/3 complex. We show how the activation of cofilin is due to the increase in chronophin (CIN), a cofilin-activating phosphatase. Thus cofilin emerges, for the first time, as a link between frataxin deficiency and actin cytoskeleton alterations.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cofilina 1/fisiología , Ataxia de Friedreich/metabolismo , Conos de Crecimiento/ultraestructura , Proteínas de Unión a Hierro/genética , Citoesqueleto de Actina/patología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Axones/química , Células Cultivadas , Modelos Animales de Enfermedad , Ataxia de Friedreich/genética , Ganglios Espinales/patología , Ratones , Ratones Mutantes Neurológicos , Proteínas de Microfilamentos/metabolismo , Mutación Missense , Neuritas/ultraestructura , Neuronas/ultraestructura , Fosfoproteínas Fosfatasas/fisiología , Fosforilación , Fosfoserina/metabolismo , Procesamiento Proteico-Postraduccional , Frataxina
6.
Dev Cell ; 50(4): 447-461.e8, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31353313

RESUMEN

Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a "serial synapse formation" model, where at any time point only 1-2 "synaptogenic" filopodia suppress the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization, and reduced synapse formation. The failure to form synapses can cause the destabilization and secondary retraction of axon terminals. Our model provides a filopodial "winner-takes-all" mechanism that ensures the formation of an appropriate number of synapses.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas Activadoras de GTPasa/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Neurogénesis/genética , Sinapsis/genética , Animales , Axones/metabolismo , Axones/ultraestructura , Simulación por Computador , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Fosfoproteínas/genética , Seudópodos/genética , Seudópodos/fisiología , Seudópodos/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura
7.
PLoS One ; 14(5): e0216181, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31059532

RESUMEN

Geometrical cues are known to play a very important role in neuronal growth and the formation of neuronal networks. Here, we present a detailed analysis of axonal growth and dynamics for neuronal cells cultured on patterned polydimethylsiloxane surfaces. We use fluorescence microscopy to image neurons, quantify their dynamics, and demonstrate that the substrate geometrical patterns cause strong directional alignment of axons. We quantify axonal growth and report a general stochastic approach that quantitatively describes the motion of growth cones. The growth cone dynamics is described by Langevin and Fokker-Planck equations with both deterministic and stochastic contributions. We show that the deterministic terms contain both the angular and speed dependence of axonal growth, and that these two contributions can be separated. Growth alignment is determined by surface geometry, and it is quantified by the deterministic part of the Langevin equation. We combine experimental data with theoretical analysis to measure the key parameters of the growth cone motion: speed and angular distributions, correlation functions, diffusion coefficients, characteristics speeds and damping coefficients. We demonstrate that axonal dynamics displays a cross-over from Brownian motion (Ornstein-Uhlenbeck process) at earlier times to anomalous dynamics (superdiffusion) at later times. The superdiffusive regime is characterized by non-Gaussian speed distributions and power law dependence of the axonal mean square length and the velocity correlation functions. These results demonstrate the importance of geometrical cues in guiding axonal growth, and could lead to new methods for bioengineering novel substrates for controlling neuronal growth and regeneration.


Asunto(s)
Neuronas/fisiología , Animales , Axones/fisiología , Axones/ultraestructura , Dimetilpolisiloxanos , Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Neuronas/ultraestructura , Ratas , Procesos Estocásticos
8.
J Cell Biol ; 218(1): 350-379, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30523041

RESUMEN

Growth cones are complex, motile structures at the tip of an outgrowing neurite. They often exhibit a high density of filopodia (thin actin bundles), which complicates the unbiased quantification of their morphologies by software. Contemporary image processing methods require extensive tuning of segmentation parameters, require significant manual curation, and are often not sufficiently adaptable to capture morphology changes associated with switches in regulatory signals. To overcome these limitations, we developed Growth Cone Analyzer (GCA). GCA is designed to quantify growth cone morphodynamics from time-lapse sequences imaged both in vitro and in vivo, but is sufficiently generic that it may be applied to nonneuronal cellular structures. We demonstrate the adaptability of GCA through the analysis of growth cone morphological variation and its relation to motility in both an unperturbed system and in the context of modified Rho GTPase signaling. We find that perturbations inducing similar changes in neurite length exhibit underappreciated phenotypic nuance at the scale of the growth cone.


