Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.742
Filtrar
1.
Science ; 385(6716): 1491-1495, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39325891

RESUMEN

Abandoned, lost, or otherwise discarded fishing gear causes harm to marine species and ecosystems. To mitigate the destruction wrought by this ocean plastic debris, various cleanup programs have been established, though to our knowledge the benefits of such efforts to marine species and ecosystems have not yet been empirically demonstrated. We examined more than 40 years of Hawaiian monk seal marine debris entanglement records before and after large-scale marine debris removal efforts were initiated in the Northwestern Hawaiian Islands, demonstrating a substantial reduction in entanglement rates where debris removal effort was most concentrated. Large-scale and sustained removal of abandoned, lost, or otherwise discarded fishing gear meaningfully benefits marine ecosystems and has the potential to be transformational in restoration efforts.


Asunto(s)
Restauración y Remediación Ambiental , Plásticos , Phocidae , Contaminación Química del Agua , Animales , Ecosistema , Explotaciones Pesqueras , Hawaii , Residuos
2.
Environ Monit Assess ; 196(10): 901, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39237777

RESUMEN

Nowadays, one of the most critical challenges is reduced access to water. Climate change, industrialization, and population growth have caused many countries to suffer from water crises, especially in arid and semi-arid areas. The Culiacan River basin in Sinaloa is a region of great importance in Mexico due to its intensive agricultural activity. Hence, water quality assessment has become a necessity to ensure sustainable water use. This study describes the spatiotemporal water quality features of the Humaya, Tamazula, and Culiacan Rivers within the Culiacan River basin and their sources of contamination. Twenty-two water quality parameters were analyzed from samples taken every 6 months from 2012 to 2020 at 19 sampling sites in the basin. A multivariate statistical analysis revealed significant correlations (r > 0.85) between the water quality parameters. The modified Integrated Water Quality Index (IWQI) identified severe pollution in samples from the urban river section of the basin, while good water quality conditions were found upstream. Severe contamination was observed in 26.32% of the samples, whereas only 13.45% evidenced good water quality. The Water Quality Index (WQI) indicated that 94.74% of the samples presented fair water quality, suggesting that the surface waters of the Culiacan River Basin are suitable for agricultural irrigation. This study provides insights into the current water quality status of the surface waters in the Culiacan River Basin, identifying significant pollution sources and areas of concern. The spatiotemporal dynamics of water quality in the Culiacan River basin revealed the importance of continuous monitoring and effective water management practices to improve water quality and achieve sustainable agricultural practices.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Calidad del Agua , Ríos/química , México , Contaminantes Químicos del Agua/análisis , Agricultura , Contaminación Química del Agua/estadística & datos numéricos
3.
Environ Monit Assess ; 196(10): 885, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227385

RESUMEN

Hydrobiogeochemical processes governing water quantity and quality are highly variable in space and time. Focusing on thirty river locations in Québec, Canada, three water quality hotness indices were used to classify watersheds as contaminant transport hotspots. Concentration and load data for suspended solids (SS), total nitrogen (TN), and total phosphorous (TP) were used to identify transport hotspots, and results were compared across hotness indices with different data requirements. The role of hydroclimatic and physiographic characteristics on the occurrence and temporal persistence of transport hotspots was examined. Results show that the identification of transport hotspots was dependent on both the type of data and the hotness index used. Relationships between temporal and spatial predictors, however, were generally consistent. Annual transport hotspot occurrence was found to be related to temporal characteristics such as the number of dry days, potential evapotranspiration, and snow water equivalent, while hotspot temporal persistence was correlated to landcover characteristics. Stark differences in the identification of SS, TN, and TP transport hotspots were attributed to differences in mobilization processes and provided insights into dominant water and nutrient flowpaths in the studied watersheds. This study highlighted the importance of comparing contaminant dynamics across watersheds even when high-frequency water quality data or discharge data are not available. Characterizing hotspot occurrence and persistence, among hotness indices and water quality parameters, could be useful for watershed managers when identifying problematic watersheds, exploring legacy effects, and establishing a prioritization framework for areas that would benefit from enhanced routine monitoring or targeted mitigation strategies.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Fósforo , Ríos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Fósforo/análisis , Ríos/química , Quebec , Nitrógeno/análisis , Calidad del Agua , Movimientos del Agua , Contaminación Química del Agua/estadística & datos numéricos
4.
Water Res ; 265: 122303, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216261

