Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.895
Filtrar
1.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731577

RESUMEN

Recently, benchtop nuclear magnetic resonance (NMR) spectrometers utilizing permanent magnets have emerged as versatile tools with applications across various fields, including food and pharmaceuticals. Their efficacy is further enhanced when coupled with chemometric methods. This study presents an innovative approach to leveraging a compact benchtop NMR spectrometer coupled with chemometrics for screening honey-based food supplements adulterated with active pharmaceutical ingredients. Initially, fifty samples seized by French customs were analyzed using a 60 MHz benchtop spectrometer. The investigation unveiled the presence of tadalafil in 37 samples, sildenafil in 5 samples, and a combination of flibanserin with tadalafil in 1 sample. After conducting comprehensive qualitative and quantitative characterization of the samples, we propose a chemometric workflow to provide an efficient screening of honey samples using the NMR dataset. This pipeline, utilizing partial least squares discriminant analysis (PLS-DA) models, enables the classification of samples as either adulterated or non-adulterated, as well as the identification of the presence of tadalafil or sildenafil. Additionally, PLS regression models are employed to predict the quantitative content of these adulterants. Through blind analysis, this workflow allows for the detection and quantification of adulterants in these honey supplements.


Asunto(s)
Suplementos Dietéticos , Miel , Espectroscopía de Resonancia Magnética , Miel/análisis , Suplementos Dietéticos/análisis , Espectroscopía de Resonancia Magnética/métodos , Citrato de Sildenafil/análisis , Flujo de Trabajo , Quimiometría/métodos , Tadalafilo/análisis , Análisis de los Mínimos Cuadrados , Contaminación de Medicamentos/prevención & control , Análisis Discriminante
2.
Molecules ; 29(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731650

RESUMEN

The present study investigates the chemical composition variances among Pinelliae Rhizoma, a widely used Chinese herbal medicine, and its common adulterants including Typhonium flagelliforme, Arisaema erubescens, and Pinellia pedatisecta. Utilizing the non-targeted metabolomics technique of employing UHPLC-Q-Orbitrap HRMS, this research aims to comprehensively delineate the metabolic profiles of Pinelliae Rhizoma and its adulterants. Multivariate statistical methods including PCA and OPLS-DA are employed for the identification of differential metabolites. Volcano plot analysis is utilized to discern upregulated and downregulated compounds. KEGG pathway analysis is conducted to elucidate the differences in metabolic pathways associated with these compounds, and significant pathway enrichment analysis is performed. A total of 769 compounds are identified through metabolomics analysis, with alkaloids being predominant, followed by lipids and lipid molecules. Significant differential metabolites were screened out based on VIP > 1 and p-value < 0.05 criteria, followed by KEGG enrichment analysis of these differential metabolites. Differential metabolites between Pinelliae Rhizoma and Typhonium flagelliforme, as well as between Pinelliae Rhizoma and Pinellia pedatisecta, are significantly enriched in the biosynthesis of amino acids and protein digestion and absorption pathways. Differential metabolites between Pinelliae Rhizoma and Arisaema erubescens are mainly enriched in tyrosine metabolism and phenylalanine metabolism pathways. These findings aim to provide valuable data support and theoretical references for further research on the pharmacological substances, resource development and utilization, and quality control of Pinelliae Rhizoma.


Asunto(s)
Metabolómica , Pinellia , Rizoma , Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Pinellia/metabolismo , Pinellia/química , Rizoma/metabolismo , Rizoma/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Espectrometría de Masas/métodos , Contaminación de Medicamentos , Metaboloma , Redes y Vías Metabólicas
3.
Se Pu ; 42(5): 432-444, 2024 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-38736386

