RESUMEN
Objective.The linear energy transfer (LET) of proton therapy beams increases rapidly from the Bragg peak to the end of the beam. Although the LET can be determined using analytical or computational methods, a technique for efficiently measuring its spatial distribution has not yet been established. Thus, the purpose of this study is to develop a technique to measure the two-dimensional LET distribution in proton therapy in real time using a combination of multiple scintillators with different quenching.Approach.Inorganic and organic scintillator sheets were layered and irradiated with proton beams. Two-color signals of the CMOS sensor were obtained from the scintillation light and calibration curves were generated using LET. LET was calculated using Monte Carlo simulations asLETtandLETdweighted by fluence and dose, respectively. The accuracy of the calibration curve was evaluated by comparing the calculated and measured LET values for the 200 MeV monoenergetic and spread-out Bragg peak (SOBP) beams. LET distributions were obtained from the calibration curves.Main results.The deviation between the calculated and measured LET values was evaluated. For bothLETtandLETd, the deviation in the plateau region of the monoenergetic and SOBP beams tended to be larger than those in the peak region. The deviation was smaller forLETd. In the obtainedLETddistribution, the deviation between the calculated and measured values agreed within 3% in the peak region, while the deviation was larger in other regions.Significance.The LET distribution can be measured with a single irradiation using two scintillator sheets. This method may be effective for verifying LET in daily clinical practice and for quality control.
Asunto(s)
Transferencia Lineal de Energía , Método de Montecarlo , Terapia de Protones , Conteo por Cintilación , Terapia de Protones/instrumentación , Conteo por Cintilación/instrumentación , Factores de Tiempo , CalibraciónRESUMEN
Objective.Heterostructured scintillators offer a promising solution to balance the sensitivity and timing in TOF-PET detectors. These scintillators utilize alternating layers of materials with complementary properties to optimize performance. However, the layering compromises time resolution due to light transport issues. This study explores double-sided readout-enabling improved light collection and Depth-of-Interaction (DOI) information retrieval-to mitigate this effect and enhance the timing capabilities of heterostructures.Approach.The time resolution and DOI performances of 3 × 3 × 20 mm3BGO&EJ232 heterostructures were assessed in a single and double-sided readout (SSR and DSR, respectively) configuration using high-frequency electronics.Main results.Selective analysis of photopeak events yielded a DOI resolution of 6.4 ± 0.04 mm. Notably, the Coincidence Time Resolution (CTR) improved from 262 ± 8 ps (SSR) to 174 ± 6 ps (DSR) when measured in coincidence with a fast reference detector. Additionally, symmetrical configuration of two identical heterostructures in coincidence was tested, yielding in DSR a CTR of 254 ± 8 ps for all photopeak events and 107 ± 5 ps for the fastest events.Significance.By using high-frequency double-sided readout, we could measure DOI resolution and improve the time resolution of heterostructures of up to 40%. The DOI information resulted intrinsically captured in the average between the timestamps of the two SiPMs, without requiring any further correction.
Asunto(s)
Tomografía de Emisión de Positrones , Factores de Tiempo , Tomografía de Emisión de Positrones/instrumentación , Conteo por Cintilación/instrumentaciónRESUMEN
PURPOSE: This study investigated the potential of a commercially available plastic scintillator, the Exradin W2, as a real-time dosimeter for ultra-high-dose-rate (UHDR) electron beams. This work aimed to characterize this system's performance under UHDR conditions and addressed limitations inherent to other conventional dosimetry systems. METHODS AND MATERIALS: We assessed the W2's performance as a UHDR electron dosimeter using a 16 MeV UHDR electron beam from the FLASH research extension (FLEX) system. Additionally, the vendor provided a beta firmware upgrade to better handle the processing of the high signal generated in the UHDR environment. We evaluated the W2 regarding dose-per-pulse, pulse repetition rate, charge versus distance, and pulse linearity. Absorbed dose measurements were compared against those from a plane-parallel ionization chamber, optically stimulated luminescent dosimeters and radiochromic film. RESULTS: We observed that the 1 × 1 mm W2 scintillator with the MAX SD was more suitable for UHDR dosimetry compared to the 1 × 3 mm W2 scintillator, capable of matching film measurements within 2% accuracy for dose-per-pulse up to 3.6 Gy/pulse. The W2 accurately ascertained the inverse square relationship regarding charge versus virtual source distance with R2 of â¼1.00 for all channels. Pulse linearity was accurately measured with the W2, demonstrating a proportional response to the delivered pulse number. There was no discernible impact on the measured charge of the W2 when switching between the available repetition rates of the FLEX system (18-180 pulses/s), solidifying consistent beam output across pulse frequencies. CONCLUSIONS: This study tested a commercial plastic scintillator detector in a UHDR electron beam, paving the way for its potential use as a real-time, patient-specific dosimetry tool for future FLASH radiotherapy treatments. Further research is warranted to test and improve the signal processing of the W2 dosimetry system to accurately measure in UHDR environments using exceedingly high dose-per-pulse and pulse numbers.