RESUMEN

The Pollution source identification (PSI) is an important issue on river water quality management especially for urban receiving water. Numerical inversion method is theoretically an effective PSI technique, which employs monitored downstream pollutant breakthrough curves to identify the pollution source. In practice, it is important to know how much monitoring data should be accumulated to provide PSI results with acceptable accuracy and uncertainty. However, no literature reports on this key point and it seriously handers the numerical PSI technology to mature practical applications. To seek a monitoring guideline for PSI, we conducted extensively numerical experiments for single-point source instantaneous release taking Bayesian-MCMC method as the baseline inversion technique. The crucial time (Tc) phenomenon was found during the data accumulation process for Bayesian source inversion. After Tc, estimated source parameters subsequent sustained low error levels and uncertainty convergence. Results shown the presence of Tc impacted by the number and location of monitoring sections, while monitoring frequency and data error do not. Under different river hydrodynamic conditions, relative crucial time (Λ) is determined by the river's Peclet number, and minimum effective Λ was controlled by dispersion coefficient (Dx). Analytic spatial structure of Λ(U, Dx) was uncovered and this relationship successfully explained by the information entropy theory. Based on these findings, a novel design method of PSI emergency monitoring network for preparedness plan and a practical framework of PSI for emergency response were established. These findings fill the important knowledge gap in PSI applications and the guidelines provide valuable references for river water quality management.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Contaminación Química del Agua , Ríos , Calidad del Agua , Contaminación Química del Agua/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , Modelos Estadísticos
5.
Health Place ; 89: 103343, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197403

RESUMEN

Industrial chemical pollution is released into surface water at a large scale annually in the United States. However, geographic variation and racial disparities in potential exposure are poorly understood at a national scale. Using county-level Risk-Screening Environmental Indicators data for 2011-2021 and American Community Survey data, this study analyzes the spatial and temporal distribution of health risk from modeled water releases using a Gamma hurdle model. Several racial disparities in presence of risk and amount of risk were identified, particular for Black or African American and Asian populations. At least 200 million U.S. residents live in a county where health risk from this pollution is present. Exposure reduction in high-risk areas may improve health for the broader population while also reducing inequities.


Asunto(s)
Exposición a Riesgos Ambientales , Disparidades en el Estado de Salud , Contaminación del Agua , Humanos , Negro o Afroamericano , Exposición a Riesgos Ambientales/efectos adversos , Etnicidad , Industrias , Grupos Raciales , Estados Unidos , Contaminación del Agua/efectos adversos , Contaminación Química del Agua , Asiático
6.
Environ Monit Assess ; 196(9): 854, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196365

RESUMEN

Uzbekistan (Central Asia) is experiencing serious water stress as a consequence of altered climate regime, past over-exploitation, and dependence from neighboring countries for water supply. The Chirchik-Akhangaran drainage basin, in the Tashkent province of Uzbekistan, includes watersheds from the Middle Tien Shan Mountains escarpments and the downstream floodplain of the Chirchik and Akhangaran rivers, major tributaries of the Syrdarya river. Water in the Chirchik-Akhangaran basin is facing potential anthropogenic pressure from different sources at the scale of river reaches, from both industrial and agricultural activities. In this study, the major and trace element chemistry of surface water and groundwater from the Chirchik-Akhangaran basin were investigated, with the aim of addressing the geogenic and anthropogenic contributions to the dissolved load. The results indicate that the geochemistry of water from the upstream catchments reflects the weathering of exposed lithologies. A significant increase in Na+, K+, SO42-, Cl-, and NO3- was observed downstream, indicating loadings from fertilizers used in croplands. However, quality parameters suggest that waters are generally suitable for irrigation purposes, even if the total dissolved solid indicates a possible salinity hazard. The concentration of trace elements (including potentially toxic elements) was lower than the thresholds set for water quality by different regulations. However, an exceedingly high concentration of Zn, Mo, Sb, Pb, Ni, U, As, and B compared with the average river water worldwide was observed. Water in a coal fly-ash large pond related to the Angren coal-fired power plants stands out for the high As, Al, B, Mo, and Sb concentration, having a groundwater contamination potential during infiltration. Spring waters used for drinking purposes meet the World Health Organization and the Republic of Uzbekistan quality standards. However, a surveillance of such drinking-water supplies is suggested. The obtained results are indicators for an improved water resource management.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Calidad del Agua , Ríos/química , Uzbekistán , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Contaminación Química del Agua/estadística & datos numéricos
7.
Environ Monit Assess ; 196(9): 803, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120619