RESUMEN

Amphotericin B (AmB) is a polyene-macrolide antimicrobial drug with a broad antibacterial spectrum and remarkable efficacy against deep fungal infections. It binds to ergosterol on the fungal cell membrane and alters its permeability, thereby destroying the membrane. AmB is a multicomponent antimicrobial medication that contains a wide range of impurities, rendering quality analysis extremely difficult. In the current Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3), high performance liquid chromatography (HPLC) is applied to examine related substances in AmB. However, this technique presents a number of issues. For instance, the mobile phases used in the HPLC method described in both references contain nonvolatile inorganic salts, which cannot be coupled with a mass spectrometry (MS) detector. In addition, because the mobile phases used have a low pH, the component/impurities of AmB drug can easily be degraded or interconverted during the analytical process, leading to reduced analytical accuracy. Therefore, the accuracy and sensitivity of this method must be improved. In this study, a method based on on-line two-dimensional high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (2D HPLC-Q TOF/MS) was developed to analyze the impurity profile of AmB in accordance with the Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3). The method combines on-line dilution and a multiple-capture HPLC system to achieve the efficient separation of AmB component/impurities. It also resolves the issue of poor solvent compatibility in 2D HPLC, increases the analytical flux, enhances the automation capability, reduces the mutual conversion of AmB and its impurities during the analytical process, and increases the detection sensitivity of the method. MS was also used to determine the structural inference of unstable components and impurities. An XBridge Shield C18 column (250 mm×4.6 mm, 3 µm) was used for first-dimensional-liquid chromatography with gradient elution using methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (10∶30∶60, v/v/v, pH 4.7) as mobile phase A and methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (12∶68∶20, v/v/v, pH 3.9) as mobile phase B. An Xtimate C8 column (10 mm×2.1 mm, 5 µm) was used as the trap column, and trapping and desalting were performed using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v). An Xtimate C8 column (250 mm×2.1 mm, 5 µm) was used for second-dimensional-liquid chromatography with gradient elution using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v) and 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (5∶95, v/v) as mobile phases. The data were collected in positive-ion mode. In this study, the structures of six impurities in amphotericin B were inferred, according to the fragmentation, the MS and MS2 spectra of each impurity. The developed method can be used to quickly and sensitively analyze the impurity profile of AmB. Furthermore, the research results on impurity profiles can be applied to guide improvements in AmB production.


Asunto(s)
Anfotericina B , Contaminación de Medicamentos , Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Anfotericina B/análisis , Anfotericina B/química , Espectrometría de Masas/métodos
4.
Se Pu ; 42(5): 481-486, 2024 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-38736392

RESUMEN

Ibandronate sodium, a third-generation diphosphate drug used worldwide to treat osteoporosis, has the advantages of convenient use, low toxicity, and significant therapeutic effects. However, the residual organic solvents in the synthesis process of sodium ibandronate not only have a negative impact on the efficacy of the drug, but also lead to a decrease in drug stability. Moreover, if the residual amounts of these solvents exceed safety standards, they may pose serious threats to human health. This study successfully established a convenient and efficient method based on headspace-gas chromatography (HS-GC) for the simultaneous determination of five residual solvents (methanol, acetone, benzene, toluene, 1-pentanol) in the raw materials of ibandronate sodium. The results indicated that satisfactory analytical performance can be achieved by using DB-624 capillary column (30 m×0.32 mm×1.8 µm) and a flame ionization detector in conjunction with headspace autosampling and a temperature program. The specific operating conditions included an initial temperature of 40 ℃, with a hold of 2 min, followed by a temperature ramp first to 200 ℃ at a rate of 5 ℃/min and then to 240 ℃ at a rate of 20 ℃/min, with a hold of 5 min. Nitrogen with a flow rate of 1 mL/min and split ratio of 14∶1 was used as the carrier gas. The headspace vial temperature was maintained at 80 ℃, and the sample equilibration time was 20 min. Under the established analytical conditions, good linear relationships were obtained between the mass concentrations of methanol (72-216 µg/mL), acetone (120-360 µg/mL), benzene (0.048-0.144 µg/mL), toluene (21.36-64.08 µg/mL), and 1-pentanol (120-360 µg/mL) and their corresponding peak areas, with correlation coefficients (r) greater than 0.990. The limits of detection for these solvents were 2.88, 0.011, 0.90, 0.24, and 0.024 ng/mL, respectively, with limits of quantification of 11.5, 0.043, 3.6, 0.96, and 0.096 ng/mL, respectively. Furthermore, the recoveries of these solvents ranged from 86.3% to 101.9%, with relative standard deviations (RSDs, n=3) of less than 2.49%. The proposed method is simple, accurate, reliable, and suitable for the rapid and simultaneous determination of five residual solvents in the raw materials of ibandronate sodium. This study has important practical significance in improving drug safety and ensuring public health.


Asunto(s)
Ácido Ibandrónico , Solventes , Cromatografía de Gases/métodos , Solventes/química , Ácido Ibandrónico/análisis , Difosfonatos/análisis , Contaminación de Medicamentos
5.
Mol Biol Rep ; 51(1): 639, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727924

RESUMEN

BACKGROUND: Peucedani Radix, also known as "Qian-hu" is a traditional Chinese medicine derived from Peucedanum praeruptorum Dunn. It is widely utilized for treating wind-heat colds and coughs accompanied by excessive phlegm. However, due to morphological similarities, limited resources, and heightened market demand, numerous substitutes and adulterants of Peucedani Radix have emerged within the herbal medicine market. Moreover, Peucedani Radix is typically dried and sliced for sale, rendering traditional identification methods challenging. MATERIALS AND METHODS: We initially examined and compared 104 commercial "Qian-hu" samples from various Chinese medicinal markets and 44 species representing genuine, adulterants or substitutes, utilizing the mini barcode ITS2 region to elucidate the botanical origins of the commercial "Qian-hu". The nucleotide signature specific to Peucedani Radix was subsequently developed by analyzing the polymorphic sites within the aligned ITS2 sequences. RESULTS: The results demonstrated a success rate of 100% and 93.3% for DNA extraction and PCR amplification, respectively. Forty-five samples were authentic "Qian-hu", while the remaining samples were all adulterants, originating from nine distinct species. Peucedani Radix, its substitutes, and adulterants were successfully identified based on the neighbor-joining tree. The 24-bp nucleotide signature (5'-ATTGTCGTACGAATCCTCGTCGTC-3') revealed distinct differences between Peucedani Radix and its common substitutes and adulterants. The newly designed specific primers (PR-F/PR-R) can amplify the nucleotide signature region from commercial samples and processed materials with severe DNA degradation. CONCLUSIONS: We advocate for the utilization of ITS2 and nucleotide signature for the rapid and precise identification of herbal medicines and their adulterants to regulate the Chinese herbal medicine industry.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN de Plantas , ADN de Plantas/genética , Código de Barras del ADN Taxonómico/métodos , Medicamentos Herbarios Chinos/normas , Apiaceae/genética , Apiaceae/clasificación , Medicina Tradicional China/normas , ADN Espaciador Ribosómico/genética , Contaminación de Medicamentos , Plantas Medicinales/genética , Filogenia , Análisis de Secuencia de ADN/métodos , Reacción en Cadena de la Polimerasa/métodos , Nucleótidos/genética , Nucleótidos/análisis
6.
Int J Pharm Compd ; 28(3): 229-240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768508

RESUMEN

Sterilization methods to produce sterile preparations include heat, gas, radiation, and filtration. This article focuses on heat, gas, and radiation sterilization, plus a brief introduction to bright-light sterilization. Microbiology basics and microbial death kinetics, key to understanding why these sterilization methods work, will also be briefly discussed. Filtration sterilization will be covered in a separate article.


Asunto(s)
Composición de Medicamentos , Esterilización , Esterilización/métodos , Composición de Medicamentos/normas , Calor , Contaminación de Medicamentos/prevención & control , Filtración/instrumentación , Gases
7.
J Pharm Biomed Anal ; 245: 116200, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723557

RESUMEN

A high-performance liquid chromatography (HPLC) method was developed for the analysis of Allopurinol and its Ph.Eur. impurities using a porous graphitic carbon (PGC) stationary phase. Retention behavior of solutes was studied across a wide temperature range (30-90 °C) and various gradient times (5-20 min). Analysis of the data revealed distinct retention mechanisms between reversed-phase and PGC phases. However, it was proved that the retention of Allopurinol and its Ph.Eur. impurities on PGC stationary phase can be effectively modeled using the linear solvent strength (LSS) theory. This allows for the utilization of LSS-based method development software to optimize methods under these conditions. By using commercial chromatographic modeling software, separation of Allopurinol and Ph.Eur. impurities was optimized within a large design space. At the optimized operating conditions (pH = 2.0, tG = 6 min, T = 60 °C), all solutes were separated within 6 min with baseline resolution. Comparison between predicted and experimentally measured chromatograms further confirmed the applicability of LSS theory in developing analytical methods for PGC-based HPLC systems. The presented approach offers a general framework for method development on PGC phases.


Asunto(s)
Alopurinol , Grafito , Solventes , Cromatografía Líquida de Alta Presión/métodos , Grafito/química , Solventes/química , Alopurinol/química , Alopurinol/análisis , Porosidad , Temperatura , Contaminación de Medicamentos/prevención & control , Calor
8.
Biofabrication ; 16(3)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38701770

RESUMEN

Ensuring the safety of parenteral drugs before injection into patients is of utmost importance. New regulations around the globe and the need to refrain from using animals however, have highlighted the need for new cell sources to be used in next-generation bioassays to detect the entire spectrum of possible contaminating pyrogens. Given the current drawbacks of the Monocyte-Activation-Test (MAT) with respect to the use of primary peripheral blood mono-nuclear cells or the use of monocytic cell lines, we here demonstrate the manufacturing of sensor monocytes/macrophages from human induced pluripotent stem cells (iMonoMac), which are fully defined and superior to current cell products. Using a modern and scalable manufacturing platform, iMonoMac showed typical macrophage-like morphology and stained positive for several Toll like receptor (TLRs) such as TLR-2, TLR-5, TLR-4. Furthermore, iMonoMac derived from the same donor were sensitive to endotoxins, non-endotoxins, and process related pyrogens at a high dynamic range and across different cellular densities. Of note, iMonoMac showed increased sensitivity and reactivity to a broad range of pyrogens, demonstrated by the detection of interleukin-6 at low concentrations of LPS and MALP-2 which could not be reached using the current MAT cell sources. To further advance the system, iMonoMac or genetically engineered iMonoMac with NF-κB-luciferase reporter cassette could reveal a specific activation response while correlating to the classical detection method employing enzyme-linked immunosorbent assay to measure cytokine secretion. Thus, we present a valuable cellular tool to assess parenteral drugs safety, facilitating the future acceptance and design of regulatory-approved bioassays.


Asunto(s)
Células Madre Pluripotentes Inducidas , Macrófagos , Pirógenos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/citología , Contaminación de Medicamentos , Receptores Toll-Like/metabolismo , Endotoxinas , Interleucina-6/metabolismo , Monocitos/citología , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Infusiones Parenterales
9.
PLoS One ; 19(5): e0303773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753829

RESUMEN

The Burkholderia cepacia complex (Bcc) is the number one bacterial complex associated with contaminated Finished Pharmaceutical Products (FPPs). This has resulted in multiple healthcare related infection morbidity and mortality events in conjunction with significant FPP recalls globally. Current microbiological quality control of FPPs before release for distribution depends on lengthy, laborious, non-specific, traditional culture-dependent methods which lack sensitivity. Here, we present the development of a culture-independent Bcc Nucleic Acid Diagnostic (NAD) method for detecting Bcc contaminants associated with Over-The-Counter aqueous FPPs. The culture-independent Bcc NAD method was validated to be specific for detecting Bcc at different contamination levels from spiked aqueous FPPs. The accuracy in Bcc quantitative measurements was achieved by the high degree of Bcc recovery from aqueous FPPs. The low variation observed between several repeated Bcc quantitative measurements further demonstrated the precision of Bcc quantification in FPPs. The robustness of the culture-independent Bcc NAD method was determined when its accuracy and precision were not significantly affected during testing of numerous aqueous FPP types with different ingredient matrices, antimicrobial preservative components and routes of administration. The culture-independent Bcc NAD method showed an ability to detect Bcc in spiked aqueous FPPs at a concentration of 20 Bcc CFU/mL. The rapid (≤ 4 hours from sample in to result out), robust, culture-independent Bcc NAD method presented provides rigorous test specificity, accuracy, precision, and sensitivity. This method, validated with equivalence to ISO standard ISO/TS 12869:2019, can be a valuable diagnostic tool in supporting microbiological quality control procedures to aid the pharmaceutical industry in preventing Bcc contamination of aqueous FPPs for consumer safety.


Asunto(s)
Complejo Burkholderia cepacia , Contaminación de Medicamentos , Complejo Burkholderia cepacia/aislamiento & purificación , Complejo Burkholderia cepacia/genética , Contaminación de Medicamentos/prevención & control , Preparaciones Farmacéuticas/análisis
10.
J Sep Sci ; 47(9-10): e2300949, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726739

RESUMEN

Hydrophilic interaction liquid chromatography (HILIC) has been widely applied to challenging analysis in biomedical and pharmaceutical fields, bridging the gap between normal-phase high-performance liquid chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). This paper comprehensively explores the retention mechanisms of amitriptyline and its impurities A, B, C, D, F, and G on amide, amino, diol, and silica columns. Dual HILIC/RP-HPLC retention mechanisms were developed, and transitional points between HILIC and RP-HPLC mechanisms were calculated on amide, diol, and silica columns. Adsorption and partition contributions to overall retention mechanisms were evaluated using Python software in HILIC and RP-HPLC regions. The cation exchange mechanism dominates overall retention for ionized analytes in the silica column (R2 > 0.995), whereas the retention of ionized analytes increases with pH. Impacts of acetonitrile content, buffer ionic strength, and pH, along with their interactions on the retention of ionized analytes in the silica column, were determined using the chemometric approach. Acetonitrile content showed the most significant impact on the retention mechanisms. These findings highlight that a detailed investigation into retention mechanisms provides notable insights into factors influencing analyte retention and separation, promising valuable guidance for future analysis.


Asunto(s)
Amidas , Amitriptilina , Interacciones Hidrofóbicas e Hidrofílicas , Dióxido de Silicio , Dióxido de Silicio/química , Amitriptilina/análisis , Amitriptilina/química , Amidas/química , Amidas/análisis , Cromatografía Líquida de Alta Presión , Contaminación de Medicamentos , Cromatografía Liquida/métodos , Estructura Molecular
11.
AMA J Ethics ; 26(4): E289-294, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564743

RESUMEN

This commentary responds to a case about diethylene glycol-contaminated glycerin in cough syrup. Glycerin is a commonly used excipient in medicines to improve texture and taste. Excipients are typically pharmacologically inactive ingredients contained in prescription and over-the-counter drugs that play a critical role in the delivery, effectiveness, and stability of active drug substances. The commentary first canvasses how contaminants enter the excipient supply chains. One way is by misleading labeling or intentional adulteration by manufacturers or suppliers. Another way is by human or systemic error. This commentary then discusses quality control testing and suggests the ethical and clinical importance of increased transparency in excipient supply chains.


Asunto(s)
Excipientes , Glicerol , Niño , Humanos , Excipientes/efectos adversos , Preparaciones Farmacéuticas , Contaminación de Medicamentos , Tos/tratamiento farmacológico
12.
Daru ; 32(1): 461-468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613658

RESUMEN

PURPOSE: A pharmacopoeia is a compendium of guidelines and criteria for drug quality. It was established by a national or regional entity and has legal significance. This applies to administration of drugs in a particular nation or region. METHOD: In this study, the differences and similarities of microbiological acceptance criteria, specifications for microbial enumeration of herbal drugs and herbal drug preparations in 14 national and international pharmacopeias were investigated. RESULTS: It was found that 12 pharmacopeias have given separate microbial limits for total aerobic microbial count (TAMC) and total yeast and mold count (TYMC), and a list of specified microorganisms for which acceptance criteria are defined. However, similarities were noticed in Ph.Eur, Ph. Helv and, BP. Salmonella, and Escherichia coli are the most common pathogens specified for herbal preparations in which boiling water is added prior to use and for internal use in all Pharmacopoeias because they serve as indicators of potential contamination. CONCLUSION: From this study, it can be concluded that the differences in microbial limit tests and their acceptance criteria as specified in the various pharmacopoeias need to be harmonized. It will become a more convenient option for global drug manufacturers to import/export herbal drugs, and this would also eliminate the burden of performing various analytical methods and comply with different microbial acceptance criteria set by various pharmacopoeias. The comparative data obtained from this study will be used to develop strategies for revisions of pharmacopoeias in a harmonized manner with respect to microbiological acceptance criteria, specifications for microbial enumeration of herbal drugs and herbal drug preparations.


Asunto(s)
Contaminación de Medicamentos , Farmacopeas como Asunto , Preparaciones de Plantas , Preparaciones de Plantas/normas , Contaminación de Medicamentos/prevención & control , Farmacopeas como Asunto/normas , Recuento de Colonia Microbiana , Control de Calidad , Humanos
13.
J Pharm Biomed Anal ; 245: 116160, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663256

RESUMEN

Technical advances in the field of quality analysis allow an increasingly deeper look into the impurity profile of drugs. The ability to detect unexpected impurities in addition to known impurities ensures the supply of high-quality drugs and can prevent recalls due to the detection of harmful unexpected impurities, as has happened recently with the N-nitrosamine and azido impurities in losartan (LOS) drug products. In the present study, the LC-MS/HRMS approach described by Backer et al. was applied to an even more complex system, being the investigation of 35 LOS drug products and combination preparations purchased in 2018 and 2022 in German pharmacies. The film-coated tablets were analysed by means of four LC-MS/HRMS method variants. For the separation a Zorbax RR StableBond C18 column (3.0 ×100 mm, particle size of 3.5 µm, pore size of 80 Å), a gradient elution and for mass spectrometric detection a qTOF mass spectrometer with electrospray ionization in positive and negative mode was used. An information-dependent acquisition method was applied for the acquisition of high-resolution mass spectrometry data. The combination of an untargeted and a targeted screening approach revealed the finding of eight impurities in total. Beside the five LOS related compounds, LOS impurity F, J, K, L, M, and related compound D from amlodipine besilate, LOS azide and an unknown derivative thereof were detected. Identification and structure elucidation, respectively, were successfully performed using in silico fragmentation. Differences in the impurity profiles of drug products from 2018 and 2022 could be observed. This study shows that broad screening approaches like this are applicable to the analysis of drug products and can be an important enhancement of the quality assurance of medicinal products.


Asunto(s)
Contaminación de Medicamentos , Losartán , Comprimidos , Espectrometría de Masas en Tándem , Losartán/análisis , Losartán/química , Contaminación de Medicamentos/prevención & control , Comprimidos/análisis , Alemania , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida de Alta Presión/métodos
14.
Klin Monbl Augenheilkd ; 241(4): 392-397, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38653293

RESUMEN

PURPOSE: To introduce a novel technique of the aseptic manufacture of autologous serum eye drops (ASEDs) with a prefiltered closed system and to analyze the sterility of the produced ophtioles between 2018 and 2022. METHODS: This is a prospective single-center study conducted at the Department of Ophthalmology at a Swiss University Hospital between 2018 and 2022. For regulatory reasons, closed systems for manufacturing ASEDs are strongly recommended. We attached an upstream sterile filter (Sterivex PES0.22 µm Burlington, USA) to a commercially available closed system (COL System Modena, Italy) for manufacturing ASEDs. The goal of this novel approach was to reduce the microbiological contamination of the donated autologous blood. Using the presented manufacturing method, we are able to produce, on average, 56 ophtioles per batch, containing either 1.45 mL or 2.5 mL of autologous serum per ophtiole. For each batch of ASEDs, we performed a microbiological analysis by automated blood culture testing (BACTEC). This system examines the presence of bacteria and fungi. RESULTS: We analyzed all manufactured batches between 2018 and 2022. None of the 2297 batches and the resulting 129 060 ophtioles showed bacterial or mycotic contamination. During the analyzed period, two batches were discarded: one due to fibrin-lipid aggregations, further microbiological and histological work-up excluded any contamination; another due to false-positive HIV in serological testing. Overall, the contamination rate was 0%, and the batch discharge rate was 0.09%. CONCLUSIONS: The combination of upstream sterile filtration with a commercial closed system for manufacturing ASEDs proved to be effective in ensuring sterility without any contamination over the past 4 years. This is becoming crucial, as the demand for autologous blood products for treating ocular surface disorders, such as refractory dry eyes or nonhealing defects of the corneal epithelium, is on the rise.


Asunto(s)
Contaminación de Medicamentos , Soluciones Oftálmicas , Suero , Humanos , Contaminación de Medicamentos/prevención & control , Estudios Prospectivos , Esterilización/métodos , Asepsia/métodos
15.
J Chromatogr A ; 1722: 464866, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581976

RESUMEN

The detection of aromatic aldehydes, considered potential genotoxic impurities, holds significant importance during drug development and production. Current analytical methods necessitate complex pre-treatment processes and exhibit insufficient specificity and sensitivity. This study presents the utilization of naphthalenediimide as a pre-column derivatisation reagent to detect aromatic aldehyde impurities in pharmaceuticals via high-performance liquid chromatography (HPLC). We screened a series of derivatisation reagents through density functional theory (DFT) and investigated the phenomenon of photoinduced electron transfer (PET) for both the derivatisation reagents and the resulting products. Optimal experimental conditions for derivatisation were achieved at 40 °C for 60 min. This approach has been successfully applied to detect residual aromatic aldehyde genotoxic impurities in various pharmaceutical preparations, including 4-Nitrobenzaldehyde, 2-Nitrobenzaldehyde, 1,4-Benzodioxane-6-aldehyde, and 5-Hydroxymethylfurfural. The pre-column derivatisation method significantly enhanced detection sensitivity and reduced the limit of detection (LOD), which ranged from 0.002 to 0.008 µg/ml for the analytes, with relative standard deviations < 3 %. The correlation coefficient (R2) >0.998 demonstrated high quality. In chloramphenicol eye drops, the concentration of 4-Nitrobenzaldehyde was measured to be 8.6 µg/mL below the specified concentration, with recoveries ranging from 90.0 % to 119.2 %. In comparison to existing methods, our work simplifies the pretreatment process, enhances the sensitivity and specificity of the analysis, and offers comprehensive insights into impurity detection in pharmaceutical preparations.


Asunto(s)
Aldehídos , Contaminación de Medicamentos , Imidas , Límite de Detección , Naftalenos , Cromatografía Líquida de Alta Presión/métodos , Naftalenos/química , Naftalenos/análisis , Aldehídos/análisis , Aldehídos/química , Imidas/química , Mutágenos/análisis , Mutágenos/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Benzaldehídos/química , Benzaldehídos/análisis
16.
J Pharm Biomed Anal ; 244: 116128, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38598924

RESUMEN

Genotoxic impurities (GTIs) are potential carcinogens that need to be controlled down to ppm or lower concentration levels in pharmaceuticals under strict regulations. The static headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD) is an effective approach to monitor halogenated and nitroaromatic genotoxins. Deep eutectic solvents (DESs) possess tunable physico-chemical properties and low vapor pressure for HS-GC methods. In this study, zwitterionic and non-ionic DESs have been used for the first time to develop and validate a sensitive analytical method for the analysis of 24 genotoxins at sub-ppm concentrations. Compared to non-ionic diluents, zwitterionic DESs produced exceptional analytical performance and the betaine : 7 (1,4- butane diol) DES outperformed the betaine : 5 (1,4-butane diol) DES. Limits of detection (LOD) down to the 5-ppb concentration level were achieved in DESs. Wide linear ranges spanning over 5 orders of magnitude (0.005-100 µg g-1) were obtained for most analytes with exceptional sensitivities and high precision. The method accuracy and precision were validated using 3 commercially available drug substances and excellent recoveries were obtained. This study broadens the applicability of HS-GC in the determination of less volatile GTIs by establishing DESs as viable diluent substitutes for organic solvents in routine pharmaceutical analysis.


Asunto(s)
Disolventes Eutécticos Profundos , Contaminación de Medicamentos , Límite de Detección , Mutágenos , Contaminación de Medicamentos/prevención & control , Cromatografía de Gases/métodos , Mutágenos/análisis , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Disolventes Eutécticos Profundos/química , Disolventes Eutécticos Profundos/análisis , Tecnología Química Verde/métodos , Reproducibilidad de los Resultados , Solventes/química
17.
J Am Soc Mass Spectrom ; 35(5): 960-971, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616559

RESUMEN

In Asia, some herbal preparations have been found to be adulterated with undeclared synthetic medicines to increase their therapeutic efficiency. Many of these adulterants were found to be toxic when overdosed and have been documented to bring about severe, even life-threatening acute poisoning events. The objective of this study is to develop a rapid and sensitive ambient ionization mass spectrometric platform to characterize the undeclared toxic adulterated ingredients in herbal preparations. Several common adulterants were spiked into different herbal preparations and human sera to simulate the clinical conditions of acute poisoning. They were then sampled with a metallic probe and analyzed by the thermal desorption-electrospray ionization mass spectrometry. The experimental parameters including sensitivity, specificity, accuracy, and turnaround time were prudently optimized in this study. Since tedious and time-consuming pretreatment of the sample is unnecessary, the toxic adulterants could be characterized within 60 s. The results can help emergency physicians to make clinical judgments and prescribe appropriate antidotes or supportive treatment in a time-sensitive manner.


Asunto(s)
Contaminación de Medicamentos , Preparaciones de Plantas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Humanos , Preparaciones de Plantas/análisis , Preparaciones de Plantas/química , Servicios Médicos de Urgencia/métodos
18.
Sci Rep ; 14(1): 9629, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671013

RESUMEN

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing outbreak, disrupting human life worldwide. Vaccine development was prioritized to obtain a biological substance for combating the viral pathogen and lessening disease severity. In vaccine production, biological origin and relevant materials must be carefully examined for potential contaminants in conformity with good manufacturing practice. Due to fast mutation, several SARS-CoV-2 variants and sublineages have been identified. Currently, most of COVID-19 vaccines are developed based on the protein sequence of the Wuhan wild type strain. New vaccines specific for emerging SARS-CoV-2 strains are continuously needed to tackle the incessant evolution of the virus. Therefore, in vaccine development and production, a reliable method to identify the nature of subunit vaccines is required to avoid cross-contamination. In this study, liquid chromatography-mass spectrometry using quadrupole-time of flight along with tryptic digestion was developed for distinguishing protein materials derived from different SARS-CoV-2 strains. After analyzing the recombinantly produced receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, nine characteristic peptides were identified with acceptable limits of detection. They can be used together to distinguish 14 SARS-CoV-2 strains, except Kappa and Epsilon. Plant-produced RBD-Fc protein derived from Omicron strains can be easily distinguished from the others with 4-5 unique peptides. Eventually, a peptide key was developed based on the nine peptides, offering a prompt and precise flowchart to facilitate SARS-CoV-2 strain identification in COVID-19 vaccine manufacturing.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Control de Calidad , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Vacunas contra la COVID-19/inmunología , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/prevención & control , COVID-19/virología , Cromatografía Liquida , Contaminación de Medicamentos/prevención & control , Espectrometría de Masas/métodos , Vacunas de Subunidad/inmunología , Cromatografía Líquida con Espectrometría de Masas
19.
Phytomedicine ; 128: 155322, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569291

RESUMEN

BACKGROUND: Species adulteration is a concern in herbal products, especially when plant substitutes of lower economic value replace valuable botanicals. Styphnolobium japonicum is well known as a potential adulterant of Ginkgo biloba, which is one of the most demanded medicinal plants due to its wide use in pharmaceuticals, food supplements, and traditional medicine. Despite bearing some resemblance to ginkgo's flavonol composition, S. japonicum lacks many of G. biloba's desired therapeutic properties. To prevent adulteration practices, it is crucial to implement rigorous quality control measures, including fast and simple diagnostic tools that can be used on-field. PURPOSE: This study aims to develop for the first time a species-specific loop-mediated isothermal amplification (LAMP) method for the fast identification of S. japonicum in ginkgo-containing products. METHODS: A set of four specific primers (SjF3, SjB3, SjFIP, and SjBIP) and loop primers (SjLF and SjLB) were designed for a LAMP based assay using the 5.8S partial sequence and the internal transcribed spacer 2 of nuclear ribosomal DNA of S. japonicum. RESULTS: The successful amplification of the LAMP assay was inspected through visual detection, with the highest intensity recorded at the optimal conditions set at 68 °C for 40 min. The primers showed high specificity and were able to accurately discriminate S. japonicum from G. biloba and 49 other species of medicinal plants. Furthermore, the proposed LAMP assay proved to be fast, selective, and highly sensitive, as demonstrated by the absolute and relative limits of detection, which were reached at 0.5 pg for S. japonicum DNA and 0.01 % S. japonicum in G. biloba, respectively. CONCLUSIONS: This novel approach allows easy identification and discrimination of S. japonicum as a potential adulterant of G. biloba, thus being a useful tool for quality control. Compared to chromatographic or PCR-based methods, the assay proved to be fast, sensitive and did not require expensive equipment, thus offering the possibly usage in field analysis.


Asunto(s)
Contaminación de Medicamentos , Ginkgo biloba , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Ginkgo biloba/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Contaminación de Medicamentos/prevención & control , Cartilla de ADN , ADN de Plantas/genética , Plantas Medicinales/química , Sophora japonica
20.
Regul Toxicol Pharmacol ; 149: 105621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608922

RESUMEN

Although the United States Food & Drug Administration (FDA) has provided guidance on the control of drug degradants for prescription drugs, there is less guidance on how to set degradant specifications for FDA OTC monograph drugs. Given that extensive impurity testing was not part of the safety paradigm in original OTC monographs, a weight of evidence (WOE) approach to qualify OTC degradants is proposed. This approach relies on in silico tools and read-across approaches alongside standard toxicity testing to determine safety. Using several drugs marketed under 21 CFR 341 as case studies, this research demonstrates the utility of a WOE approach across data-rich and data-poor degradants. Based on degradant levels ranging from 1 to 4% of the maximum daily doses of each case study drug and 10th percentile body weight data for each patient group, children were recognized as having the highest potential exposure relative to adults per body mass. Depending on data availability and relationship to the parent API, margins of safety (MOS) or exposure margins were calculated for each degradant. The findings supported safe use, and indicated that this contemporary WOE approach could be utilized to assess OTC degradants. This approach is valuable to establish specifications for degradants in OTCs.


Asunto(s)
Antitusígenos , Medicamentos sin Prescripción , United States Food and Drug Administration , Medicamentos sin Prescripción/efectos adversos , Humanos , Estados Unidos , Antitusígenos/efectos adversos , Tos/tratamiento farmacológico , Medición de Riesgo , Niño , Contaminación de Medicamentos , Adulto , Pruebas de Toxicidad/métodos , Resfriado Común/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA