Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.090
Filtrar
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38937077

RESUMEN

Even partly consolidated memories can be forgotten given sufficient time, but the brain activity associated with durability of episodic memory at different time scales remains unclear. Here, we aimed to identify brain activity associated with retrieval of partly consolidated episodic memories that continued to be remembered in the future. Forty-nine younger (20 to 38 years; 25 females) and 43 older adults (60 to 80 years, 25 females) were scanned with functional magnetic resonance imaging during associative memory retrieval 12 h post-encoding. Twelve hours is sufficient to allow short-term synaptic consolidation as well as early post-encoding replay to initiate memory consolidation. Successful memory trials were classified into durable and transient source memories based on responses from a memory test ~6 d post-encoding. Results demonstrated that successful retrieval of future durable vs. transient memories was supported by increased activity in a medial prefrontal and ventral parietal area. Individual differences in activation as well as the subjective vividness of memories during encoding were positively related to individual differences in memory performance after 6 d. The results point to a unique and novel aspect of brain activity supporting long-term memory, in that activity during retrieval of memories even after 12 h of consolidation contains information about potential for long-term durability.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Consolidación de la Memoria , Memoria Episódica , Recuerdo Mental , Humanos , Femenino , Masculino , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Recuerdo Mental/fisiología , Anciano , Consolidación de la Memoria/fisiología , Anciano de 80 o más Años , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Factores de Tiempo
2.
Learn Mem ; 31(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38862171

RESUMEN

Across animal species, dopamine-operated memory systems comprise anatomically segregated, functionally diverse subsystems. Although individual subsystems could operate independently to support distinct types of memory, the logical interplay between subsystems is expected to enable more complex memory processing by allowing existing memory to influence future learning. Recent comprehensive ultrastructural analysis of the Drosophila mushroom body revealed intricate networks interconnecting the dopamine subsystems-the mushroom body compartments. Here, we review the functions of some of these connections that are beginning to be understood. Memory consolidation is mediated by two different forms of network: A recurrent feedback loop within a compartment maintains sustained dopamine activity required for consolidation, whereas feed-forward connections across compartments allow short-term memory formation in one compartment to open the gate for long-term memory formation in another compartment. Extinction and reversal of aversive memory rely on a similar feed-forward circuit motif that signals omission of punishment as a reward, which triggers plasticity that counteracts the original aversive memory trace. Finally, indirect feed-forward connections from a long-term memory compartment to short-term memory compartments mediate higher-order conditioning. Collectively, these emerging studies indicate that feedback control and hierarchical connectivity allow the dopamine subsystems to work cooperatively to support diverse and complex forms of learning.


Asunto(s)
Dopamina , Cuerpos Pedunculados , Animales , Dopamina/metabolismo , Dopamina/fisiología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/metabolismo , Drosophila/fisiología , Retroalimentación Fisiológica/fisiología , Consolidación de la Memoria/fisiología , Red Nerviosa/fisiología , Red Nerviosa/metabolismo , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Vías Nerviosas/fisiología
3.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928281

RESUMEN

The pivotal role of the basolateral amygdala (BLA) in the emotional modulation of hippocampal plasticity and memory consolidation is well-established. Specifically, multiple studies have demonstrated that the activation of the noradrenergic (NA) system within the BLA governs these modulatory effects. However, most current evidence has been obtained by direct infusion of synthetic NA or beta-adrenergic agonists. In the present study, we aimed to investigate the effect of endogenous NA release in the BLA, induced by a natural aversive stimulus (coyote urine), on memory consolidation for a low-arousing, hippocampal-dependent task. Our experiments combined a weak object location task (OLT) version with subsequent mild predator odor exposure (POE). To investigate the role of endogenous NA in the BLA in memory modulation, a subset of the animals (Wistar rats) was treated with the non-selective beta-blocker propranolol at the end of the behavioral procedures. Hippocampal tissue was collected 90 min after drug infusion or after the OLT test, which was performed 24 h later. We used the obtained samples to estimate the levels of phosphorylated CREB (pCREB) and activity-regulated cytoskeleton-associated protein (Arc)-two molecular markers of experience-dependent changes in neuronal activity. The result suggests that POE has the potential to become a valuable behavioral paradigm for studying the interaction between BLA and the hippocampus in memory prioritization and selectivity.


Asunto(s)
Complejo Nuclear Basolateral , Emociones , Hipocampo , Consolidación de la Memoria , Norepinefrina , Odorantes , Ratas Wistar , Animales , Consolidación de la Memoria/fisiología , Consolidación de la Memoria/efectos de los fármacos , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/efectos de los fármacos , Masculino , Ratas , Norepinefrina/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Hipocampo/efectos de los fármacos , Emociones/fisiología , Emociones/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Propranolol/farmacología
5.
Nat Commun ; 15(1): 5249, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898100

RESUMEN

Memory consolidation relies in part on the reactivation of previous experiences during sleep. The precise interplay of sleep-related oscillations (slow oscillations, spindles and ripples) is thought to coordinate the information flow between relevant brain areas, with ripples mediating memory reactivation. However, in humans empirical evidence for a role of ripples in memory reactivation is lacking. Here, we investigated the relevance of sleep oscillations and specifically ripples for memory reactivation during human sleep using targeted memory reactivation. Intracranial electrophysiology in epilepsy patients and scalp EEG in healthy participants revealed that elevated levels of slow oscillation - spindle activity coincided with the read-out of experimentally induced memory reactivation. Importantly, spindle-locked ripples recorded intracranially from the medial temporal lobe were found to be correlated with the identification of memory reactivation during non-rapid eye movement sleep. Our findings establish ripples as key-oscillation for sleep-related memory reactivation in humans and emphasize the importance of the coordinated interplay of the cardinal sleep oscillations.


Asunto(s)
Electroencefalografía , Consolidación de la Memoria , Humanos , Masculino , Femenino , Adulto , Consolidación de la Memoria/fisiología , Epilepsia/fisiopatología , Fases del Sueño/fisiología , Adulto Joven , Memoria/fisiología , Lóbulo Temporal/fisiología , Sueño/fisiología , Sueño de Onda Lenta/fisiología
6.
Transl Psychiatry ; 14(1): 242, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844463

RESUMEN

It has been well established that a consolidated memory can be updated during the plastic state induced by reactivation. This updating process opens the possibility to modify maladaptive memory. In the present study, we evaluated whether fear memory could be updated to less-aversive level by incorporating hedonic information during reactivation. Thus, male rats were fear conditioned and, during retrieval, a female was presented as a social rewarding stimulus. We found that memory reactivation with a female (but not a male) reduces fear expression within-session and in the test, without presenting reinstatement or spontaneous recovery. Interestingly, this intervention impaired extinction. Finally, we demonstrated that this emotional remodeling to eliminate fear expression requires the activation of dopamine and oxytocin receptors during retrieval. Hence, these results shed new lights on the memory updating process and suggests that the exposure to natural rewarding information such as a female during retrieval reduces a previously consolidated fear memory.


Asunto(s)
Miedo , Receptores de Oxitocina , Interacción Social , Animales , Miedo/fisiología , Masculino , Ratas , Receptores de Oxitocina/metabolismo , Femenino , Memoria/fisiología , Extinción Psicológica/fisiología , Receptores Dopaminérgicos/metabolismo , Condicionamiento Clásico/fisiología , Recompensa , Ratas Wistar , Consolidación de la Memoria/fisiología
7.
PLoS One ; 19(6): e0305066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843228

RESUMEN

A large body of evidence has shown that treatments that interfere with memory consolidation become ineffective when animals are subjected to an intense learning experience; this effect has been observed after systemic and local administration of amnestic drugs into several brain areas, including the striatum. However, the effects of amnestic treatments on the process of extinction after intense training have not been studied. Previous research demonstrated increased spinogenesis in the dorsomedial striatum, but not in the dorsolateral striatum after intense training, indicating that the dorsomedial striatum is involved in the protective effect of intense training. To investigate this issue, male Wistar rats, previously trained with low, moderate, or high levels of foot shock, were used to study the effect of tetrodotoxin inactivation of dorsomedial striatum on memory consolidation and subsequent extinction of inhibitory avoidance. Performance of the task was evaluated during seven extinction sessions. Tetrodotoxin produced a marked deficit of memory consolidation of inhibitory avoidance trained with low and moderate intensities of foot shock, but normal consolidation occurred when a relatively high foot shock was used. The protective effect of intense training was long-lasting, as evidenced by the high resistance to extinction exhibited throughout the extinction sessions. We discuss the possibility that increased dendritic spinogenesis in dorsomedial striatum may underly this protective effect, and how this mechanism may be related to the resilient memory typical of post-traumatic stress disorder (PTSD).