RESUMEN

High-quality development of water resources supports high-quality socio-economic development. High-quality development connects high-quality life, and clarifying the key management contents of small watersheds plays an important role in building ecologically clean small watersheds and promoting regional production and life. Previous research on pollution loads has focused on examining the impact of various external drivers on pollution loads but still lacks research on the impact of changes in pollution sources themselves on pollution loads. In this study, sensitivity analysis was used to determine the impact of changes from different sources on the total pollution loads, which can recognize the critical pollution sources. We first employed the pollutant discharge coefficient method to quantify non-point source pollution loads in the small watershed in the upstream Tuojiang River basin from 2010 to 2021. Then, combination sensitivity analysis with Getis-Ord Gi* was used to identify the critical sources and their crucial areas at the global, districts (counties), and towns (streets) scales, respectively. The results indicate: (1) The pollution loads of COD, NH3-N, TN, and TP all show a decreasing trend, reducing by 18.3%, 16.2%, 18.6%, and 28.1% from 2010 to 2021, respectively; (2) Livestock and poultry breeding pollution source is the most critical source for majority areas across watershed; (3) High-risk areas are mainly concentrated in Jingyang district and its subordinate towns (streets). There is a trend of low-pollution risk areas transitioning to high-pollution risk areas, with high-risk areas predominantly concentrated in the southeast and exhibiting a noticeable phenomenon of pollution load spilling around. This study can promote other similar small watersheds, holding significant importance for non-point source pollution control in small watersheds.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , China , Ríos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Contaminación Química del Agua/estadística & datos numéricos , Nitrógeno/análisis , Fósforo/análisis , Análisis Espacio-Temporal
8.
Environ Monit Assess ; 196(9): 856, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196401

RESUMEN

Rapid socio-economic development has led to many water environmental issues in small watersheds such as non-compliance with water quality standards, complex pollution sources, and difficulties in water environment management. To achieve a quantitative evaluation of water quality, identify pollution sources, and implement refined management in small watersheds, this study collected monthly seven water quality indexes of four monitoring points from 2010 to 2023, and ten water quality indexes of 23 sampling points in the Shiting River and Mianyuan River which are tributaries of the Tuojiang River Basin. Then, water quality evaluation and pollution source analysis were conducted from both temporal and spatial perspectives using the Water Quality Index (WQI) method, the Absolute Principal Component Scores/Multiple Linear Regression (APCS-MLR) method, and the Positive Matrix Factorization (PMF) receptor modeling technique. The results indicated that except for total nitrogen (TN), the concentrations of other water quality indexes exhibited a decreasing trend, and all were divided into two obvious stages before and after 2016. Furthermore, the proportion of water quality grade of Good and above increased from 73.96 to 84.94% from 2010-2015 to 2016-2023, and the water quality grade of Good and above from upstream to downstream dropped from 100 to 23.33%. From the temporal scale, four and five pollution sources were identified in the first and second stages, respectively. The distinct TN pollutant is mainly affected by agricultural non-point sources (NPS), whose impact is enhanced from 17.76 to 78.31%. Total phosphorus (TP) was affected by the phosphorus chemical industry, whose contribution gradually weakened from 50.8 to 24.9%. From a spatial perspective, four and five pollution sources were identified in the upstream and downstream, respectively. Therefore, even though there are some limitations due to the data availability of water monitory and hydrology data, the proposed research framework of this study can be applied to the water environmental management of other similar watersheds.


