Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.763
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731818

RESUMEN

Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.


Asunto(s)
Enfermedades Cardiovasculares , Efectos Tardíos de la Exposición Prenatal , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Humanos , Embarazo , Animales , Femenino , Efectos Tardíos de la Exposición Prenatal/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología , Exposición Materna/efectos adversos , Transducción de Señal/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Desarrollo Fetal/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/efectos adversos , Reprogramación Metabólica
2.
J Toxicol Sci ; 49(5): 209-218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692908

RESUMEN

The immune system is sensitive to many chemicals. Among dioxin compounds, 2,3,7,8-tetrachlorodizenzo-p-dioxin (TCDD) is the most toxic environmental pollutant. The effects of perinatal maternal exposure to dioxins may persist into childhood. However, there have been no reports to date on the effects of exposure to dioxins during infancy, when the immune organs are developing. Therefore, we investigated the effects of TCDD and antigen exposure during lactation on immune function, especially antibody production capacity, in adult mice. Beginning the day after delivery, lactating mothers were orally administered TCDD or a mixture of TCDD and ovalbumin (OVA) daily for 4 weeks, until the pups were weaned. At 6 weeks of age, progeny mice were orally administered OVA daily for 10 weeks, while non-progeny mice were orally administered OVA or a mixture of TCDD and OVA daily for 10 weeks. Production of serum OVA-specific IgG was examined weekly. The amount of TCDD transferred from the mother to the progeny via breast milk was determined by measuring TCDD in the gastric contents of the progeny. A trend toward increasing IgA titer was observed in TCDD-treated mice, and production of IgE was observed only in progeny whose mothers were treated with TCDD and OVA. The results suggest that exposure to TCDD and OVA in breast milk can affect immune function in newborns.


Asunto(s)
Lactancia , Ovalbúmina , Dibenzodioxinas Policloradas , Animales , Femenino , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Dibenzodioxinas Policloradas/toxicidad , Exposición Materna/efectos adversos , Formación de Anticuerpos/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Inmunoglobulina G/sangre , Inmunoglobulina A/sangre , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Antígenos/inmunología , Ratones , Embarazo , Leche/inmunología , Masculino , Leche Humana/inmunología , Administración Oral
3.
Environ Geochem Health ; 46(6): 197, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696118

RESUMEN

Micro/nanoplastics (MNPs) are emerging as environmental pollutants with potential threats to human health. The accumulation of MNPs in the body can cause oxidative stress and increase the risk of cardiovascular disease (CVD). With the aim to systematically evaluate the extent of MNPs-induced oxidative damage and serum biochemical parameters in rats and mice, a total of 36 eligible articles were included in this meta-analysis study. The results reported that MNPs can significantly increase the levels of oxidants such as reactive oxygen species (ROS) and malondialdehyde (MDA) (P < 0.05), and resulted in notable increase in serum biochemical parameters including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P < 0.05). Conversely, MNPs significantly reduced levels of antioxidants such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT) (P < 0.05). Subgroup analysis revealed that smaller MNPs with oral administration and prolonged treatment, were associated with more pronounced oxidative stress and enhanced serum biochemical parameters alteration. In addition, after affected by MNPs, the levels of ALT and AST in liver group (SMD = 2.26, 95% CI = [1.59, 2.94] and SMD = 3.10, 95% CI = [1.25, 4.94]) were higher than those in other organs. These comprehensive results provide a scientific foundation for devising strategies to prevent MNPs-induced damage, contributing to solution of this environmental and health challenge.


Asunto(s)
Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratones , Aspartato Aminotransferasas/sangre , Microplásticos/toxicidad , Alanina Transaminasa/sangre , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Ambientales/toxicidad , Nanopartículas , Malondialdehído/sangre , Superóxido Dismutasa/metabolismo
4.
Environ Health Perspect ; 132(5): 57001, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701112

RESUMEN

BACKGROUND: Disruptions in vascular formation attributable to chemical insults is a pivotal risk factor or potential etiology of developmental defects and various disease settings. Among the thousands of chemicals threatening human health, the highly concerning groups prevalent in the environment and detected in biological monitoring in the general population ought to be prioritized because of their high exposure risks. However, the impacts of a large number of environmental chemicals on vasculature are far from understood. The angioarchitecture complexity and technical limitations make it challenging to analyze the entire vasculature efficiently and identify subtle changes through a high-throughput in vivo assay. OBJECTIVES: We aimed to develop an automated morphometric approach for the vascular profile and assess the vascular morphology of health-concerning environmental chemicals. METHODS: High-resolution images of the entire vasculature in Tg(fli1a:eGFP) zebrafish were collected using a high-content imaging platform. We established a deep learning-based quantitative framework, ECA-ResXUnet, combined with MATLAB to segment the vascular networks and extract features. Vessel scores based on the rates of morphological changes were calculated to rank vascular toxicity. Potential biomarkers were identified by vessel-endothelium-gene-disease integrative analysis. RESULTS: Whole-trunk blood vessels and the cerebral vasculature in larvae exposed to 150 representative chemicals were automatically segmented as comparable to human-level accuracy, with sensitivity and specificity of 95.56% and 95.81%, respectively. Chemical treatments led to heterogeneous vascular patterns manifested by 31 architecture indexes, and the common cardinal vein (CCV) was the most affected vessel. The antipsychotic medicine haloperidol, flame retardant 2,2-bis(chloromethyl)trimethylenebis[bis(2-chloroethyl) phosphate], and tert-butylphenyl diphenyl phosphate ranked as the top three in vessel scores. Pesticides accounted for the largest group, with a vessel score of ≥1, characterized by a remarkable inhibition of subintestinal venous plexus and delayed development of CCV. Multiple-concentration evaluation of nine per- and polyfluoroalkyl substances (PFAS) indicated a low-concentration effect on vascular impairment and a positive association between carbon chain length and benchmark concentration. Target vessel-directed single-cell RNA sequencing of fli1a+ cells from larvae treated with λ-cyhalothrin, perfluorohexanesulfonic acid, or benzylbutyl phthalate, along with vessel-endothelium-gene-disease integrative analysis, uncovered potential associations with vascular disorders and identified biomarker candidates. DISCUSSION: This study provides a novel paradigm for phenotype-driven screenings of vascular-disrupting chemicals by converging morphological and transcriptomic profiles at a high-resolution level, serving as a powerful tool for large-scale toxicity tests. Our approach and the high-quality morphometric data facilitate the precise evaluation of vascular effects caused by environmental chemicals. https://doi.org/10.1289/EHP13214.


Asunto(s)
Pez Cebra , Animales , Contaminantes Ambientales/toxicidad , Vasos Sanguíneos/efectos de los fármacos
5.
J Immunotoxicol ; 21(1): 2343362, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38712868

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Inmunidad Innata , Inmunidad Innata/efectos de los fármacos , Humanos , Animales , Fluorocarburos/efectos adversos , Fluorocarburos/toxicidad , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos
6.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703850

RESUMEN

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Asunto(s)
Cadmio , Mitocondrias , Piroptosis , Testículo , Animales , Cadmio/toxicidad , Masculino , Ratones , Testículo/efectos de los fármacos , Testículo/metabolismo , Piroptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Proteostasis , Proteínas Mitocondriales/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , ADN Mitocondrial , Proteasas ATP-Dependientes/metabolismo , Estrés Proteotóxico
7.
Chemosphere ; 358: 142208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704042

RESUMEN

Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.


Asunto(s)
Nanoestructuras , Nanoestructuras/toxicidad , Nanoestructuras/química , Metales/toxicidad , Metales/química , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Compuestos Orgánicos/toxicidad , Compuestos Orgánicos/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/química , Sustancias Húmicas
8.
Chemosphere ; 358: 142241, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705408

RESUMEN

Chlorothalonil (CTL), an organochloride fungicide applied for decades worldwide, has been found to be present in various matrixes and even accumulates in humans or other mammals through the food chain. Its high residue and diffusion in the environment have severely affected food security and public health. More and more research has considered CTL as a possible toxin to environmental non-target organisms, via influencing multiple systems such as metabolic, developmental, endocrine, genetic, and reproductive pathways. Aquatic organisms and amphibians are the most vulnerable species to CTL exposure, especially during the early period of development. Under experimental conditions, CTL can also have toxic effects on rodents and other non-target organisms. As for humans, CTL exposure is most often reported to be relevant to allergic reactions to the skin and eyes. We hope that this review will improve our understanding of the hazards and risks that CTL poses to non-target organisms and find a strategy for rational use.


Asunto(s)
Fungicidas Industriales , Nitrilos , Animales , Fungicidas Industriales/toxicidad , Humanos , Nitrilos/toxicidad , Medición de Riesgo , Contaminantes Ambientales/toxicidad , Organismos Acuáticos/efectos de los fármacos
9.
Chemosphere ; 358: 142275, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719125

RESUMEN

Microplastics (MPs) are widespread environmental contaminants that have been detected in animals and humans. However, their toxic effects on terrestrial mammals and the underlying mechanisms are still not well understood. Herein, we explored the role of gut microbiota in mediating the toxicity of micro- and nano-sized polystyrene plastics (PS-MPs/PS-NPs) using an antibiotic depleted mice model. The results showed that PS-MPs and PS-NPs exposure disrupted the composition and structure of the gut microbiota. Specifically, these particles led to an increase in pathogenic Esherichia-shigella, while depleting probiotics such as Akkermansia and Lactobacillus. Comparatively, PS-NPs particles had more pronounced effect, leading to obviously shifted the colon transcriptional profiles characterized by inducing the enrichment of colon metabolism and immune-related pathways (i.e., upregulated in genes like udgh, ugt1a1, ugt1a6a, ugt1a7c and ugt2b34). Additionally, both PS-MPs and PS-NPs induced oxidative stress, gut-liver damage and systemic inflammation in mice. Mechanistically, we confirmed that PS particles disturbed gut microbiota, activating TLR2-My88-NF-κB pathway to trigger the release of inflammatory cytokine IL-1ß and TNF-α. The damage and inflammation caused by both size of PS particles was alleviated when the gut microbiota was depleted. In conclusion, our findings deepen the understanding of the molecule mechanisms by which gut microbiota mediate the toxicity of PS particles, informing health implications of MPs pollution.


Asunto(s)
Microbioma Gastrointestinal , Microplásticos , Poliestirenos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Poliestirenos/toxicidad , Ratones , Microplásticos/toxicidad , Nanopartículas/toxicidad , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Inflamación/inducido químicamente , Contaminantes Ambientales/toxicidad , Masculino , FN-kappa B/metabolismo
11.
Environ Int ; 187: 108720, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718676