Asunto(s)
Reacción de Prevención , Cuerpo Estriado , Extinción Psicológica , Ratas Wistar , Tetrodotoxina , Animales , Masculino , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Ratas , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Cuerpo Estriado/fisiología , Cuerpo Estriado/efectos de los fármacos , Tetrodotoxina/farmacología , Consolidación de la Memoria/efectos de los fármacos , Consolidación de la Memoria/fisiología , Amnesia/fisiopatología , Amnesia/prevención & control , Electrochoque
8.
Behav Res Ther ; 178: 104548, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704974

RESUMEN

It is still unclear how the human brain consolidates aversive (e.g., traumatic) memories and whether this process can be disrupted. We hypothesized that the dorsolateral prefrontal cortex (dlPFC) is crucially involved in threat memory consolidation. To test this, we used low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) within the memory stabilization time window to disrupt the expression of threat memory. We combined a differential threat-conditioning paradigm with LF-rTMS targeting the dlPFC in the critical condition, and occipital cortex stimulation, delayed dlPFC stimulation, and sham stimulation as control conditions. In the critical condition, defensive reactions to threat were reduced immediately after brain stimulation, and 1 h and 24 h later. In stark contrast, no decrease was observed in the control conditions, thus showing both the anatomical and temporal specificity of our intervention. We provide causal evidence that selectively targeting the dlPFC within the early consolidation period prevents the persistence and return of conditioned responses. Furthermore, memory disruption lasted longer than the inhibitory window created by our TMS protocol, which suggests that we influenced dlPFC neural activity and hampered the underlying, time-dependent consolidation process. These results provide important insights for future clinical applications aimed at interfering with the consolidation of aversive, threat-related memories.


Asunto(s)
Corteza Prefontal Dorsolateral , Miedo , Consolidación de la Memoria , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Consolidación de la Memoria/fisiología , Femenino , Adulto Joven , Adulto , Miedo/psicología , Miedo/fisiología , Corteza Prefontal Dorsolateral/fisiología , Condicionamiento Clásico/fisiología , Corteza Prefrontal/fisiología
9.
Neurobiol Learn Mem ; 212: 107939, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762038

RESUMEN

Recognizing and remembering another individual in a social context could be beneficial for individual fitness. Especially in agonistic encounters, remembering an opponent and the previous fight could allow for avoiding new conflicts. Considering this, we hypothesized that this type of social interaction forms a long-term recognition memory lasting several days. It has been shown that a second encounter 24 h later between the same pair of zebrafish males is resolved with lower levels of aggression. Here, we evaluated if this behavioral change could last for longer intervals and a putative mechanism associated with memory storage: the recruitment of NMDA receptors. We found that if a pair of zebrafish males fight and fight again 48 or 72 h later, they resolve the second encounter with lower levels of aggression. However, if opponents were exposed to MK-801 (NMDA receptor antagonist) immediately after the first encounter, they solved the second one with the same levels of aggression: that is, no reduction in aggressive behaviors was observed. These amnesic effect suggest the formation of a long-term social memory related to recognizing a particular opponent and/or the outcome and features of a previous fight.


Asunto(s)
Agresión , Maleato de Dizocilpina , Consolidación de la Memoria , Memoria a Largo Plazo , Pez Cebra , Animales , Pez Cebra/fisiología , Masculino , Agresión/fisiología , Agresión/efectos de los fármacos , Consolidación de la Memoria/fisiología , Consolidación de la Memoria/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Memoria a Largo Plazo/fisiología , Memoria a Largo Plazo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Reconocimiento en Psicología/fisiología , Reconocimiento en Psicología/efectos de los fármacos , Conducta Social , Antagonistas de Aminoácidos Excitadores/farmacología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología
10.
Neurobiol Learn Mem ; 212: 107940, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762039

RESUMEN

A short period of eyes-closed waking rest improves long-term memory for recently learned information, including declarative, spatial, and procedural memory. However, the effect of rest on emotional memory consolidation remains unknown. This preregistered study aimed to establish whether post-encoding rest affects emotional memory and how anxiety levels might modulate this effect. Participants completed a modified version of the dot-probe attention task that involved reacting to and encoding word stimuli appearing underneath emotionally negative or neutral photos. We tested the effect of waking rest on memory for these words and pictures by manipulating the state that participants entered just after this task (rest vs. active wake). Trait anxiety levels were measured using the State-Trait Anxiety Inventory and examined as a covariate. Waking rest improved emotional memory consolidation for individuals high in trait anxiety. These results suggest that the beneficial effect of waking rest on memory extends into the emotional memory domain but depends on individual characteristics such as anxiety.


Asunto(s)
Ansiedad , Emociones , Consolidación de la Memoria , Descanso , Humanos , Ansiedad/psicología , Ansiedad/fisiopatología , Emociones/fisiología , Masculino , Femenino , Consolidación de la Memoria/fisiología , Adulto Joven , Descanso/fisiología , Adulto , Vigilia/fisiología , Adolescente , Atención/fisiología , Personalidad/fisiología
11.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769012

RESUMEN

Emotionally salient components of memory are preferentially remembered at the expense of accompanying neutral information. This emotional memory trade-off is enhanced over time, and possibly sleep, through a process of memory consolidation. Sleep is believed to benefit memory through a process of reactivation during nonrapid eye movement sleep (NREM). Here, targeted memory reactivation (TMR) was used to manipulate the reactivation of negative and neutral memories during NREM sleep. Thirty-one male and female participants encoded composite scenes containing either a negative or neutral object superimposed on an always neutral background. During NREM sleep, sounds associated with the scene object were replayed, and memory for object and background components was tested the following morning. We found that TMR during NREM sleep improved memory for neutral, but not negative scene objects. This effect was associated with sleep spindle activity, with a larger spindle response following TMR cues predicting TMR effectiveness for neutral items only. These findings therefore do not suggest a role of NREM memory reactivation in enhancing the emotional memory trade-off across a 12 h period but do align with growing evidence of spindle-mediated memory reactivation in service of neutral declarative memory.


Asunto(s)
Electroencefalografía , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Memoria/fisiología , Consolidación de la Memoria/fisiología , Emociones/fisiología , Sueño/fisiología , Adolescente , Fases del Sueño/fisiología , Movimientos Oculares/fisiología
12.
Biol Pharm Bull ; 47(5): 1021-1027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38797694

RESUMEN

Learning and memory are affected by novel enriched environment, a condition where animals play and interact with a variety of toys and conspecifics. Exposure of animals to the novel enriched environments improves memory by altering neural plasticity during natural sleep, a process called memory consolidation. The hippocampus, a pivotal brain region for learning and memory, generates high-frequency oscillations called ripples during sleep, which is required for memory consolidation. Naturally occurring sleep shares characteristics in common with general anesthesia in terms of extracellular oscillations, guaranteeing anesthetized animals suitable to examine neural activity in a sleep-like state. However, it is poorly understood whether the preexposure of animals to the novel enriched environment modulates neural activity in the hippocampus under subsequent anesthesia. To ask this question, we allowed mice to freely explore the novel enriched environment or their standard environment, anesthetized them, and recorded local field potentials in the hippocampal CA1 area. We then compared the characteristics of hippocampal ripples between the two groups and found that the amplitude of ripples and the number of successive ripples were larger in the novel enriched environment group than in the standard environment group, suggesting that the afferent synaptic input from the CA3 area to the CA1 area was higher when the animals underwent the novel enriched environment. These results underscore the importance of prior experience that surpasses subsequent physical states from the neurophysiological point of view.