Asunto(s)
Monitoreo del Ambiente , Fósforo , Ríos , Contaminantes Químicos del Agua , Calidad del Agua , China , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Ríos/química , Fósforo/análisis , Nitrógeno/análisis , Contaminación Química del Agua/estadística & datos numéricos
9.
Environ Monit Assess ; 196(9): 861, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212810

RESUMEN

The Mundeswari River, an ecologically distressed river in eastern India, has been subjected to water quality deterioration largely due to anthropogenic activities in its vicinity. This study aimed to comprehensively evaluate the current state of pollution in the river and assess the appropriateness of river water for irrigation, given its extensive use for agricultural purposes. Monthly water quality monitoring was undertaken at four distinct sampling sites (SP1-SP4) over a two-year period (2020-2022), considering seventeen water quality parameters. This research employed principal component analysis/factor analysis (PCA/FA) and absolute principal component score-multiple linear regression (APCS-MLR) receptor modelling. These methodologies were used to discern and quantify potential sources of pollution influencing the water quality of the Mundeswari River. The study revealed that the water quality of the Mundeswari River was most degraded during the pre-monsoon season. Among the four sampling sites, SP3 exhibited the highest level of pollution with mean biochemical oxygen demand (BOD) and chemical oxygen demand (COD) values of 5.36 mg/L and 44.72 mg/L, respectively. According to the one-way analysis of variance (ANOVA), there was considerable spatial and seasonal disparities (P < 0.05) in most water quality parameters. The PCA/FA extracted four latent pollution sources, accounting for 81.5% of the total variance. The primary factors influencing the quality of river water are natural weathering processes, discharge of domestic effluent and waste, and agricultural runoff. The APCS-MLR receptor model further revealed that agricultural drainage factors and the discharge of domestic effluent and waste had a greater impact on the Mundeswari River. The investigation concluded that the mean values of all indicators for irrigation suitability were below the defined threshold limits, indicating that the water of the studied river appears suitable for irrigation. The outcomes of this study may significantly contribute to the formulation of sustainable strategies for the ecological rejuvenation of the Mundeswari River.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Calidad del Agua , India , Ríos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Análisis de Componente Principal , Modelos Lineales , Contaminación Química del Agua/estadística & datos numéricos , Análisis Multivariante , Análisis de la Demanda Biológica de Oxígeno
10.
Environ Monit Assess ; 196(9): 871, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215780

RESUMEN

Composite indicators (CIs) are being utilized more frequently to assess and monitor environmental systems. The revised leachate pollution index (r-LPI) is one such composite indicator used to quantify the pollution potential of landfill leachate on a scale of 5-100. The development of CIs involves several steps, and each of these steps has various methodological choices, each of which could lead to different results. Thereby, the reliability of the quantified pollution potential of leachate may be questioned. This study investigated the techniques for developing the r-LPI, examining decisions related to parameter selection, normalization technique, weighting approach, sub-indicator weights, and their aggregation. As the index developer made the decisions, each of these stages was fraught with uncertainty. The uncertainty in the various stages of the development of r-LPI was quantified using the Monte Carlo-based uncertainty analysis and the sensitivity analysis approach. Uncertainty analysis is a helpful but seldom-used step of index development that identifies the model's most dependable sections. Sensitivity analysis was carried out to ascertain the degree of impact the input parameters have on the r-LPI values. The combined use of sensitivity and uncertainty analysis in this study for the formulation of r-LPI affirmed the transparency, credibility, and accuracy of the index.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Incertidumbre , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Método de Montecarlo , Contaminación Química del Agua/estadística & datos numéricos
11.
Environ Monit Assess ; 196(9): 870, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215907

RESUMEN

The silver deposits located in the upper basin of the Felent Stream are currently the largest producing mine in the Türkiye. It is also significantly impacted by industrial, agricultural, and thermal spring-related waste in Kütahya Province. The main objectives of this study were to examine the spatiotemporal variations of 12 dissolved potentially toxic elements (PTEs) in the surface water of Felent Stream, to identify their possible sources, and to assess their probable risks. As a result of this study, among investigated PTEs, the highest mean concentrations of 3592-14,388 µg/L for Mg and the lowest of 0.15-0.19 µg/L for Cd were noted in Felent Stream water. The average concentrations of PTEs were found in the order of Mg > Ca > Na > As > Mn > B > Zn > Ni > Cu > Pb > Cr > Cd. Remarkably, during the dry season, there was a conspicuous escalation in the average PTEs contents of water, with an approximately multifold amplification. PTEs in stream water were evaluated for their potential ecotoxicological risks and possible sources. Based on ecological risk assessment indices, the stream exhibited low pollution levels during the wet season but displayed elevated pollution levels during the dry season, indicating a general shift towards heightened pollution conditions. The hazard index (HI) data for As exhibited significant potential noncarcinogenic risks across all monitoring stations. Conversely, the carcinogenic risk (CR) data underscored the imperative nature of addressing the health risks associated with As in the waters of the studied region. Mining activities were identified as the primary origin of PTEs based on principal component analysis (PCA). Moreover, upstream regions, proximal to the mining site, emerged as the most heavily contaminated areas according to cluster analysis (CA).


Asunto(s)
Monitoreo del Ambiente , Minería , Ríos , Plata , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Ríos/química , Plata/análisis , Turquía , Metales Pesados/análisis , Contaminación Química del Agua/estadística & datos numéricos
12.
Environ Monit Assess ; 196(7): 677, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38949676

RESUMEN

We assessed the hydrochemistry of 15 watersheds in the Halton Region, southern Ontario, in high resolution (n > 500 samples across n > 40 streams) to characterize water quality dynamics and governing controls on major and trace element concentrations in this rapidly urbanizing region. In 2022, major water quality parameters were generally in line with historic monitoring data yet significantly different across catchments, e.g., in specific conductance, turbidity, phosphate and chloride, and trace element concentrations. Distinct hydrochemical signatures were observed between urban and rural creeks, with urban stream sections and sites near the river mouths close to Lake Ontario having consistently higher chloride (up to 700 mg/L) and occasional enrichment in nutrients levels (up to 8 and 20 mg/L phosphate and nitrate, respectively). Particularly upper reaches exhibited hydrochemical signatures that were reflective of the catchment surface lithologies, for instance through higher dissolved Ca to Mg ratios. Unlike for chloride and phosphate, provincial water quality guidelines for trace elements and heavy metals were seldom surpassed (on < 10 occasions for copper, zinc, cadmium, and uranium). Concentrations of other trace elements (e.g., platinum group elements or rare earth elements) were expectedly low (< 0.3 µg/L) but showed spatiotemporal concentration patterns and concentration-discharge dynamics different from those of the major water quality parameters. Our results help improve the understanding of surface water conditions within Halton's regional Natural Heritage Systems and demonstrate how enhanced environmental monitoring can deliver actionable information for watershed decision-making.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Calidad del Agua , Monitoreo del Ambiente/métodos , Ontario , Contaminantes Químicos del Agua/análisis , Ríos/química , Oligoelementos/análisis , Metales Pesados/análisis , Cloruros/análisis , Contaminación Química del Agua/estadística & datos numéricos
13.
Environ Monit Assess ; 196(7): 679, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951273

RESUMEN

Microplastics, an emerging contaminant, are widespread in oceans around the world, and rivers are the key conveyors of these pollutants into the oceans. There exists a dearth of available data pertaining to seasonal fluctuation, spatial distribution and risk assessment of microplastics in rivers extending from upper reaches to the lower reaches. The collection of such data is of utmost importance for the purpose of formulating beneficial management strategies for riverine microplastics. In order to bridge this research gap, an investigation was made in the Periyar River in Kerala, India, which is exposed to anthropogenic stress and is at risk of microplastic pollution. A total of eighteen sites (six sites each from downstream, midstream and upstream) along the 244 km of the river were investigated across three seasons in a year. The study revealed a discernible pattern in the spatial distribution of microplastic concentrations, wherein there was a rise in abundance from the upstream to midstream and then a sudden increase of abundance along the downstream regions towards the lower reaches. The highest mean microplastic abundance of 124.95 items/L was obtained during the monsoon season followed by post-monsoon season i.e. 123.21 items/L and pre-monsoon i.e. 120.50 items/L. The predominant forms of microplastics were found to be fibres, fragments and filaments. Most prevalent polymer types acquired were polyethylene (PE) and polypropylene (PP). Pollution hazard index (PHI) and pollution load index (PLI) were also evaluated to assess the water quality of this river. The findings of this study conclude that the Periyar River is polluted with microplastics throughout its course and offer significant insights into the detection of microplastic origins in river systems and lend support to the implementation of potential measures aimed at mitigating their impact.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Ríos , Estaciones del Año , Contaminantes Químicos del Agua , India , Contaminantes Químicos del Agua/análisis , Ríos/química , Microplásticos/análisis , Medición de Riesgo , Contaminación Química del Agua/estadística & datos numéricos
14.
Huan Jing Ke Xue ; 45(7): 3930-3940, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022941