Asunto(s)
Electrones , Plásticos , Conteo por Cintilación , Plásticos/química , Conteo por Cintilación/instrumentación , Conteo por Cintilación/métodos , Humanos , Radiometría/métodos , Radiometría/instrumentación , Dosificación Radioterapéutica , Fantasmas de Imagen , Aceleradores de Partículas/instrumentaciónRESUMEN
PURPOSE: Although plastic scintillator detectors (PSDs) are considered ideal dosimeters for small field dosimetry in conventional linear accelerators (linacs), the impact of the magnetic field strength on the response of the PSD must be investigated. METHODS: A linac Monte Carlo (MC) head model for a low-field MR-linac was validated for small field dosimetry and utilized to calculate field output factors (OFs). The MC-calculated OFs were compared with the treatment planning system (TPS)-calculated OFs and measured OFs using a Blue Physics (BP) Model 10 commercial PSD and a synthetic diamond detector. The field-specific correction factors, [Formula: see text] , were calculated for the PSD in the presence of a 0.35 T and magnetic field. The impact of the source focal spot size and initial electron energy on the MC-calculated OFs was investigated. RESULTS: Good agreement to within 2 % was found between the MC-calculated OFs and BP PSD OFs except for the 0.415 × 0.415 cm2 field size. The BP PSD [Formula: see text] correction factors were calculated to be within 1 % of unity. For field sizes ≥1.66 × 1.66 cm2, the MC-calculated OFs were relatively insensitive to the focal spot size and initial electron energy to within 2.5 %. However, for smaller field sizes, the MC-calculated OFs were found to differ up to 9.50 % and 7.00 % when the focal spot size and initial electron energy was varied, respectively. CONCLUSIONS: The BP PSD was deemed suitable for small field dosimetry in MR-linacs without requiring any [Formula: see text] correction factors.
Asunto(s)
Método de Montecarlo , Aceleradores de Partículas , Plásticos , Radiometría , Conteo por Cintilación , Conteo por Cintilación/instrumentación , Radiometría/instrumentación , Imagen por Resonancia Magnética/instrumentación , Campos MagnéticosRESUMEN
The activity concentration of 3H in water samples collected from places unaffected by nuclear activities or for human consumption can be very low. In these cases, determination procedures must achieve a Minimum Detectable Activity (MDA) low enough to ensure that 3H is accurately determined. In this paper, we present a method that uses a new Liquid Scintillation Spectrometer (LSC in what follows): the Quantulus GCT 6220. Furthermore, a new liquid scintillation cocktail, the ProSafe LT+, has been tested for 3H measurement, showing to be a good option for the determination of low levels of this radionuclide. The MDAs achieved are low enough to enable the measurement of very low levels of 3H in recent environmental water. The results obtained using a Quantulus GCT 6220 and Prosafe LT + are compared to those obtained with a Quantulus 1220 and Prosafe HC + as liquid scintillation cocktail.
Asunto(s)
Monitoreo de Radiación , Conteo por Cintilación , Tritio , Contaminantes Radiactivos del Agua , Conteo por Cintilación/métodos , Conteo por Cintilación/instrumentación , Contaminantes Radiactivos del Agua/análisis , Monitoreo de Radiación/métodos , Monitoreo de Radiación/instrumentación , Tritio/análisisRESUMEN
Purpose/Objective. Small-field measurement poses challenges. Although many high-resolution detectors are commercially available, the EPID for small-field dosimetry remains underexplored. This study aimed to evaluate the performance of EPID for small-field measurements and to derive tailored correction factors for precise small-field dosimetry verification.Material/Methods. Six high-resolution radiation detectors, including W2 and W1 plastic scintillators, Edge-detector, microSilicon, microDiamond and EPID were utilized. The output factors, depth doses and profiles, were measured for various beam energies (6 MV-FF, 6 MV-FFF, 10 MV-FF, and 10 MV-FFF) and field sizes (10 × 10 cm2, 5 × 5 cm2, 4 × 4 cm2, 3 × 3 cm2, 2 × 2 cm2, 1 × 1 cm2, 0.5 × 0.5 cm2) using a Varian Truebeam linear accelerator. During measurements, acrylic plates of appropriate depth were placed on the EPID, while a 3D water tank was used with five-point detectors. EPID measured data were compared with W2 plastic scintillator and measurements from other high-resolution detectors. The analysis included percentage deviations in output factors, differences in percentage for PDD and for the profiles, FWHM, maximum difference in the flat region, penumbra, and 1D gamma were analyzed. The output factor and depth dose ratios were fitted using exponential functions and fractional polynomial fitting in STATA 16.2, with W2 scintillator as reference, and corresponding formulae were obtained. The established correction factors were validated using two Truebeam machines.Results. When comparing EPID and W2-PSD across all field-sizes and energies, the deviation for output factors ranged from 1% to 15%. Depth doses, the percentage difference beyond dmax ranged from 1% to 19%. For profiles, maximum of 4% was observed in the 100%-80% region. The correction factor formulae were validated with two independent EPIDs and closely matched within 3%.Conclusion. EPID can effectively serve as small-field dosimetry verification tool with appropriate correction factors.