Asunto(s)
Hipocampo , Uretano , Animales , Uretano/farmacología , Masculino , Hipocampo/fisiología , Ratones , Ambiente , Ratones Endogámicos C57BL , Sueño/fisiología , Región CA1 Hipocampal/fisiología , Anestésicos Intravenosos/administración & dosificación , Consolidación de la Memoria/fisiología
13.
Nature ; 629(8014): 1109-1117, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750359

RESUMEN

Working memory, the process through which information is transiently maintained and manipulated over a brief period, is essential for most cognitive functions1-4. However, the mechanisms underlying the generation and evolution of working-memory neuronal representations at the population level over long timescales remain unclear. Here, to identify these mechanisms, we trained head-fixed mice to perform an olfactory delayed-association task in which the mice made decisions depending on the sequential identity of two odours separated by a 5 s delay. Optogenetic inhibition of secondary motor neurons during the late-delay and choice epochs strongly impaired the task performance of the mice. Mesoscopic calcium imaging of large neuronal populations of the secondary motor cortex (M2), retrosplenial cortex (RSA) and primary motor cortex (M1) showed that many late-delay-epoch-selective neurons emerged in M2 as the mice learned the task. Working-memory late-delay decoding accuracy substantially improved in the M2, but not in the M1 or RSA, as the mice became experts. During the early expert phase, working-memory representations during the late-delay epoch drifted across days, while the stimulus and choice representations stabilized. In contrast to single-plane layer 2/3 (L2/3) imaging, simultaneous volumetric calcium imaging of up to 73,307 M2 neurons, which included superficial L5 neurons, also revealed stabilization of late-delay working-memory representations with continued practice. Thus, delay- and choice-related activities that are essential for working-memory performance drift during learning and stabilize only after several days of expert performance.


Asunto(s)
Consolidación de la Memoria , Memoria a Corto Plazo , Práctica Psicológica , Animales , Femenino , Masculino , Ratones , Calcio/metabolismo , Conducta de Elección/fisiología , Consolidación de la Memoria/fisiología , Memoria a Corto Plazo/fisiología , Ratones Endogámicos C57BL , Corteza Motora/fisiología , Corteza Motora/citología , Neuronas Motoras/fisiología , Odorantes/análisis , Optogenética , Desempeño Psicomotor/fisiología , Olfato/fisiología , Factores de Tiempo
14.
Cortex ; 175: 12-27, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701643

RESUMEN

Navigation through space is based on memory representations of landmarks ('place') or movement sequences ('response'). Over time, memory representations transform through consolidation. However, it is unclear how the transformation affects place and response navigation in humans. In the present study, healthy adults navigated to target locations in a virtual maze. The preference for using place and response strategies and the ability to recall place and response memories were tested after a delay of one hour (n = 31), one day (n = 30), or two weeks (n = 32). The different delays captured early-phase synaptic changes, changes after one night of sleep, and long-delay changes due to the reorganization of navigation networks. Our results show that the relative contributions of place and response navigation changed as a function of time. After a short delay of up to one day, participants preferentially used a place strategy and exhibited a high degree of visual landmark exploration. After a longer delay of two weeks, place strategy use decreased significantly. Participants now equally relied on place and response strategy use and increasingly repeated previously taken paths. Further analyses indicate that response strategy use predominantly occurred as a compensatory strategy in the absence of sufficient place memory. Over time, place memory faded before response memory. We suggest that the observed shift from place to response navigation is context-dependent since detailed landmark information, which strongly relied on hippocampal function, decayed faster than sequence information, which required less detail and depended on extra-hippocampal areas. We conclude that changes in place and response navigation likely reflect the reorganization of navigation networks during systems consolidation.


Asunto(s)
Consolidación de la Memoria , Navegación Espacial , Humanos , Masculino , Consolidación de la Memoria/fisiología , Navegación Espacial/fisiología , Femenino , Adulto , Adulto Joven , Percepción Espacial/fisiología , Memoria Espacial/fisiología , Hipocampo/fisiología , Recuerdo Mental/fisiología , Aprendizaje por Laberinto/fisiología
15.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38745557

RESUMEN

Sleep supports memory consolidation via the reactivation of newly formed memory traces. One way to investigate memory reactivation in sleep is by exposing the sleeping brain to auditory retrieval cues; a paradigm known as targeted memory reactivation. To what extent the acoustic properties of memory cues influence the effectiveness of targeted memory reactivation, however, has received limited attention. We addressed this question by exploring how verbal and non-verbal memory cues affect oscillatory activity linked to memory reactivation in sleep. Fifty-one healthy male adults learned to associate visual stimuli with spoken words (verbal cues) and environmental sounds (non-verbal cues). Subsets of the verbal and non-verbal memory cues were then replayed during sleep. The voice of the verbal cues was either matched or mismatched to learning. Memory cues (relative to unheard control cues) prompted an increase in theta/alpha and spindle power, which have been heavily implicated in sleep-associated memory processing. Moreover, verbal memory cues were associated with a stronger increase in spindle power than non-verbal memory cues. There were no significant differences between the matched and mismatched verbal cues. Our findings suggest that verbal memory cues may be most effective for triggering memory reactivation in sleep, as indicated by an amplified spindle response.


Asunto(s)
Señales (Psicología) , Electroencefalografía , Recuerdo Mental , Sueño , Humanos , Masculino , Adulto Joven , Sueño/fisiología , Adulto , Recuerdo Mental/fisiología , Consolidación de la Memoria/fisiología , Estimulación Acústica , Encéfalo/fisiología , Estimulación Luminosa/métodos , Ondas Encefálicas/fisiología
16.
Cognition ; 248: 105810, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733867

RESUMEN

Human observers often exhibit remarkable consistency in remembering specific visual details, such as certain face images. This phenomenon is commonly attributed to visual memorability, a collection of stimulus attributes that enhance the long-term retention of visual information. However, the exact contributions of visual memorability to visual memory formation remain elusive as these effects could emerge anywhere from early perceptual encoding to post-perceptual memory consolidation processes. To clarify this, we tested three key predictions from the hypothesis that visual memorability facilitates early perceptual encoding that supports the formation of visual short-term memory (VSTM) and the retention of visual long-term memory (VLTM). First, we examined whether memorability benefits in VSTM encoding manifest early, even within the constraints of a brief stimulus presentation (100-200 ms; Experiment 1). We achieved this by manipulating stimulus presentation duration in a VSTM change detection task using face images with high- or low-memorability while ensuring they were equally familiar to the participants. Second, we assessed whether this early memorability benefit increases the likelihood of VSTM retention, even with post-stimulus masking designed to interrupt post-perceptual VSTM consolidation processes (Experiment 2). Last, we investigated the durability of memorability benefits by manipulating memory retention intervals from seconds to 24 h (Experiment 3). Across experiments, our data suggest that visual memorability has an early impact on VSTM formation, persisting across variable retention intervals and predicting subsequent VLTM overnight. Combined, these findings highlight that visual memorability enhances visual memory within 100-200 ms following stimulus onset, resulting in robust memory traces resistant to post-perceptual interruption and long-term forgetting.


Asunto(s)
Memoria a Largo Plazo , Memoria a Corto Plazo , Humanos , Adulto Joven , Adulto , Masculino , Femenino , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Percepción Visual/fisiología , Reconocimiento Facial/fisiología , Consolidación de la Memoria/fisiología , Adolescente
17.
Curr Biol ; 34(10): 2247-2255.e5, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38714199

RESUMEN

Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.


Asunto(s)
Extinción Psicológica , Miedo , Sueño REM , Animales , Miedo/fisiología , Sueño REM/fisiología , Ratones , Extinción Psicológica/fisiología , Masculino , Ratones Endogámicos C57BL , Memoria/fisiología , Consolidación de la Memoria/fisiología , Condicionamiento Clásico/fisiología , Células Piramidales/fisiología
18.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38604779

RESUMEN

Memory reactivation during sleep is thought to facilitate memory consolidation. Most sleep reactivation research has examined how reactivation of specific facts, objects, and associations benefits their overall retention. However, our memories are not unitary, and not all features of a memory persist in tandem over time. Instead, our memories are transformed, with some features strengthened and others weakened. Does sleep reactivation drive memory transformation? We leveraged the Targeted Memory Reactivation technique in an object category learning paradigm to examine this question. Participants (20 female, 14 male) learned three categories of novel objects, where each object had unique, distinguishing features as well as features shared with other members of its category. We used a real-time EEG protocol to cue the reactivation of these objects during sleep at moments optimized to generate reactivation events. We found that reactivation improved memory for distinguishing features while worsening memory for shared features, suggesting a differentiation process. The results indicate that sleep reactivation does not act holistically on object memories, instead supporting a transformation where some features are enhanced over others.