RESUMEN

BACKGROUND: Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) influences neurodevelopment. Thyroid homeostasis disruption is thought to be a possible underlying mechanism. However, current epidemiological evidence remains inconclusive. OBJECTIVES: This study aimed to explore the effects of prenatal PFAS exposure on the intelligence quotient (IQ) of school-aged children and assess the potential mediating role of fetal thyroid function. METHODS: The study included 327 7-year-old children from the Sheyang Mini Birth Cohort Study (SMBCS). Cord serum samples were analyzed for 12 PFAS concentrations and 5 thyroid hormone (TH) levels. IQ was assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models (GLM) and Bayesian Kernel Machine Regression (BKMR) were used to evaluate the individual and combined effects of prenatal PFAS exposure on IQ. Additionally, the impact on fetal thyroid function was examined using a GLM, and a mediation analysis was conducted to explore the potential mediating roles of this function. RESULTS: The molar sum concentration of perfluorinated carboxylic acids (ΣPFCA) in cord serum was significantly negatively associated with the performance IQ (PIQ) of 7-year-old children (ß = -6.21, 95 % confidence interval [CI]: -12.21, -0.21), with more pronounced associations observed among girls (ß = -9.57, 95 % CI: -18.33, -0.81) than in boys. Negative, albeit non-significant, cumulative effects were noted when considering PFAS mixture exposure. Prenatal exposure to perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctanesulfonic acid was positively associated with the total thyroxine/triiodothyronine ratio. However, no evidence supported the mediating role of thyroid function in the link between PFAS exposure and IQ. CONCLUSIONS: Increased prenatal exposure to PFASs negatively affected the IQ of school-aged children, whereas fetal thyroid function did not serve as a mediator in this relationship.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Inteligencia , Efectos Tardíos de la Exposición Prenatal , Glándula Tiroides , Humanos , Femenino , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Niño , Embarazo , Fluorocarburos/toxicidad , Fluorocarburos/sangre , Masculino , Inteligencia/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Contaminantes Ambientales/sangre , Contaminantes Ambientales/toxicidad , Cohorte de Nacimiento , Estudios de Cohortes , Hormonas Tiroideas/sangre , Pruebas de Inteligencia , China , Exposición Materna/efectos adversos , Sangre Fetal/química , Ácidos Alcanesulfónicos/sangre , Ácidos Alcanesulfónicos/toxicidad
12.
Neurobiol Dis ; 196: 106522, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705492

RESUMEN

Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD. As LRRK2 mediates vesicular trafficking and influences endolysosomal function, we postulated that LRRK2 kinase activity may inhibit the autophagic removal of toxicant damaged mitochondria, resulting in elevated oxidative stress. Conversely, we suspected that inhibition of LRRK2, which has been shown to be protective against dopaminergic neurodegeneration caused by mitochondrial toxicants, would reduce the intracellular production of reactive oxygen species (ROS) and prevent mitochondrial toxicity from inducing cell death. To do this, we tested in vitro if genetic or pharmacologic inhibition of LRRK2 (MLi2) protected against ROS caused by four toxicants associated with PD risk - rotenone, paraquat, TCE, and tetrachloroethylene (PERC). In parallel, we assessed if LRRK2 inhibition with MLi2 could protect against TCE-induced toxicity in vivo, in a follow up study from our observation that TCE elevated LRRK2 kinase activity in the nigrostriatal tract of rats prior to dopaminergic neurodegeneration. We found that LRRK2 inhibition blocked toxicant-induced ROS and promoted mitophagy in vitro, and protected against dopaminergic neurodegeneration, neuroinflammation, and mitochondrial damage caused by TCE in vivo. We also found that cells with the LRRK2 G2019S mutation displayed exacerbated levels of toxicant induced ROS, but this was ameliorated by LRRK2 inhibition with MLi2. Collectively, these data support a role for LRRK2 in toxicant-induced mitochondrial dysfunction linked to PD risk through oxidative stress and the autophagic removal of damaged mitochondria.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Especies Reactivas de Oxígeno , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratas , Tricloroetileno/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Rotenona/toxicidad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/prevención & control , Paraquat/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Estrés Oxidativo/efectos de los fármacos , Humanos , Contaminantes Ambientales/toxicidad , Ratas Sprague-Dawley
13.
Environ Int ; 187: 108717, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728818