Asunto(s)
Conos de Crecimiento/ultraestructura , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagen Molecular/normas , Neuronas/ultraestructura , Programas Informáticos , Imagen de Lapso de Tiempo/normas , Proteínas de Unión al GTP rho/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Forma de la Célula/genética , Regulación de la Expresión Génica , Heterogeneidad Genética , Conos de Crecimiento/metabolismo , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Imagen Molecular/métodos , Neuronas/metabolismo , Neuropéptidos/deficiencia , Neuropéptidos/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Seudópodos/metabolismo , Seudópodos/ultraestructura , Factores de Intercambio de Guanina Nucleótido Rho/deficiencia , Factores de Intercambio de Guanina Nucleótido Rho/genética , Transducción de Señal , Imagen de Lapso de Tiempo/métodos , Proteína de Unión al GTP cdc42/deficiencia , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/deficiencia , Proteína de Unión al GTP rac1/genética , Proteínas de Unión al GTP rho/deficiencia , Proteína de Unión al GTP rhoA
9.
Elife ; 62017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28829740

RESUMEN

An 'interactome' screen of all Drosophila cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we 'deorphanized' four more members of the Beat-Side network. We confirmed interactions using surface plasmon resonance. The expression patterns of beat and side genes suggest that Beats are neuronal receptors for Sides expressed on peripheral tissues. side-VI is expressed in muscle fibers targeted by the ISNb nerve, as well as at growth cone choice points and synaptic targets for the ISN and TN nerves. beat-V genes, encoding Side-VI receptors, are expressed in ISNb and ISN motor neurons.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Conos de Crecimiento/metabolismo , Proteínas de la Membrana/genética , Neuronas Motoras/metabolismo , Músculos/metabolismo , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/metabolismo , Animales , Anticuerpos/química , Bioensayo , Biología Computacional , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Embrión no Mamífero , Colorantes Fluorescentes/química , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/ultraestructura , Proteínas de la Membrana/metabolismo , Neuronas Motoras/ultraestructura , Músculos/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/ultraestructura , Ficoeritrina/química , Filogenia , Mapeo de Interacción de Proteínas/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal
10.
J Vis Exp ; (124)2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28654041

RESUMEN

The establishment of functional neuromuscular circuits relies on precise connections between developing motor axons and target muscles. Motor neurons extend growth cones to navigate along specific pathways by responding to a large number of axon guidance cues that emanate from the surrounding extracellular environment. Growth cone target recognition also plays a critical role in neuromuscular specificity. This work presents a standard immunohistochemistry protocol to visualize motor neuron projections of late stage-16 Drosophila melanogaster embryos. This protocol includes a few key steps, including a genotyping procedure, to sort the desired mutant embryos; an immunostaining procedure, to tag embryos with fasciclin II (FasII) antibody; and a dissection procedure, to generate filleted preparations from fixed embryos. Motor axon projections and muscle patterns in the periphery are much better visualized in flat preparations of filleted embryos than in whole-mount embryos. Therefore, the filleted preparation of fixed embryos stained with FasII antibody provides a powerful tool to characterize the genes required for motor axon pathfinding and target recognition, and it can also be applied to both loss-of-function and gain-of-function genetic screens.


Asunto(s)
Axones/ultraestructura , Drosophila melanogaster/embriología , Conos de Crecimiento/ultraestructura , Inmunohistoquímica/métodos , Neuronas Motoras/ultraestructura , Músculos/ultraestructura , Animales , Drosophila melanogaster/genética , Técnicas de Cultivo de Embriones , Genotipo , Microscopía , Músculos/embriología , Músculos/inervación , Unión Neuromuscular/embriología , Unión Neuromuscular/ultraestructura
11.
Nat Commun ; 8(1): 33, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28652571

RESUMEN

A long-standing question in neurodevelopment is how neurons develop a single axon and multiple dendrites from common immature neurites. Long-range inhibitory signaling from the growing axon is hypothesized to prevent outgrowth of other immature neurites and to differentiate them into dendrites, but the existence and nature of this inhibitory signaling remains unknown. Here, we demonstrate that axonal growth triggered by neurotrophin-3 remotely inhibits neurite outgrowth through long-range Ca2+ waves, which are delivered from the growing axon to the cell body. These Ca2+ waves increase RhoA activity in the cell body through calcium/calmodulin-dependent protein kinase I. Optogenetic control of Rho-kinase combined with computational modeling reveals that active Rho-kinase diffuses to growing other immature neurites and inhibits their outgrowth. Mechanistically, calmodulin-dependent protein kinase I phosphorylates a RhoA-specific GEF, GEF-H1, whose phosphorylation enhances its GEF activity. Thus, our results reveal that long-range inhibitory signaling mediated by Ca2+ wave is responsible for neuronal polarization.Emerging evidence suggests that gut microbiota influences immune function in the brain and may play a role in neurological diseases. Here, the authors offer in vivo evidence from a Drosophila model that supports a role for gut microbiota in modulating the progression of Alzheimer's disease.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Señalización del Calcio , Calcio/metabolismo , Conos de Crecimiento/metabolismo , Neuritas/metabolismo , Proteínas de Unión al GTP rho/genética , Animales , Segmento Inicial del Axón/ultraestructura , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Comunicación Celular , Diferenciación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/ultraestructura , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos ICR , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Neuritas/ultraestructura , Neurogénesis/genética , Imagen Óptica , Optogenética , Cultivo Primario de Células , Transporte de Proteínas , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
12.
PLoS One ; 11(8): e0159405, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27482713

RESUMEN

Netrin-1 is an essential extracellular chemoattractant that signals through its receptor DCC to guide commissural axon extension in the embryonic spinal cord. DCC directs the organization of F-actin in growth cones by activating an intracellular protein complex that includes the Rho GTPase Cdc42, a critical regulator of cell polarity and directional migration. To address the spatial distribution of signaling events downstream of netrin-1, we expressed the FRET biosensor Raichu-Cdc42 in cultured embryonic rat spinal commissural neurons. Using FLIM-FRET imaging we detected rapid activation of Cdc42 in neuronal growth cones following application of netrin-1. Investigating the signaling mechanisms that control Cdc42 activation by netrin-1, we demonstrate that netrin-1 rapidly enriches DCC at the leading edge of commissural neuron growth cones and that netrin-1 induced activation of Cdc42 in the growth cone is blocked by inhibiting src family kinase signaling. These findings reveal the activation of Cdc42 in embryonic spinal commissural axon growth cones and support the conclusion that src family kinase activation downstream of DCC is required for Cdc42 activation by netrin-1.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Conos de Crecimiento/ultraestructura , Microscopía Fluorescente/métodos , Factores de Crecimiento Nervioso/análisis , Médula Espinal/embriología , Proteínas Supresoras de Tumor/análisis , Proteína de Unión al GTP cdc42/análisis , Animales , Células Cultivadas , Receptor DCC , Conos de Crecimiento/metabolismo , Microdisección , Factores de Crecimiento Nervioso/metabolismo , Netrina-1 , Ratas Sprague-Dawley , Receptores de Superficie Celular/análisis , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/ultraestructura , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Familia-src Quinasas/metabolismo
13.
J Cell Biol ; 213(2): 261-74, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27091449

RESUMEN

Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.


Asunto(s)
Axones/metabolismo , Glicoproteínas/fisiología , Proteínas del Tejido Nervioso/fisiología , Seudópodos/fisiología , Receptores Inmunológicos/fisiología , Animales , Axones/ultraestructura , Quimiotaxis , Desarrollo Embrionario , Glicoproteínas/metabolismo , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Seudópodos/metabolismo , Seudópodos/ultraestructura , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal , Proteínas Roundabout
14.
Exp Neurol ; 279: 243-260, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26980486

RESUMEN

Fingolimod (FTY720) is a new generation oral treatment for multiple sclerosis (MS). So far, FTY720 was mainly considered to target trafficking of immune cells but not brain cells such as neurons. Herein, we analyzed FTY720's potential to directly alter neuronal function. In CNS neurons, we identified a FTY720 governed gene expression response. FTY720 upregulated immediate early genes (IEGs) encoding for neuronal activity associated transcription factors such as c-Fos, FosB, Egr1 and Egr2 and induced actin cytoskeleton associated genes (actin isoforms, tropomyosin, calponin). Stimulation of primary neurons with FTY720 enhanced neurite growth and altered growth cone morphology. In accordance, FTY720 enhanced axon regeneration in mice upon facial nerve axotomy. We identified components of a FTY720 engaged signaling cascade including S1P receptors, G12/13G-proteins, RhoA-GTPases and the transcription factors SRF/MRTF. In summary, we uncovered a broader cellular and therapeutic operation mode of FTY720, suggesting beneficial FTY720 effects also on CNS neurons during MS therapy and for treatment of other neurodegenerative diseases requiring neuroprotective and neurorestorative processes.


Asunto(s)
Axones/efectos de los fármacos , Clorhidrato de Fingolimod/farmacología , Expresión Génica/efectos de los fármacos , Inmunosupresores/farmacología , Esclerosis Múltiple/tratamiento farmacológico , Neuronas/metabolismo , Actinas/metabolismo , Animales , Axotomía , Células Cultivadas , Nervio Facial/efectos de los fármacos , Nervio Facial/crecimiento & desarrollo , Genes Inmediatos-Precoces/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa/efectos de los fármacos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuritas/efectos de los fármacos , Neuronas/efectos de los fármacos , Factores de Transcripción/genética
15.
PLoS Biol ; 13(3): e1002119, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25826604

RESUMEN

During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.


Asunto(s)
Conos de Crecimiento/efectos de los fármacos , Proteínas Hedgehog/farmacología , Factores de Crecimiento Nervioso/farmacología , Médula Espinal/efectos de los fármacos , Proteínas Supresoras de Tumor/farmacología , Familia-src Quinasas/genética , Animales , Quimiotaxis/fisiología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Dispositivos Laboratorio en un Chip , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Molecular , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , Netrina-1 , Cultivo Primario de Células , Transducción de Señal , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Médula Espinal/ultraestructura , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Familia-src Quinasas/metabolismo
16.
Morfologiia ; 145(1): 7-12, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25051793

RESUMEN

The reactions of forming synapses in rat neocortex to the effect of hypoxia in the early postnatal period (day 2) were studied. Using immunocytochemistry for synaptophysin demonstratoion and electron microscopic methods, the sensorimotor cortex was studied in rats at days 3, 4 and 10 of postnatal development (6 to 10 animals of each age) in both experimental and control groups (intact animals). Immunocytochemical study of the control animals demonstrated significant differences in the quantitative distribution of synaptophysin-positive structures in the different layers of the neocortex in the early postnatal period of development (day 5). It is shown that after exposure to perinatal hypoxia, more than 2-fold decrease of the optical density of the immunocytochemical reaction product took place together with the reduction of synaptophysin-positive granules distribution density in all cortical layers of. At the same time, electron-dense terminals demonstrating early degenerative processes were found. In the neuropil of the neocortex, a sharp decline in the number of growth cones, small processes and forming synapses was accompanied by significant changes of the electron density of synaptic, especially post-synaptic, membranes and densities. In the experimental animals, the number of growth cones and emerging synaptic structures were shown to increase only by postnatal day 10. Thus, the effects of hypoxia in the early postnatal period, causing disturbances of synaptogenesis, persist throughout the whole neonatal period examined.


Asunto(s)
Hipoxia/patología , Interneuronas/ultraestructura , Neocórtex/patología , Animales , Conos de Crecimiento/ultraestructura , Hipoxia/metabolismo , Interneuronas/metabolismo , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Ratas , Sinapsis/ultraestructura , Sinaptofisina/genética , Sinaptofisina/metabolismo
17.
Methods Mol Biol ; 1162: 17-27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24838955

RESUMEN

Calcium imaging allows us to measure the spatial and temporal changes in intracellular calcium concentration in living cells. Localized calcium elevation often functions as the polarizing signal during guided migration including axon guidance. In this chapter, we describe a protocol to quantitatively monitor the spatiotemporal dynamics of calcium signals in neuronal growth cones in the presence of an extracellular concentration gradient of axon guidance cue.


Asunto(s)
Señalización del Calcio , Conos de Crecimiento/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Pollos , Diseño de Equipo , Conos de Crecimiento/ultraestructura , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Factor de Crecimiento Nervioso/metabolismo , Programas Informáticos
18.
Methods Mol Biol ; 1162: 73-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24838959

RESUMEN

The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures. In both cases after a defined period of time (up to 1 h), the cultures are fixed and then assessed by inverted phase contrast microscopy for the percentage of growth cones showing a collapsed profile with loss of flattened morphology, filopodia, and lamellipodia.


Asunto(s)
Ganglios Espinales/citología , Conos de Crecimiento/ultraestructura , Microscopía de Contraste de Fase/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Pollos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Proteínas/administración & dosificación , Proteínas/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , Fijación del Tejido/métodos
19.
Neurosci Res ; 81-82: 11-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24698813

RESUMEN

Serotonin (5-HT) regulates the development of cerebral cortex, but 5-HT receptors mediating the effects are poorly understood. We investigated roles of 5-HT2A receptor in dendritic growth cones using dissociation culture of rat cerebral cortex. Neurons at embryonic day 16 were cultured for 4 days and treated with 5-HT2A/2C receptor agonist (DOI) for 4h. DOI increased the size of growth cone periphery which was actin-rich and microtubule-associated protein 2-negative at the dendritic tip. The length increase of the growth cone periphery may be mediated by 5-HT2A receptor, because the 5-HT2A receptor antagonist reversed the effects of DOI. Moreover, the time-lapse analysis demonstrated the increase of morphological dynamics in dendritic growth cones by DOI. Next, to elucidate the mechanisms underlying the actions of 5-HT2A receptor in dendritic growth cones, we examined the cytoskeletal proteins, tyrosinated α-tubulin (Tyr-T; dynamic tubulin) and acetylated α-tubulin (Ace-T; stable tubulin). DOI increased the fluorescence intensity of Tyr-T, while decreased that of Ace-T in the dendritic growth cone periphery. These effects were reversed by the 5-HT2A receptor antagonist, suggesting that 5-HT2A receptor promotes microtubule dynamics. In summary, it was suggested that 5-HT2A receptor induces morphological changes and dynamics of dendritic growth cones through regulation of microtubule assembly.


Asunto(s)
Corteza Cerebral/embriología , Dendritas/ultraestructura , Conos de Crecimiento/ultraestructura , Microtúbulos/ultraestructura , Receptor de Serotonina 5-HT2A/fisiología , Animales , Corteza Cerebral/efectos de los fármacos , Citoesqueleto/metabolismo , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT2A/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología
20.
J Neurochem ; 128(2): 267-79, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24117969

RESUMEN

EphrinA/EphA-dependent axon repulsion is crucial for synaptic targeting in developing neurons but downstream molecular mechanisms remain obscure. Here, it is shown that ephrinA5/EphA3 triggers proteolysis of the neural cell adhesion molecule (NCAM) by the metalloprotease a disintegrin and metalloprotease (ADAM)10 to promote growth cone collapse in neurons from mouse neocortex. EphrinA5 induced ADAM10 activity to promote ectodomain shedding of polysialic acid-NCAM in cortical neuron cultures, releasing a ~ 250 kDa soluble fragment consisting of most of its extracellular region. NCAM shedding was dependent on ADAM10 and EphA3 kinase activity as shown in HEK293T cells transfected with dominant negative ADAM10 and kinase-inactive EphA3 (K653R) mutants. Purified ADAM10 cleaved NCAM at a sequence within the E-F loop of the second fibronectin type III domain (Leu(671) -Lys(672) /Ser(673) -Leu(674) ) identified by mass spectrometry. Mutations of NCAM within the ADAM10 cleavage sequence prevented EphA3-induced shedding of NCAM in HEK293T cells. EphrinA5-induced growth cone collapse was dependent on ADAM10 activity, was inhibited in cortical cultures from NCAM null mice, and was rescued by WT but not ADAM10 cleavage site mutants of NCAM. Regulated proteolysis of NCAM through the ephrin5/EphA3/ADAM10 mechanism likely impacts synapse development, and may lead to excess NCAM shedding when disrupted, as implicated in neurodevelopmental disorders such as schizophrenia. PSA-NCAM and ephrinA/EphA3 coordinately regulate inhibitory synapse development. Here, we have found that ephrinA5 stimulates EphA3 kinase and ADAM10 activity to promote PSA-NCAM cleavage at a site in its second FNIII repeat, which regulates ephrinA5-induced growth cone collapse in GABAergic and non-GABAergic neurons. These findings identify a new regulatory mechanism which may contribute to inhibitory connectivity.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Conos de Crecimiento/fisiología , Proteínas de la Membrana/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptor EphA3/metabolismo , Receptor EphA5/metabolismo , Proteína ADAM10 , Animales , Células Cultivadas , Corteza Cerebral/citología , Fibronectinas/metabolismo , Conos de Crecimiento/ultraestructura , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Moléculas de Adhesión de Célula Nerviosa/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...