Asunto(s)
Electroencefalografía , Consolidación de la Memoria , Sueño , Humanos , Femenino , Masculino , Sueño/fisiología , Adulto Joven , Adulto , Consolidación de la Memoria/fisiología , Electroencefalografía/métodos , Memoria/fisiología , Adolescente
19.
Sci Rep ; 14(1): 9057, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643331

RESUMEN

Sleep facilitates declarative memory consolidation, which is assumed to rely on the reactivation of newly encoded memories orchestrated by the temporal interplay of slow oscillations (SO), fast spindles and ripples. SO as well as the number of spindles coupled to SO are more frequent during slow wave sleep (SWS) compared to lighter sleep stage 2 (S2). But, it is unclear whether memory reactivation is more effective during SWS than during S2. To test this question, we applied Targeted Memory Reactivation (TMR) in a declarative memory design by presenting learning-associated sound cues during SWS vs. S2 in a counterbalanced within-subject design. Contrary to our hypothesis, memory performance was not significantly better when cues were presented during SWS. Event-related potential (ERP) amplitudes were significantly higher for cues presented during SWS than S2, and the density of SO and SO-spindle complexes was generally higher during SWS than during S2. Whereas SO density increased during and after the TMR period, SO-spindle complexes decreased. None of the parameters were associated with memory performance. These findings suggest that the efficacy of TMR does not depend on whether it is administered during SWS or S2, despite differential processing of memory cues in these sleep stages.


Asunto(s)
Consolidación de la Memoria , Sueño de Onda Lenta , Memoria/fisiología , Electroencefalografía , Sueño/fisiología , Fases del Sueño/fisiología , Consolidación de la Memoria/fisiología
20.
J Theor Biol ; 588: 111818, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38621583

RESUMEN

The standard consolidation theory states that short-term memories located in the hippocampus enable the consolidation of long-term memories in the neocortex. In other words, the neocortex slowly learns long-term memories with a transient support of the hippocampus that quickly learns unstable memories. However, it is not clear yet what could be the neurobiological mechanisms underlying these differences in learning rates and memory time-scales. Here, we propose a novel modeling approach of the standard consolidation theory, that focuses on its potential neurobiological mechanisms. In addition to synaptic plasticity and spike frequency adaptation, our model incorporates adult neurogenesis in the dentate gyrus as well as the difference in size between the neocortex and the hippocampus, that we associate with distance-dependent synaptic plasticity. We also take into account the interconnected spatial structure of the involved brain areas, by incorporating the above neurobiological mechanisms in a coupled neural field framework, where each area is represented by a separate neural field with intra- and inter-area connections. To our knowledge, this is the first attempt to apply neural fields to this process. Using numerical simulations and mathematical analysis, we explore the short-term and long-term dynamics of the model upon alternance of phases of hippocampal replay and retrieval cue of an external input. This external input is encodable as a memory pattern in the form of a multiple bump attractor pattern in the individual neural fields. In the model, hippocampal memory patterns become encoded first, before neocortical ones, because of the smaller distances between the bumps of the hippocampal memory patterns. As a result, retrieval of the input pattern in the neocortex at short time-scales necessitates the additional input delivered by the memory pattern of the hippocampus. Neocortical memory patterns progressively consolidate at longer times, up to a point where their retrieval does not need the support of the hippocampus anymore. At longer times, perturbation of the hippocampal neural fields by neurogenesis erases the hippocampus pattern, leading to a final state where the memory pattern is exclusively evoked in the neocortex. Therefore, the dynamics of our model successfully reproduces the main features of the standard consolidation theory. This suggests that neurogenesis in the hippocampus and distance-dependent synaptic plasticity coupled to synaptic depression and spike frequency adaptation, are indeed critical neurobiological processes in memory consolidation.


Asunto(s)
Hipocampo , Consolidación de la Memoria , Modelos Neurológicos , Plasticidad Neuronal , Plasticidad Neuronal/fisiología , Humanos , Hipocampo/fisiología , Consolidación de la Memoria/fisiología , Neocórtex/fisiología , Animales , Neurogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...