Asunto(s)
Aceleradores de Partículas , Radiometría , Radiometría/instrumentación , Radiometría/métodos , Aceleradores de Partículas/instrumentación , Diseño de Equipo , Fantasmas de Imagen , Calibración , Humanos , Conteo por Cintilación/instrumentación , Conteo por Cintilación/métodos , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: MRI-guided radiation therapy (MRgRT) requires unique quality assurance equipment to address MR-compatibility needs, minimize electron return effect, handle complex dose distributions, and evaluate real-time dosimetry for gating. Plastic scintillation detectors (PSDs) are an attractive option to address these needs. PURPOSE: To perform a comprehensive characterization of a multi-probe PSD system in a low-field 0.35 T MR-linac, including detector response assessment and gating performance. METHODS: A four-channel PSD system (HYPERSCINT RP-200) was assembled. A single channel was used to evaluate repeatability, percent depth dose (PDD), detector response as a function of orientation with respect to the magnetic field, and intersession variability. All four channels were used to evaluate repeatability, linearity, and output factors. The four PSDs were integrated into an MR-compatible motion phantom at isocenter and in gradient regions. Experiments were conducted to evaluate gating performance and tracking efficacy. RESULTS: For repeatability, the maximum standard deviation of repeated measurements was 0.13% (single PSD). Comparing the PSD to reference data, PDD had a maximum difference of 1.12% (10 cm depth, 6.64 × 6.64 cm2). Percent differences for rotated detector setups were negligible (< 0.3%). All four PSDs demonstrated linear response over 10-1000 MU delivered and the maximum percent difference between the baseline and measured output factors was 0.78% (2.49 × 2.49 cm2). Gating experiments had 400 cGy delivered to isocenter with < 0.8 cGy variation for central axis measures and < 0.7 cGy for the gradient sampled region. Real-time dosimetry measurements captured spurious beam-on incidents that correlated to tracking algorithm inaccuracies and highlighted gating parameter impact on delivery efficiency. CONCLUSIONS: Characterization of the multi-point PSD dosimetry system in a 0.35 T MR-linac demonstrated reliability in a low-field MR-Linac setting, with high repeatability, linearity, small intersession variability, and similarity to baseline data for PDD and output factors. Time-resolved, multi-point dosimetry also showed considerable promise for gated MR-Linac applications.
Asunto(s)
Imagen por Resonancia Magnética , Aceleradores de Partículas , Radiometría , Conteo por Cintilación , Imagen por Resonancia Magnética/instrumentación , Conteo por Cintilación/instrumentación , Radiometría/instrumentación , Fantasmas de Imagen , Radioterapia Guiada por Imagen/instrumentaciónRESUMEN
BACKGROUND: In vivo dosimetry (IVD) is rarely performed in brachytherapy (BT), allowing potential dose misadministration to go unnoticed. This study presents a clinical routine-calibration method of detectors for IVD in high (HDR) and pulsed dose rate (PDR) Ir-192 BT. PURPOSE: To evaluate the dosimetric precision and feasibility of an in-clinic calibration routine of detectors for IVD in afterloading BT. METHODS: Calibrations were performed in a PMMA phantom with two needles inserted 20 mm apart. The source was loaded in one of the needles at 15 dwells for 10 s. The detector was placed in the other needle, and its signal was recorded. The mean signal at each dwell position was fitted to the expected dose rate with the calibration factor and the detector's longitudinal position being free parameters. The method was tested with an inorganic scintillation detector using one Ir-192 FlexiSource HDR and two Ir-192 GammaMedPlus PDR sources and followed by validation measurements in water. RESULTS: The standard measurement uncertainty (k = 1) of the calibration factor in absolute terms (Gy/s) was 3.2/3.4% for the HDR/PDR source. The uncertainty was dominated by source strength uncertainty, and the precision of the method was <1%. The mean ± 1SD of the difference in measured and expected dose rate during validation was 1.5 ± 4.7% (HDR) and 0.0 ± 4.1% (PDR) with a positional uncertainty in the setup of 0.33/0.23 mm (HDR/PDR) (k = 1). CONCLUSION: A precise and feasible in-clinic calibration method for IVD and source strength consistency tests in BT was presented.
Asunto(s)
Braquiterapia , Fantasmas de Imagen , Dosificación Radioterapéutica , Conteo por Cintilación , Braquiterapia/instrumentación , Braquiterapia/métodos , Braquiterapia/normas , Calibración , Humanos , Conteo por Cintilación/instrumentación , Dosimetría in Vivo , Radioisótopos de Iridio/uso terapéutico , Diseño de Equipo , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: Ultra-high dose rate radiotherapy (UHDR-RT) has demonstrated normal tissue sparing capabilities, termed the FLASH effect; however, available dosimetry tools make it challenging to characterize the UHDR beams with sufficiently high concurrent spatial and temporal resolution. Novel dosimeters are needed for safe clinical implementation and improved understanding of the effect of UHDR-RT. PURPOSE: Ultra-fast scintillation imaging has been shown to provide a unique tool for spatio-temporal dosimetry of conventional cyclotron pencil beam scanning (PBS) deliveries, indicating the potential use for characterization of UHDR PBS proton beams. The goal of this work is to introduce this novel concept and demonstrate its capabilities in recording high-resolution dose rate maps at FLASH-capable proton beam currents, as compared to log-based dose rate calculation, internally developed UHDR beam simulation, and a fast point detector (EDGE diode). METHODS: The light response of a scintillator sheet located at isocenter and irradiated by PBS proton fields (40-210 nA, 250 MeV) was imaged by an ultra-fast iCMOS camera at 4.5-12 kHz sampling frequency. Camera sensor and image intensifier gain were optimized to maximize the dynamic range; the camera acquisition rate was also varied to evaluate the optimal sampling frequency. Large field delivery enabled flat field acquisition for evaluation of system response homogeneity. Image intensity was calibrated to dose with film and the recorded spatio-temporal data was compared to a PPC05 ion chamber, log-based reconstruction, and EDGE diode. Dose and dose rate linearity studies were performed to evaluate agreement under various beam conditions. Calculation of full-field mean and PBS dose rate maps were calculated to highlight the importance of high resolution, full-field information in UHDR studies. RESULTS: Camera response was linear with dose (R2 = 0.997) and current (R22 = 0.98) in the range from 2-22 Gy and 40-210 nA, respectively, when compared to ion chamber readings. The deviation of total irradiation time calculated with the imaging system from the log file recordings decreased from 0.07% to 0.03% when imaging at 12 kfps versus 4.5 kfps. Planned and delivered spot positions agreed within 0.2 ± $\pm$ 0.1 mm and total irradiation time agreed within 0.2 ± $\pm$ 0.2 ms when compared with the log files, indicating the high concurrent spatial and temporal resolution. For all deliveries, the PBS dose rate measured at the diode location agreed between the imaging and the diode within 3% ± $\pm$ 2% and with the simulation within 5% ± $\pm$ 3% CONCLUSIONS: Full-field mapping of dose and dose rate is imperative for complete understanding of UHDR PBS proton dose delivery. The high linearity and various spatiotemporal metric reporting capabilities confirm the continued use of this camera system for UHDR beam characterization, especially for spatially resolved dose rate information.
Asunto(s)
Terapia de Protones , Dosificación Radioterapéutica , Conteo por Cintilación , Conteo por Cintilación/instrumentación , Terapia de Protones/instrumentación , Dosis de Radiación , Factores de Tiempo , Radiometría/instrumentaciónRESUMEN
This paper reports the development of dosimeters based on plastic scintillating fibers imaged by a charge-coupled device camera, and their performance evaluation through irradiations with the electron Flash research accelerator located at the Centro Pisano Flash Radiotherapy. The dosimeter prototypes were composed of a piece of plastic scintillating fiber optically coupled to a clear optical fiber which transported the scintillation signal to the readout systems (an imaging system and a photodiode). The following properties were tested: linearity, capability to reconstruct the percentage depth dose curve in solid water and to sample in time the single beam pulse. The stem effect contribution was evaluated with three methods, and a proof-of-concept one-dimensional array was developed and tested for online beam profiling. Results show linearity up to 10 Gy per pulse, and good capability to reconstruct both the timing and spatial profiles of the beam, thus suggesting that plastic scintillating fibers may be good candidates for low-energy electron Flash dosimetry.
Asunto(s)
Electrones , Plásticos , Dosímetros de Radiación , Dosificación Radioterapéutica , Conteo por Cintilación , Electrones/uso terapéutico , Conteo por Cintilación/instrumentación , Radiometría/instrumentaciónRESUMEN
Introduction. The positioning ofγray interactions in positron emission tomography (PET) detectors is commonly made through the evaluation of the Anger logic flood histograms. machine learning techniques, leveraging features extracted from signal waveform, have demonstrated successful applications in addressing various challenges in PET instrumentation.Aim. This paper evaluates the use of artificial neural networks (NN) forγray interaction positioning in pixelated scintillators coupled to a multiplexed array of silicon photomultipliers (SiPM).Methods. An array of 16 Cerium doped Lutetium-based (LYSO) crystal pixels (cross-section 2 × 2 mm2) coupled to 16 SiPM (S13360-1350) were used for the experimental setup. Data from each of the 16 LYSO pixels was recorded, a total of 160000 events. The detectors were irradiated by 511 keV annihilationγrays from a Sodium-22 (22Na) source. Another LYSO crystal was used for electronic collimation. Features extracted from the signal waveform were used to train the model. Two models were tested: i) single multiple-class neural network (mcNN), with 16 possible outputs followed by a softmax and ii) 16 binary classification neural networks (bNN), each one specialized in identifying events occurred in each position.Results. Both NN models showed a mean positioning accuracy above 85% on the evaluation dataset, although the mcNN is faster to train.DiscussionThe method's accuracy is affected by the introduction of misclassified events that interacted in the neighbour's crystals and were misclassified during the dataset acquisition. Electronic collimation reduces this effect, however results could be improved using a more complex acquisition setup, such as a light-sharing configuration.ConclusionsThe methods comparison showed that mcNN and bNN can surpass the Anger logic, showing the feasibility of using these models in positioning procedures of future multiplexed detector systems in a linear configuration.
Asunto(s)
Rayos gamma , Redes Neurales de la Computación , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/instrumentación , Conteo por Cintilación/métodos , Lutecio/química , Cerio/química , Silicio/química , Algoritmos , Diseño de EquipoRESUMEN
BACKGROUND: A dosimeter with high spatial and temporal resolution would be of significant interest for pencil beam scanning (PBS) proton beams' characterization, especially when facing small fields and beams with high temporal dynamics. Optical imaging of scintillators has potential in providing sub-millimeter spatial resolution with pulse-by-pulse basis temporal resolution when the imaging system is capable of operating in synchrony with the beam-producing accelerator. PURPOSE: We demonstrate the feasibility of imaging PBS proton beams as they pass through a plastic scintillator detector to simultaneously obtain multiple beam parameters, including proton range, pencil beam's widths at different depths, spot's size, and spot's position on a pulse-by-pulse basis with sub-millimeter resolution. MATERIALS AND METHODS: A PBS synchrocyclotron was used for proton irradiation. A BC-408 plastic scintillator block with 30 × 30 × 5 cm3 size, and another block with 30 × 30 × 0.5 cm3 size, positioned in an optically sealed housing, were used sequentially to measure the proton range, and spot size/location, respectively. A high-speed complementary metal-oxide-semiconductor (CMOS) camera system synchronized with the accelerator's pulses through a gating module was used for imaging. Scintillation images, captured with the camera directly facing the 5-cm-thick scintillator, were corrected for background (BG), and ionization quenching of the scintillator to obtain the proton range. Spots' position and size were obtained from scintillation images of the 0.5-cm-thick scintillator when a 45° mirror was used to reflect the scintillation light toward the camera. RESULTS: Scintillation images with 0.16 mm/pixel resolution corresponding to all proton pulses were captured. Pulse-by-pulse analysis showed that variations of the range, spots' position, and size were within ± 0.2% standard deviation of their average values. The absolute ranges were within ± 1 mm of their expected values. The average spot-positions were mostly within ± 0.8 mm and spots' sigma agreed within 0.2 mm of the expected values. CONCLUSION: Scintillation-imaging PBS beams with high-spatiotemporal resolution is feasible and may help in efficient and cost-effective acceptance testing and commissioning of existing and even emerging technologies such as FLASH, grid, mini-beams, and so forth.
Asunto(s)
Conteo por Cintilación , Conteo por Cintilación/instrumentación , Protones , Ciclotrones , Estudios de Factibilidad , Terapia de Protones/instrumentaciónRESUMEN
This study aims to evaluate the output factors (OPF) of different radiation therapy planning systems (TPSs) using a plastic scintillator detector (PSD). The validation results for determining a practical field size for clinical use were verified. The implemented validation system was an Exradin W2 PSD. The focus was to validate the OPFs of the small irradiation fields of two modeled radiation TPSs using RayStation version 10.0.1 and Monaco version 5.51.10. The linear accelerator used for irradiation was a TrueBeam with three energies: 4, 6, and 10 MV. RayStation calculations showed that when the irradiation field size was reduced from 10 × 10 to 0.5 × 0.5 cm2, the results were within 2.0% of the measured values for all energies. Similarly, the values calculated using Monaco were within approximately 2.0% of the measured values for irradiation field sizes between 10 × 10 and 1.5 × 1.5 cm2 for all beam energies of interest. Thus, PSDs are effective validation tools for OPF calculations in TPS. A TPS modeled with the same source data has different minimum irradiation field sizes that can be calculated. These findings could aid in verification of equipment accuracy for treatment planning requiring highly accurate dose calculations and for third-party evaluation of OPF calculations for TPS.
Asunto(s)
Plásticos , Planificación de la Radioterapia Asistida por Computador , Conteo por Cintilación , Conteo por Cintilación/instrumentación , Dosificación Radioterapéutica , Humanos , Aceleradores de Partículas , Reproducibilidad de los ResultadosRESUMEN
Objective. Optical fiber-based scintillating dosimetry is a recent promising technique owing to the miniature size dosimeter and quality measurement in modern radiation therapy treatment. Despite several advantages, the major issue of using scintillating dosimeters is the Cerenkov effect and predominantly requires extra measurement corrections. Therefore, this work highlighted a novel micro-dosimetry technique to ensure Cerenkov-free measurement in radiation therapy treatment protocol by investigating several dosimetric characteristics.Approach.A micro-dosimetry technique was proposed with the performance evaluation of a novel infrared inorganic scintillator detector (IR-ISD). The detector essentially consists of a micro-scintillating head based on IR-emitting micro-clusters with a sensitive volume of 1.5 × 10-6mm3. The proposed system was evaluated under the 6 MV LINAC beam used in patient treatment. Overall measurements were performed using IBATMwater tank phantoms by following TRS-398 protocol for radiotherapy. Cerenkov measurements were performed for different small fields from 0.5 × 0.5 cm2to 10 × 10 cm2under LINAC. In addition, several dosimetric parameters such as percentage depth dose (PDD), high lateral resolution beam profiling, dose linearity, dose rate linearity, repeatability, reproducibility, and field output factor were investigated to realize the performance of the novel detector.Main results. This study highlighted a complete removal of the Cerenkov effect using a point-like miniature detector, especially for small field radiation therapy treatment. Measurements demonstrated that IR-ISD has acceptable behavior with dose rate variability (maximum standard deviation â¼0.18%) for the dose rate of 20-1000 cGy s-1. An entire linear response (R2= 1) was obtained for the dose delivered within the range of 4-1000 cGy, using a selected field size of 1 × 1 cm2. Perfect repeatability (max 0.06% variation from average) with day-to-day reproducibility (0.10% average variation) was observed. PDD profiles obtained in the water tank present almost identical behavior to the reference dosimeter with a build-up maximum depth dose at 1.5 cm. The small field of 0.5 × 0.5 cm2profiles have been characterized with a high lateral resolution of 100µm.Significance. Unlike recent plastic scintillation detector systems, the proposed micro-dosimetry system in this study requires no Cerenkov corrections and showed efficient performance for several dosimetric parameters. Therefore, it is expected that considering the detector correction factors, the IR-ISD system can be a suitable dose measurement tool, such as in small-field dose measurements, high and low gradient dose verification, and, by extension, in microbeam radiation and FLASH radiation therapy.
Asunto(s)
Radiometría , Radiometría/instrumentación , Radiometría/métodos , Fantasmas de Imagen , Dosificación Radioterapéutica , Microtecnología/instrumentación , Humanos , Conteo por Cintilación/instrumentaciónRESUMEN
Objective. Time-of-flight (TOF) is an important factor that directly affects the image quality of PET systems, and various attempts have been made to improve the coincidence resolving time (CRT) of PET detectors. For independent readout detectors, the timing is acquired for each silicon photomultiplier (SiPM), so they are less sensitive to diffused scintillation light, resulting in a better CRT. Further improvement can be expected if the light can be focused on a single SiPM. However, existing SiPM arrays have a thin protective cover on the SiPM and the gap between the SiPMs is filled with either air or the protective cover, so the light must diffuse through the cover. In this work, we investigated optical crosstalk in the protective cover to improve the CRT.Approach. We used 3.1 × 3.1 × 20 mm3fast LGSO crystals and 3 mm square 8 × 8 multi pixel photon counter (MPPC) arrays. Pitch of the MPPCs was 3.2 mm and thickness of the protective cover on them was 150µm. To reduce diffusion of scintillation light in the protective cover, the part of the inactive areas on the MPPC array were optically separated using reflective material. Specifically, 50, 100, 150, and 350µm deep grid-shaped slits were made along the inactive area of the MPPCs and they were filled with BaSO4powder as the reflective material.Main results. Coincidence counts were measured with a pair of TOF detectors, and the CRT was shorter with a deeper slit depth. The CRT before improvement was 235 ps, and using the cover having the 350µm deep slits filled with reflective material lowered the CRT to 211 ps.Significance. Up to 10% of the scintillation light was diffused to other MPPCs by the protective cover, and the CRT was degraded by 10% due to optical crosstalk of the cover. The proposed method promises to improve the CRT of the TOF detector.
Asunto(s)
Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/instrumentación , Fenómenos Ópticos , Conteo por Cintilación/instrumentación , Factores de Tiempo , FotonesRESUMEN
BACKGROUND: Dosimetry in pre-clinical FLASH studies is essential for understanding the beam delivery conditions that trigger the FLASH effect. Resolving the spatial and temporal characteristics of proton pencil beam scanning (PBS) irradiations with ultra-high dose rates (UHDR) requires a detector with high spatial and temporal resolution. PURPOSE: To implement a novel camera-based system for time-resolved two-dimensional (2D) monitoring and apply it in vivo during pre-clinical proton PBS mouse irradiations. METHODS: Time-resolved 2D beam monitoring was performed with a scintillation imaging system consisting of a 1 mm thick transparent scintillating sheet, imaged by a CMOS camera. The sheet was placed in a water bath perpendicular to a horizontal PBS proton beam axis. The scintillation light was reflected through a system of mirrors and captured by the camera with 500 frames per second (fps) for UHDR and 4 fps for conventional dose rates. The raw images were background subtracted, geometrically transformed, flat field corrected, and spatially filtered. The system was used for 2D spot and field profile measurements and compared to radiochromic films. Furthermore, spot positions were measured for UHDR irradiations. The measured spot positions were compared to the planned positions and the relative instantaneous dose rate to equivalent fiber-coupled point scintillator measurements. For in vivo application, the scintillating sheet was placed 1 cm upstream the right hind leg of non-anaesthetized mice submerged in the water bath. The mouse leg and sheet were both placed in a 5 cm wide spread-out Bragg peak formed from the mono-energetic proton beam by a 2D range modulator. The mouse leg position within the field was identified for both conventional and FLASH irradiations. For the conventional irradiations, the mouse foot position was tracked throughout the beam delivery, which took place through repainting. For FLASH irradiations, the delivered spot positions and relative instantaneous dose rate were measured. RESULTS: The pixel size was 0.1 mm for all measurements. The spot and field profiles measured with the scintillating sheet agreed with radiochromic films within 0.4 mm. The standard deviation between measured and planned spot positions was 0.26 mm and 0.35 mm in the horizontal and vertical direction, respectively. The measured relative instantaneous dose rate showed a linear relation with the fiber-coupled scintillator measurements. For in vivo use, the leg position within the field varied between mice, and leg movement up to 3 mm was detected during the prolonged conventional irradiations. CONCLUSIONS: The scintillation imaging system allowed for monitoring of UHDR proton PBS delivery in vivo with 0.1 mm pixel size and 2 ms temporal resolution. The feasibility of instantaneous dose rate measurements was demonstrated, and the system was used for validation of the mouse leg position within the field.
Asunto(s)
Terapia de Protones , Conteo por Cintilación , Animales , Ratones , Conteo por Cintilación/instrumentación , Terapia de Protones/instrumentación , Factores de Tiempo , Radiometría/instrumentación , Radiometría/métodos , Dosificación Radioterapéutica , ProtonesRESUMEN
BACKGROUND: Gamma camera imaging, including single photon emission computed tomography (SPECT), is crucial for research, diagnostics, and radionuclide therapy. Gamma cameras are predominantly based on arrays of photon multipliers tubes (PMTs) that read out NaI(Tl) scintillation crystals. In this way, standard gamma cameras can localize É£-rays with energies typically ranging from 30 to 360 keV. In the last decade, there has been an increasing interest towards gamma imaging outside this conventional clinical energy range, for example, for theragnostic applications and preclinical multi-isotope positron emission tomography (PET) and PET-SPECT. However, standard gamma cameras are typically equipped with 9.5 mm thick NaI(Tl) crystals which can result in limited sensitivity for these higher energies. PURPOSE: Here we investigate to what extent thicker scintillators can improve the photopeak sensitivity for higher energy isotopes while attempting to maintain spatial resolution. METHODS: Using Monte Carlo simulations, we analyzed multiple PMT-based configurations of gamma detectors with monolithic NaI (Tl) crystals of 20 and 40 mm thickness. Optimized light guide thickness together with 2-inch round, 3-inch round, 60 × 60 mm2 square, and 76 × 76 mm2 square PMTs were tested. For each setup, we assessed photopeak sensitivity, energy resolution, spatial, and depth-of-interaction (DoI) resolution for conventional (140 keV) and high (511 keV) energy É£ using a maximum-likelihood algorithm. These metrics were compared to those of a "standard" 9.5 mm-thick crystal detector with 3-inch round PMTs. RESULTS: Estimated photopeak sensitivities for 511 keV were 27% and 53% for 20 and 40 mm thick scintillators, which is respectively, 2.2 and 4.4 times higher than for 9.5 mm thickness. In most cases, energy resolution benefits from using square PMTs instead of round ones, regardless of their size. Lateral and DoI spatial resolution are best for smaller PMTs (2-inch round and 60 × 60 mm2 square) which outperform the more cost-effective larger PMT setups (3-inch round and 76 × 76 mm2 square), while PMT layout and shape have negligible (< 10%) effect on resolution. Best spatial resolution was obtained with 60 × 60 mm2 PMTs; for 140 keV, lateral resolution was 3.5 mm irrespective of scintillator thickness, improving to 2.8 and 2.9 mm for 511 keV with 20 and 40 mm thick crystals, respectively. Using the 3-inch round PMTs, lateral resolutions of 4.5 and 3.9 mm for 140 keV and of 3.5 and 3.7 mm for 511 keV were obtained with 20 and 40 mm thick crystals respectively, indicating a moderate performance degradation compared to the 3.5 and 2.9 mm resolution obtained by the standard detector for 140 and 511 keV. Additionally, DoI resolution for 511 keV was 7.0 and 5.6 mm with 20 and 40 mm crystals using 60 × 60 mm2 square PMTs, while with 3-inch round PMTs 12.1 and 5.9 mm were obtained. CONCLUSION: Depending on PMT size and shape, the use of thicker scintillator crystals can substantially improve detector sensitivity at high gamma energies, while spatial resolution is slightly improved or mildly degraded compared to standard crystals.
Asunto(s)
Cámaras gamma , Método de Montecarlo , Yoduro de Sodio , Yoduro de Sodio/química , Luz , Conteo por Cintilación/instrumentación , FotonesRESUMEN
90Sr and 210Pb are considered to be key radionuclides in internal exposure resulting from dietary intake, however, the established methods employed for their detection are time-comsuming. A method for the sequential separation of 90Sr and 210Pb using a Sr·spec resin by LSC measurement is developed, which is highly suitable for food safety monitoring as its minimal sample requirements. The sequential separation of Sr and Pb from the sample was using 0.05 mol/L HNO3 and 0.05 mol/L C6H5O7(NH4)3. The chemical recoveries of Sr and Pb measured using ICP-OES were 72-83% and 80-88%, respectively. The minimum detectable activities of 90Sr and 210Pb in the food sample were 36.2 mBq/kg and 28.6 mBq/kg, respectively, obtained from a 0.1 kg fresh sample and 300 min counting time. The method was validated using reference materials and compared with other methods. The feasibility of the developed method for other highly complex food matrices needs further investigation.
Asunto(s)
Radioisótopos de Plomo , Conteo por Cintilación , Radioisótopos de Estroncio , Radioisótopos de Estroncio/análisis , Radioisótopos de Estroncio/aislamiento & purificación , Conteo por Cintilación/instrumentación , Radioisótopos de Plomo/análisis , Contaminación Radiactiva de Alimentos/análisis , Análisis de los AlimentosRESUMEN
BACKGROUND: While careful planning and pre-treatment checks are performed to ensure patient safety during external beam radiation therapy (EBRT), inevitable daily variations mean that in vivo dosimetry (IVD) is the only way to attain the true delivered dose. Several countries outside the US require daily IVD for quality assurance. However, elsewhere, the manual labor and time considerations of traditional in vivo dosimeters may be preventing frequent use of IVD in the clinic. PURPOSE: This study expands upon previous research using plastic scintillator discs for optical dosimetry for electron therapy treatments. We present the characterization of scintillator discs for in vivo x-ray dosimetry and describe additional considerations due to geometric complexities. METHODS: Plastic scintillator discs were coated with reflective white paint on all sides but the front surface. An anti-reflective, matte coating was applied to the transparent face to minimize specular reflection. A time-gated iCMOS camera imaged the discs under various irradiation conditions. In post-processing, background-subtracted images of the scintillators were fit with Gaussian-convolved ellipses to extract several parameters, including integral output, and observation angle. RESULTS: Dose linearity and x-ray energy independence were observed, consistent with ideal characteristics for a dosimeter. Dose measurements exhibited less than 5% variation for incident beam angles between 0° and 75° at the anterior surface and 0-60 ∘ $^\circ $ at the posterior surface for exit beam dosimetry. Varying the angle between the disc surface and the camera lens did not impact the integral output for the same dose up to 55°. Past this point, up to 75°, there is a sharp falloff in response; however, a correction can be used based on the detected width of the disc. The reproducibility of the integral output for a single disc is 2%, and combined with variations from the gantry angle, we report the accuracy of the proposed scintillator disc dosimeters as ±5.4%. CONCLUSIONS: Plastic scintillator discs have characteristics that are well-suited for in vivo optical dosimetry for x-ray radiotherapy treatments. Unlike typical point dosimeters, there is no inherent readout time delay, and an optical recording of the measurement is saved after treatment for future reference. While several factors influence the integral output for the same dose, they have been quantified here and may be corrected in post-processing.
Asunto(s)
Fotones , Conteo por Cintilación , Fotones/uso terapéutico , Conteo por Cintilación/instrumentación , Factores de Tiempo , Radiometría/instrumentación , Dosificación Radioterapéutica , Humanos , Radioterapia/métodos , Radioterapia/instrumentaciónRESUMEN
BACKGROUND: Dosimetry in ultra-high dose rate (UHDR) beamlines is significantly challenged by limitations in real-time monitoring and accurate measurement of beam output, beam parameters, and delivered doses using conventional radiation detectors, which exhibit dependencies in ultra-high dose-rate (UHDR) and high dose-per-pulse (DPP) beamline conditions. PURPOSE: In this study, we characterized the response of the Exradin W2 plastic scintillator (Standard Imaging, Inc.), a water-equivalent detector that provides measurements with a time resolution of 100 Hz, to determine its feasibility for use in UHDR electron beamlines. METHODS: The W2 scintillator was exposed to an UHDR electron beam with different beam parameters by varying the pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings of an electron UHDR linear accelerator system. The response of the W2 scintillator was evaluated as a function of the total integrated dose delivered, DPP, and mean and instantaneous dose rate. To account for detector radiation damage, the signal sensitivity (pC/Gy) of the W2 scintillator was measured and tracked as a function of dose history. RESULTS: The W2 scintillator demonstrated mean dose rate independence and linearity as a function of integrated dose and DPP for DPP ≤ 1.5 Gy (R2 > 0.99) and PRF ≤ 90 Hz. At DPP > 1.5 Gy, nonlinear behavior and signal saturation in the blue and green signals as a function of DPP, PRF, and integrated dose became apparent. In the absence of Cerenkov correction, the W2 scintillator exhibited PW dependence, even at DPP values <1.5 Gy, with a difference of up to 31% and 54% in the measured blue and green signal for PWs ranging from 0.5 to 3.6 µs. The change in signal sensitivity of the W2 scintillator as a function of accumulated dose was approximately 4%/kGy and 0.3%/kGy for the measured blue and green signal responses, respectively, as a function of integrated dose history. CONCLUSION: The Exradin W2 scintillator can provide output measurements that are both dose rate independent and linear in response if the DPP is kept ≤1.5 Gy (corresponding to a mean dose rate up to 290 Gy/s in the used system), as long as proper calibration is performed to account for PW and changes in signal sensitivity as a function of accumulated dose. For DPP > 1.5 Gy, the W2 scintillator's response becomes nonlinear, likely due to limitations in the electrometer related to the high signal intensity.