RESUMEN

N-nitrosamines are a type of nitrogen-containing organic pollutant with high carcinogenicity and mutagenicity. In the main drinking water sources of small and medium-sized towns in China, the contamination levels of N-nitrosamines remain unclear. In addition, there is still lack of research on the concentration of N-nitrosamines and their precursors in tributary rivers. In this study, eight N-nitrosamines and their formation potentials (FPs) were investigated in the Qingjiang River, which is a primary tributary of the Yangtze River. The sewage discharge sites were also monitored, and the environmental influencing factors, carcinogenic and ecological risks caused by N-nitrosamines, and their precursors were evaluated. The results showed that six N-nitrosamines were detected in water samples of the Qingjiang River, among which NDMA [(10 ±15) ng·L-1], NDEA [(9.3 ±9.3) ng·L-1], and NDBA [(14 ±7.8) ng·L-1] were the dominant N-nitrosamines, whereas seven N-nitrosamines were detected in chloraminated water samples, among which NDMA-FP [(46 ±21) ng·L-1], NDEA-FP [(26 ±8.3) ng·L-1], and NDBA-FP [(22 ±13) ng·L-1] were the dominant N-nitrosamine FPs. The concentrations of N-nitrosamines in the middle reaches of the Qingjiang River were higher than those in the upper and lower reaches. Furthermore, the concentrations of N-nitrosamines in the sample sites of sewage discharge and tributaries were significantly higher than those in other sampling sites. The monitoring results at the direct sewage discharge points indicated that the main source of N-nitrosamines in river water was the sewage carrying N-nitrosamines and their precursors. In addition, the concentrations of the three dominant N-nitrosamines including NDMA, NDBA, and NDEA were positively correlated with each other, mainly because of their similar sewage sources. The average carcinogenic risk to residents due to N-nitrosamine in drinking water sources was 2.4×10-5, indicating a potential carcinogenic risk. Moreover, due to the high concentrations of N-nitrosamine formation potentials in the Qingjiang River, the carcinogenic risk of drinking water may be even higher. The ecological risk assessment showed that the ecological risk quotient values of N-nitrosamines in the Qingjiang River watershed were lower than 0.002, which was negligible.


Asunto(s)
Monitoreo del Ambiente , Nitrosaminas , Contaminantes Químicos del Agua , Contaminación Química del Agua , Nitrosaminas/análisis , Medición de Riesgo , Contaminación Química del Agua/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , China , Exposición a Riesgos Ambientales/estadística & datos numéricos , Agua Potable/análisis , Ríos
15.
Mar Pollut Bull ; 205: 116665, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981194

RESUMEN

This study addresses the pressing issue of plastic pollution in coastal and marine ecosystems, challenging the misconception that the entrapment of plastics can be considered as an ecosystem service. We differentiate between essential natural processes that sustain ecological balance and biodiversity and the detrimental accumulation of synthetic polymers. The pathways through which plastics enter these environments-from terrestrial to maritime sources-are examined, alongside their pervasive impacts on crucial ecosystem services such as habitat quality, the vitality of marine species, and nutrient cycling. Our findings highlight the paradox of resilience and vulnerability in these ecosystems: while capable of accumulating substantial amounts of plastic debris, they suffer long-lasting ecological, socio-economic, and health repercussions. We argue for a paradigm shift in management strategies aimed at reducing plastic production at the source, improving waste management practices, conducting targeted cleanup operations, and rehabilitating impacted ecosystems. Emphasizing a comprehensive understanding of plastic pollution is vital for framing effective solutions and necessitates a reevaluation of societal, industrial, and regulatory frameworks. This shift is imperative not only to address current pollution levels but also to safeguard and sustain the functionality of coastal ecosystems, ensuring their ability to continue providing essential services and supporting biodiversity.


Asunto(s)
Plásticos , Administración de Residuos , Ecosistema , Océanos y Mares , Contaminación Química del Agua/prevención & control , Contaminación Química del Agua/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , Administración de Residuos/métodos , Monitoreo del Ambiente , Política Ambiental
16.
Environ Monit Assess ; 196(8): 723, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987411

RESUMEN

A comprehensive seasonal assessment of groundwater vulnerability was conducted in the weathered hard rock aquifer of the upper Swarnrekha watershed in Ranchi district, India. Lineament density (Ld) and land use/land cover (LULC) were integrated into the conventional DRASTIC and Pesticide DRASTIC (P-DRASTIC) models and were extensively compared with six modified models, viz. DRASTIC-Ld, DRASTIC-Lu, DRASTIC-LdLu, P-DRASTIC-Ld, P-DRASTIC-Lu, and P-DRASTIC-LdLu, to identify the most optimal model for vulnerability mapping in hard rock terrain of the region. Findings were geochemically validated using NO3- concentrations of 68 wells during pre-monsoon (Pre-M) and post-monsoon (Post-M) 2022. Irrespective of the applied model, groundwater vulnerability shows significant seasonal variation, with > 45% of the region classified as high to very high vulnerability in the pre-M, increasing to Ì´67% in post-M season, highlighting the importance of seasonal vulnerability assessments. Agriculture and industries' dominant southern region showed higher vulnerability, followed by regions with high Ld and thin weathered zone. Incorporating Ld and LULC parameters into DRASTIC-LdLu and P-DRASTIC-LdLu models increases the 'Very High' vulnerability zones to 17.4% and 17.6% for pre-M and 29.4% and 27.9% for post-M, respectively. Similarly, 'High' vulnerable zones increase from 32.5% and 25% in pre-M to 33.8% and 35.3% in post-M for respective models. Model output comparisons suggest that modified DRASTIC-LdLu and P-DRASTIC-LdLu perform better, with accurate estimations of 83.8% and 89.7% for pre-M and post-M, respectively. However, results of geochemical validation suggest that among all the applied modified models, DRASTIC-LdLu performs best, with accurate estimations of 34.4% and 20.6% for pre-M and post-M, respectively.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Monitoreo del Ambiente/métodos , India , Contaminantes Químicos del Agua/análisis , Agricultura , Estaciones del Año , Contaminación Química del Agua/estadística & datos numéricos
17.
Environ Monit Assess ; 196(8): 739, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012428

RESUMEN

Pharmaceuticals are considered as contaminants of emerging concern, and their occurrence in diverse environmental matrices has been described during the last 25 years. Nonetheless, pharmaceutical occurrence has not been evenly described worldwide, and reports from some geographical areas such as most parts of Latin America are scarce. This work aims to address the situation of water pollution due to pharmaceuticals in Latin America by means of two main goals: i. First, reviewing the monitoring studies performed in Latin America on this topic (period 2009-2024), which were conducted in Brazil, Mexico, Colombia, Ecuador, Peru and Argentina, to highlight the most frequently detected compounds from each therapeutic group in the region. ii. Second, analyzing the case of Costa Rica through the hazard assessment and prioritization of pharmaceuticals based on the monitoring performed in this country (years 2011; 2018-2019). The monitoring in Costa Rica comprised a total of 163 sampling points: wastewater treatment plants (WWTPs) (14 urban WWTPs plus two landfill WWTPs; total samples n = 44 influents and n = 34 effluents), nine hospital effluents (n = 32), wastewater from livestock farms (six swine farms and seven dairy farms; n = 23 influents and n = 37 effluents), 64 continental surface water sampling points (n = 137), and 61 coastal seawater sampling points (n = 61). Risk assessment of detected concentrations by the hazard quotient (HQ) approach (period 2018-2019) revealed a total of 25 medium or high-hazard compounds (out of 37 detected compounds). The prioritization approach (which included the Frequency of Appearance (FoA), the Frequency of PNEC exceedance (FoE), and the Extent of predicted no-effect concentration (PNEC) exceedance (EoE)), showed a critical list of nine pharmaceuticals: caffeine, diphenhydramine, acetaminophen, lovastatin, gemfibrozil, ciprofloxacin, ibuprofen, doxycycline and norfloxacin. These compounds should be taken into account as a first concern during the implementation of environmental policies related to pharmaceutical products in the region.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Costa Rica , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas/análisis , Medición de Riesgo , Aguas Residuales/química , América Latina , Contaminación Química del Agua/estadística & datos numéricos , Eliminación de Residuos Líquidos
18.
Environ Monit Assess ; 196(7): 598, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842618

RESUMEN

Rudrasagar Lake, a vital habitat for diverse flora and fauna, supports over 2000 households to sustain their daily livelihoods. The current study attempts to examine the impact of human activities on spatio-temporal variation in the water quality of the study area. The study integrates extensive field surveys, sample processing, and statistical analysis to assess the recent status of wetland health. Latin Square Matrix (LSM) was employed to select the sampling sites while the Inverse Distance Weighting (IDW) interpolation technique was used for spatial variation mapping. Modified Weighted Arithmetic Water Quality Index (MWAWQI) and Comprehensive Pollution Index (CPI) were utilized for assessing seasonal variation water quality and pollution loads, respectively. The results showed that dissolved oxygen (DO) was strongly influenced by the tributaries, and recreational activities have substantially influenced the highest concentrations of biochemical oxygen demand (BOD), and total suspended solids (TSS). The central portion of the lake is particularly susceptible to pollution from extensive fishing and recreational activities while peripheral sites are strongly influenced by agricultural run-offs, seepages from brick industries, and municipal wastes characterized by high concentrations of pH, total hardness (TH), oxidation-reduction potential (ORP). The findings reveal remarkable spatio-temporal fluctuations and highlight the areas within the lake susceptible to anthropogenic activities. The study proposed a sustainable management model to ameliorate anthropogenic threats. Moreover, the study contributes to the scientific understanding of the challenges and ensures the long-term viability of wetland health as a vital ecological and socio-economic resource.


Asunto(s)
Monitoreo del Ambiente , Lagos , Calidad del Agua , Lagos/química , India , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Análisis Espacio-Temporal , Análisis de la Demanda Biológica de Oxígeno , Humedales , Efectos Antropogénicos , Contaminación Química del Agua/estadística & datos numéricos
19.
Environ Monit Assess ; 196(7): 643, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904869

RESUMEN

Urban water systems are potential sources of secondary microplastics (MPs) as well as a distributor of MPs in the environment. In the present study, the presence of MPs in the urban water systems of the Tehran Metropolitan (Capital of Iran) was investigated. In addition, the probable relationship of MPs with different land uses (i.e., residential-commercial, forest, military, and highway) was assessed. The results showed that all parts of Tehran's urban water system in the study area were contaminated with MPs (107.1 ± 39, 37.8 ± 10.5, 48.3 ± 3.1, 46.9 ± 5.6, 59.4 ± 26.5, 1.7, 2.0 ± 0.6, 7.9 ± 1, 1.8 ± 0.2 particles/liter at the residential, integrated, military, forest, highway runoffs, drinking water, groundwater, seasonal river, and the effluent of the wastewater treatment plants; respectively). However, significant differences were found between different land uses. As expected, the residential runoff had the highest rate of MPs pollution, with 107.1 ± 39 particles/liter. According to the obtained results and our estimation, more than five million MPs/day can enter into the water bodies and soil of the study area through the wastewater treatment plants. While there are significant differences in MPs in the different land uses, our findings suggest that residential areas and highways need further attention in controlling the spread of MPs in urban areas.


Asunto(s)
Ciudades , Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Irán , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Agua Subterránea/química , Ríos/química , Contaminación Química del Agua/estadística & datos numéricos
20.
Mar Pollut Bull ; 205: 116617, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917494

RESUMEN

Excessive nitrate input is one of the primary factors causing nearshore eutrophication. This study applied the nitrate stable isotope techniques to analyse the biogeochemical processes and sources of nitrate in the Bohai Sea (BHS). The results showed that intensive NO3- assimilation probably occurred at surface in summer, while nitrification primarily occurred in the Yellow River diluted water. In autumn, regional assimilation and nitrification were still identified. For avoiding the interference from assimilation, the isotopic fractionations were further calculated as correction data for the quantitative analysis of nitrate sources. The river inputs were identified as the primary source of nitrate in the BHS in summer and autumn, accounting for >50 %, and the atmospheric deposition was the secondary source. This study provides quantitative data for evaluating the significance of river inputs to the nearshore nitrate, which will be beneficial to policy formulation on the BHS eutrophication control.


Asunto(s)
Monitoreo del Ambiente , Modelos Teóricos , Nitratos , Contaminantes Químicos del Agua , Nitratos/análisis , China , Océanos y Mares , Agua de Mar/química , Ciclo del Nitrógeno , Nitrificación , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...