RESUMEN

BACKGROUND: Exposure to environmental pollutants is suspected to be one of the potential causes accounting for the increase in thyroid cancer (TC) incidence worldwide. Among the ubiquitous pollutants, per-polyfluoroalkyl substances (PFASs), were demonstrated to exert thyroid disrupting effects. Perfluoroalkyl carboxylates (PFCAs) represent a subgroup of PFAS and include perfluoro carboxylic acids (PFOA and PFHxA) and perfluoropolyether carboxylic acid (C6O4). The potential relationship between exposure to PFCAs and TC was not yet fully elucidated. This in vitro study investigated whether certain PFCAs (C6O4, PFOA, and PFHxA) can influence the composition of TC microenvironment. METHODS: Two models of normal thyroid cells in primary cultures: Adherent (A-NHT) and Spheroids (S-NHT) were employed. A-NHT and S-NHT were exposed to C6O4, PFOA or PFHxA (0; 0.01; 0.1, 1; 10; 100; 1000 ng/mL) to assess viability (WST-1 and AV/PI assay), evaluate spherification index (SI) and volume specifically in S-NHT. CXCL8 and CCL2 (mRNA and protein), and EMT-related genes were assessed in both models after exposure to PFCAs. RESULTS: PFHxA reduced the viability of both A-NHT and S-NHT. None of the PFCAs interfered with the volume or spherification process in S-NHT. CXCL8 and CCL2 mRNA and protein levels were differently up-regulated by each PFCAs, being PFOA and PFHxA the stronger inducers. Moreover, among the tested PFCAs, PFHxA induced a more consistent increase in the mRNA levels of EMT-related genes. CONCLUSIONS: This is the first evaluation of the effects of exposure to PFCAs on factors potentially involved in establishing the TC microenvironment. PFHxA modulated the TC microenvironment at three levels: cell viability, pro-tumorigenic chemokines, and EMT-genes. The results provide further evidence of the pro-tumorigenic effect of PFOA. On the other hand, a marginal effect was observed for C6O4 on pro-tumorigenic chemokines.


Asunto(s)
Fluorocarburos , Glándula Tiroides , Neoplasias de la Tiroides , Microambiente Tumoral , Humanos , Fluorocarburos/toxicidad , Microambiente Tumoral/efectos de los fármacos , Neoplasias de la Tiroides/patología , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/patología , Caprilatos/toxicidad , Contaminantes Ambientales/toxicidad , Células Cultivadas , Supervivencia Celular/efectos de los fármacos , Ácidos Carboxílicos/toxicidad
14.
Sci Total Environ ; 932: 173117, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734097

RESUMEN

2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 µg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.


Asunto(s)
Bifenilos Polibrominados , Animales , Ratones , Femenino , Bifenilos Polibrominados/toxicidad , Redes y Vías Metabólicas/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Contaminantes Ambientales/toxicidad
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732095

RESUMEN

Phthalates are chemical compounds, mainly used as additives in plastics, which are known to induce harmful impacts to the environment and human health due to their ability to act as hormone-mimics. Few studies have been reported on the relationship between human exposure to phthalates and the level of circulating microRNAs (miRs), especially those miRs encapsulated in extracellular vesicles/exosomes or exosome-like vesicles (ELVs). We examined the relationship of ELV-miR expression patterns and urine of adult men with five phthalate metabolites (i.e., mono isobutyl phthalate, mono-n-butyl phthalate, mono benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethylhexyl) phthalate) to identify potential biomarkers and relevant pathways. We found significant positive associations which were further confirmed by multivariable analysis. Overall, our analyses showed that the Σ phthalate metabolite concentration was associated with a significant increase in the expression level of two miRs found in ELV: miR-202 and miR-543. Different pathways including cancer and immune-related responses were predicted to be involved in this relationship. Analyzing the specific downstream target genes of miR-202 and miR-543, we identified the phosphatase and tensin homolog (PTEN) as the key gene in several converging pathways. In summary, the obtained results demonstrate that exposure to environmental phthalates could be related to altered expression profiles of specific ELV-miRs in adult men, thereby demonstrating the potential of miRs carried by exosomes to act as early effect biomarkers.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , Ácidos Ftálicos , Ácidos Ftálicos/orina , Ácidos Ftálicos/toxicidad , Humanos , Masculino , MicroARNs/genética , MicroARNs/orina , Exosomas/genética , Exosomas/metabolismo , Adulto , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Biomarcadores/orina , Exposición a Riesgos Ambientales/efectos adversos , Persona de Mediana Edad , Contaminantes Ambientales/orina , Contaminantes Ambientales/toxicidad
16.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619879

RESUMEN

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Asunto(s)
Contaminantes Ambientales , Hígado Graso , Hepatopatías Alcohólicas , Bifenilos Policlorados , Masculino , Ratones , Animales , Multiómica , Ratones Endogámicos C57BL , Etanol/toxicidad , Etanol/metabolismo , Hígado/metabolismo , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/metabolismo , Hepatopatías Alcohólicas/etiología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Zinc/metabolismo , Tirosina/metabolismo
17.
J Environ Sci (China) ; 143: 224-234, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644019

RESUMEN

Hexavalent chromium and its compounds are prevalent pollutants, especially in the work environment, pose a significant risk for multisystem toxicity and cancers. While it is known that chromium accumulation in the liver can cause damage, the dose-response relationship between blood chromium (Cr) and liver injury, as well as the possible potential toxic mechanisms involved, remains poorly understood. To address this, we conducted a follow-up study of 590 visits from 305 participants to investigate the associations of blood Cr with biomarkers for liver injury, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL), and to evaluate the mediating effects of systemic inflammation. Platelet (PLT) and the platelet-to-lymphocyte ratio (PLR) were utilized as biomarkers of systemic inflammation. In the linear mixed-effects analyses, each 1-unit increase in blood Cr level was associated with estimated effect percentage increases of 0.82% (0.11%, 1.53%) in TBIL, 1.67% (0.06%, 3.28%) in DBIL, 0.73% (0.04%, 1.43%) in ALT and 2.08% (0.29%, 3.87%) in AST, respectively. Furthermore, PLT mediated 10.04%, 11.35%, and 10.77% increases in TBIL, DBIL, and ALT levels induced by chromate, respectively. In addition, PLR mediated 8.26% and 15.58% of the association between blood Cr and TBIL or ALT. These findings shed light on the mechanisms underlying blood Cr-induced liver injury, which is partly due to worsening systemic inflammation.


Asunto(s)
Cromatos , Cromo , Inflamación , Humanos , Cromo/toxicidad , Cromo/sangre , Inflamación/sangre , Masculino , Cromatos/toxicidad , Cromatos/sangre , Adulto , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Exposición Profesional/efectos adversos , Alanina Transaminasa/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Aspartato Aminotransferasas/sangre , Contaminantes Ambientales/sangre , Contaminantes Ambientales/toxicidad
18.
Environ Int ; 186: 108642, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38608384

RESUMEN

Parkinson's disease (PD) is a complex neurodegenerative disorder influenced by genetic factors and environmental exposures. Polychlorinated biphenyls (PCBs), a group of synthetic organic compounds, have been identified as potential environmental risk factors for neurodegenerative diseases, including PD. We explored PCB-induced neurotoxicity mechanisms using iPSC-derived dopaminergic neurons and assessed their transcriptomic responses to varying PCB concentrations (0.01 µM, 0.5 µM, and 10 µM). Specifically, we focused on PCB-180, a congener known for its accumulation in human brains. The exposure durations were 24 h and 74 h, allowing us to capture both short-term and more prolonged effects on gene expression patterns. We observed that PCB exposure led to the suppression of oxidative phosphorylation, synaptic function, and neurotransmitter release, implicating these pathways in PCB-induced neurotoxicity. In our comparative analysis, we noted similarities in PCB-induced changes with other PD-related compounds like MPP+ and rotenone. Our findings also aligned with gene expression changes in human blood derived from a population exposed to PCBs, highlighting broader inflammatory responses. Additionally, molecular patterns seen in iPSC-derived neurons were confirmed in postmortem PD brain tissues, validating our in vitro results. In conclusion, our study offers novel insights into the multifaceted impacts of PCB-induced perturbations on various cellular contexts relevant to PD. The use of iPSC-derived dopaminergic neurons allowed us to decipher intricate transcriptomic alterations, bridging the gap between in vitro and in vivo findings. This work underscores the potential role of PCB exposure in neurodegenerative diseases like PD, emphasizing the need to consider both systemic and cell specific effects.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Bifenilos Policlorados , Transcriptoma , Bifenilos Policlorados/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Humanos , Transcriptoma/efectos de los fármacos , Células Sanguíneas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Contaminantes Ambientales/toxicidad
19.
J Hazard Mater ; 470: 134160, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574665

RESUMEN

OBJECTIVE: To investigate the effects of polycyclic aromatic hydrocarbons(PAHs) on puberty in boys. METHODS: 695 subjects were selected from four primary schools in Chongqing, China. 675 urine samples from these boys were collected four PAH metabolites: 1-hydroxypyrene, 2-hydroxynaphthoic, 2-hydroxyfluorene, and 9-hydroxyphenanthrene. Pubertal development of 695 boys was assessed at follow-up visits starting in December 2015 and occurring every six months thereafter until now, data used in this article ending in June 2021. A total of 12 follow-up visits were performed. Cox proportional hazards regression models were used to analyze the relationship between PAH metabolite concentrations and indicators of pubertal timing. RESULTS: The mean age at puberty onset of testicular volume, facial hair, pubic hair, first ejaculation, and axillary hair in boys was 11.66, 12.43, 12.51, 12.72 and 13.70 years, respectively. Cox proportional hazards regression models showed that boys with moderate level of 1-OHPyr exposure was associated with earlier testicular development (hazard ratio [HR] = 1.276, 95% confidence interval [CI]: 1.006-1.619), with moderate level of 2-OHNap were at higher risk of early testicular development (HR = 1.273, 95% CI: 1.002-1.617) and early axillary hair development (HR = 1.355, 95% CI: 1.040-1.764), with moderate level of 2-OHFlu was associated with earlier pubic hair development (HR = 1.256, 95% CI: 1.001-1.577), with high level of 9-OHPhe were at higher risk of early fisrt ejaculation (HR = 1.333, 95% CI: 1.005-1.767) and early facial hair development (HR = 1.393, 95% CI: 1.059-1.831). CONCLUSION: Prepubertal exposure to PAHs may be associated with earlier pubertal development in boys.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Pubertad , Humanos , Masculino , Hidrocarburos Policíclicos Aromáticos/orina , Hidrocarburos Policíclicos Aromáticos/toxicidad , Niño , Adolescente , Pubertad/efectos de los fármacos , Estudios Longitudinales , China , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/orina , Maduración Sexual/efectos de los fármacos , Testículo/efectos de los fármacos , Modelos de Riesgos Proporcionales
20.
Sci Total Environ ; 927: 172199, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580108

RESUMEN

Effect-directed analysis (EDA) is a crucial tool in environmental toxicology, effectively integrating toxicity testing with chemical analysis. The conventional EDA approach, however, presents challenges such as significant solvent consumption, extended analysis time, labor intensity, and potential contamination risks. In response, we introduce an innovative alternative to the conventional EDA. This method utilizes the MTT bioassay and online two-dimensional liquid chromatography (2D LC) coupled with high-resolution mass spectrometry (HR-MS), significantly reducing the fractionation steps and leveraging the enhanced sensitivity of the bioassay and automated chemical analysis. In the chemical analysis phase, a switching valve interface is employed for comprehensive analysis. We tested the performance of both the conventional and our online 2D LC-based methods using a household product. Both methods identified the same number of toxicants in the sample. Our alternative EDA is 22.5 times faster than the conventional method, fully automated, and substantially reduces solvent consumption. This novel approach offers ease, cost-effectiveness, and represents a paradigm shift in EDA methodologies. By integrating a sensitive bioassay with online 2D LC, it not only enhances efficiency but also addresses the challenges associated with traditional methods, marking a significant advancement in environmental toxicology research.


Asunto(s)
Contaminantes Ambientales , Cromatografía Liquida/métodos , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Pruebas de Toxicidad/métodos , Monitoreo del Ambiente/métodos , Espectrometría de Masas/métodos , Bioensayo/métodos , Ecotoxicología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA