Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39337516

RESUMEN

Adult stem cell therapy via intramyocardial injection of autologous CD34+ stem cells has been shown to improve exercise capacity and reduce angina frequency and mortality in patients with refractory angina (RA). However, the cost of such therapy is a limitation to its adoption in clinical practice. Our goal was to determine whether the less costly, less invasive, and widely accessible, FDA-approved alternative treatment for RA patients, known as enhanced external counterpulsation (EECP), mobilizes endogenous CD34+ stem cells and whether such mobilization is associated with the clinical benefits seen with intramyocardial injection. We monitored changes in circulating levels of CD34+/CD133+ and CD34+/KDR+ cells in RA patients undergoing EECP therapy and in a comparator cohort of RA patients undergoing an exercise regimen known as cardiac rehabilitation. Changes in exercise capacity in both cohorts were monitored by measuring treadmill times (TT), double product (DP) scores, and Canadian Cardiovascular Society (CCS) angina scores between pre- and post-treatment treadmill stress tests. Circulating levels of CD34+/CD133+ cells increased in patients undergoing EECP and were significant (ß = -2.38, p = 0.012) predictors of improved exercise capacity in these patients. CD34+/CD133+ cells isolated from RA patients could differentiate into endothelial cells, and their numbers increased during EECP therapy. Our results support the hypothesis that mobilized CD34+/CD133+ cells repair vascular damage and increase collateral circulation in RA patients. They further support clinical interventions that can mobilize adult CD34+ stem cells as therapy for patients with RA and other vascular diseases.


Asunto(s)
Antígeno AC133 , Angina de Pecho , Antígenos CD34 , Contrapulsación , Células Progenitoras Endoteliales , Humanos , Antígeno AC133/metabolismo , Antígenos CD34/metabolismo , Femenino , Masculino , Angina de Pecho/terapia , Angina de Pecho/sangre , Angina de Pecho/metabolismo , Persona de Mediana Edad , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/citología , Anciano , Contrapulsación/métodos , Movilización de Célula Madre Hematopoyética/métodos
2.
J Cardiopulm Rehabil Prev ; 44(5): 333-338, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39185903

RESUMEN

PURPOSE: The objective of this study was to explore functional improvements by sex for patients with refractory angina pectoris using a 6-min walk test (6MWT) after enhanced external counterpulsation (EECP) therapy. METHODS: All patients who completed EECP from 2015 to 2023 were identified for analysis retrospectively, utilizing the electronic medical record. Patients completed 35 1-hr EECP sessions 5 d/wk over 7 wk. All baseline and post-EECP intervention 6MWT, exertional angina, and dyspnea measurements were assessed on the first and last sessions, respectively. Paired and unpaired t tests and linear and stepwise multivariable regression analyses were performed. RESULTS: The cohort consisted of 116 patients (24 female) with a mean age of 69 ± 13 yr. After EECP, there was a mean improvement of 128 m (72%) in distance walked during the 6MWT ( P < .001) with 126 ± 91 m improvement in males and 134 ± 73 m in females. The improvement in angina and dyspnea scores was 3.5 ± 2.1 and 4.2 ± 2.4, respectively. There were no differences between the sexes for improvements in 6MWT distance, angina, or dyspnea. Univariate associations for change in 6MWT distance included body mass index (BMI; adjusted R2  = .05) and being a nonsmoker (adjusted R2  = .03). The only independent predictor for increasing distance during 6MWT was BMI (adjusted R2  = .1; P = .001). CONCLUSION: Patients who have refractory angina pectoris can improve their functional capacity while simultaneously decreasing exertional angina and dyspnea using EECP. This study highlights the equal efficacy of EECP therapy for females.


Asunto(s)
Angina de Pecho , Contrapulsación , Disnea , Prueba de Paso , Humanos , Femenino , Masculino , Disnea/fisiopatología , Disnea/etiología , Disnea/terapia , Contrapulsación/métodos , Estudios Retrospectivos , Anciano , Angina de Pecho/terapia , Angina de Pecho/fisiopatología , Prueba de Paso/métodos , Factores Sexuales , Persona de Mediana Edad , Resultado del Tratamiento , Tolerancia al Ejercicio/fisiología
3.
BMJ Open ; 14(8): e086901, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39182936

RESUMEN

INTRODUCTION: Coronary microcirculation dysfunction (CMD) is prevalent in patients with coronary artery disease (CAD). Current therapies for CMD are focused on pharmacotherapy, non-pharmacological treatments such as enhanced external counterpulsation (EECP) have shown favourable results in patients with CAD. However, whether EECP can improve CMD remains unknown. This study is designed to evaluate the effectiveness of EECP on CMD in patients with CAD, and to assess the feasibility of conducting a multicentre randomised controlled trial. METHODS AND ANALYSIS: This study is a single-centre, outcome-assessor-blinded, parallel randomised controlled trial. A total of 110 participants with CAD will be included and randomly assigned to either the intervention group (EECP plus optimal medical therapy (OMT)) or the control group (OMT alone). EECP will be administered by operators for 60 min, 5 times per week for 7 weeks (35 times in total). Outcomes include patients' retention rates, the primary outcome and secondary outcomes. The primary outcome is the change in Myocardial Perfusion Reserve Index with cardiac MRI from baseline to the end of follow-up. The planned study duration is from 2024 to 2026. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Ethics Committee of the Eighth Affiliated Hospital, Sun Yat-sen University (ID: 2023-045-03). The findings will be disseminated in peer-reviewed publications. TRIAL REGISTRATION NUMBER: ChiCTR2300076231.


Asunto(s)
Enfermedad de la Arteria Coronaria , Contrapulsación , Microcirculación , Humanos , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/complicaciones , Contrapulsación/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Circulación Coronaria , Persona de Mediana Edad , Masculino , Femenino , Anciano , Adulto
4.
Comput Methods Programs Biomed ; 255: 108333, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047576

RESUMEN

BACKGROUND AND OBJECTIVE: Diabetic foot (DF) complications often lead to severe vascular issues. This study investigated the effectiveness of enhanced external counterpulsation (EECP) and its derived innovative compression strategies in addressing poor perfusion in DF. Although developing non-invasive and efficient treatment methods for DF is critical, the hemodynamic alterations during EECP remain underexplored despite promising outcomes in microcirculation. This research sought to address this gap by developing a patient-specific 0D-1D model based on clinical ultrasound data to identify potentially superior compression strategies that could substantially enhance blood flow in patients with DF complications. METHODS: Data were gathered from 10 patients with DF utilizing ultrasound for blood flow rate and computed tomography angiography (CTA) to identify lower limb conditions. Clinical measurements during standard EECP, with varying cuff pressures, facilitated the creation of a patient-specific 0D-1D model through a two-step parameter estimation process. The accuracy of this model was verified via comparison with the clinical measurements. Four compression strategies were proposed and rigorously evaluated using this model: EECP-Simp-I (removing hip cuffs), EECP-Simp-II (further removing the cuffs around the lower leg), EECP-Impr-I (removing all cuffs around the affected side), and EECP-Impr-II (building a loop circulation from the healthy side to the affected side). RESULTS: The predicted results under the rest and standard EECP states were generally closely aligned with clinical measurements. The patient-specific 0D-1D model demonstrated that EECP-Simp-I and EECP-Impr-I contributed similar enhancement to perfusion in the dorsal artery (DA) and were comparable to standard EECP, while EECP-Simp-II had the least effect and EECP-Impr-II displayed the most significant enhancement. Pressure at the aortic root (AO) remained consistent across strategies. CONCLUSIONS: EECP-Simp-I is recommended for patients with DF, emphasizing device simplification. However, EECP-Simp-II is discouraged as it significantly diminished blood perfusion in this study, except in cases of limb fragility. EECP-Impr-II showed superior enhancement of blood perfusion in DA to all other strategies but required a more complex EECP device. Despite increased AO pressure in all the proposed compression strategies, safety could be guaranteed as the pressue remained within a safe range.


Asunto(s)
Contrapulsación , Pie Diabético , Modelos Cardiovasculares , Humanos , Pie Diabético/terapia , Contrapulsación/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Hemodinámica , Angiografía por Tomografía Computarizada
6.
Analyst ; 149(13): 3661-3672, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38819086

RESUMEN

Continuous-flow ventricular assist devices (CFVAD) and counterpulsation devices (CPD) are used to treat heart failure (HF). CFVAD can diminish pulsatility, but pulsatile modes have been implemented to increase vascular pulsatility. The effects of CFVAD in a pulsatile mode and CPD support on the function of endothelial cells (ECs) are yet to be investigated. In this study, two in vitro microfluidic models for culturing ECs are proposed to reproduce blood pressure (BP) and wall shear stress (WSS) on the arterial endothelium while using these medical devices. The layout and parameters of the two microfluidic systems were optimized based on the principle of hemodynamic similarity to efficiently simulate physiological conditions. Moreover, the unique design of the double-pump and double afterload systems could successfully reproduce the working mode of CPDs in an in vitro microfluidic system. The performance of the two systems was verified by numerical simulations and in vitro experiments. BP and WSS under HF, CFVAD in pulsatile modes, and CPD were reproduced accurately in the systems, and these induced signals improved the expression of Ca2+, NO, and reactive oxygen species in ECs, proving that CPD may be effective in normalizing endothelial function and replacing CFVAD to a certain extent to treat non-severe HF. This method offers an important tool for the study of cell mechanobiology and a key experimental basis for exploring the potential value of mechanical circulatory support devices in reducing adverse events and improving outcomes in the treatment of HF in the future.


Asunto(s)
Corazón Auxiliar , Flujo Pulsátil , Humanos , Células Endoteliales/citología , Especies Reactivas de Oxígeno/metabolismo , Dispositivos Laboratorio en un Chip , Estrés Mecánico , Células Endoteliales de la Vena Umbilical Humana , Contrapulsación/instrumentación , Contrapulsación/métodos , Óxido Nítrico/metabolismo
7.
J Cardiothorac Surg ; 19(1): 284, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730503

RESUMEN

INTRODUCTION: Post liver transplantation (LT) patients endure high morbidity rate of multi-organ ischemic symptoms following reperfusion. We hypothesize that enhanced external counterpulsation (EECP) as a typical non-invasive assisted circulation procedure, which can efficiently inhibit the relative ischemic symptoms via the systemic improvement of hemodynamics. CASE PRESENTATION: A 51-year-old male patient, 76 kg, 172 cm, received orthotopic LT surgery for viral hepatitis B induced acute-on-chronic liver failure hepatic failure. His medical records revealed ischemic symptoms in multi-organ at the time of hospital discharge, including headache, refractory insomnia, abdominal paralysis, and lower limb pain. The EECP treatment was introduced for assisted rehabilitation and to improve the postoperative quality of life. Doppler Ultrasound examination showed significant augmentation of blood flow volume in the carotid arteries, the hepatic artery, the portal vein and the femoral artery during EECP intervention. A standard 35-hour EECP treatment led to significant improvement in quality of life, e.g. sleep quality and walking ability. CONCLUSION: We report a case of multi-organ ischemic symptoms in a post LT patient. EECP treatment can significantly improve the quality of life via the systematic promotion of hemodynamics.


Asunto(s)
Contrapulsación , Hemodinámica , Trasplante de Hígado , Humanos , Masculino , Persona de Mediana Edad , Contrapulsación/métodos , Hemodinámica/fisiología , Complicaciones Posoperatorias/terapia , Calidad de Vida , Isquemia/cirugía , Isquemia/fisiopatología
8.
Int Heart J ; 65(3): 380-385, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38749752

RESUMEN

Treatment with enhanced external counterpulsation (EECP) or cardiac rehabilitation (CR) benefits patients with coronary heart disease; this paper intends to explore the feasibility of EECP combined with CR in patients with nonobstructive coronary heart disease (NOCAD) and coronary microcirculation disorders (CMD).In January 2021-2022 month June our income NOCAD patients as the research object, the line of cardiac magnetic resonance (CMR), myocardial perfusion reserve (MPR) < 2.0 coronary microcirculation disorders (CMD, 80 cases). Random indicator method 80 CMD patients divided into two groups, 40 cases in each. Usual treatment group: conventional drugs and CR therapy. EECP treatment group: on the basis of standard treatment group, employ EECP therapy. Comparing the two groups before and after the treatment curative effect cardiac function index, endothelial unction index, adverse cardiovascular events, etc.After EECP treatment, the treatment group showed a higher effective rate compared to the usual treatment group (P < 0.05). EECP group curative effect, left ventricular ejection fraction,plasma NO and vascular endothelial growth factor levels higher than the usual group, the incidence of adverse cardiovascular events is lower than the usual group. The difference was statistically significant (P < 0.05).EECP combined with cardiac rehabilitation in patients with CMD symptoms has better effect and safety and provides reference for treatment of CMD patients.


Asunto(s)
Rehabilitación Cardiaca , Enfermedad de la Arteria Coronaria , Contrapulsación , Microcirculación , Humanos , Masculino , Rehabilitación Cardiaca/métodos , Contrapulsación/métodos , Enfermedad de la Arteria Coronaria/rehabilitación , Enfermedad de la Arteria Coronaria/fisiopatología , Femenino , Persona de Mediana Edad , Anciano , Circulación Coronaria/fisiología , Resultado del Tratamiento
9.
Comput Methods Programs Biomed ; 250: 108191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677079

RESUMEN

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a mechanically assisted circulation technique widely used in the rehabilitation and management of ischemic cardiovascular diseases. It contributes to cardiovascular functions by regulating the afterload of ventricle to improve hemodynamic effects, including increased diastolic blood pressure at aortic root, increased cardiac output and enhanced blood perfusion to multiple organs including coronary circulation. However, the effects of EECP on the coupling of the ventricle and the arterial system, termed ventricular-arterial coupling (VAC), remain elusive. We aimed to investigate the acute effect of EECP on the dynamic interaction between the left ventricle and its afterload of the arterial system from the perspective of ventricular output work. METHODS: A neural network assisted optimization algorithm was proposed to identify the ordinary differential equation (ODE) relation between aortic root blood pressure and flow rate. Based on the optimized order of ODE, a lumped parameter model (LPM) under EECP was developed taking into consideration of the simultaneous action of cardiac and EECP pressure sources. The ventricular output work, in terms of aortic pressure and flow rate cooperated with the LPM, was used to characterize the VAC of ventricle and its afterload. The VAC subjected to the principle of minimal ventricular output work was validated by solving the Euler-Poisson equation of cost function, ultimately determining the waveforms of aortic pressure and flow rate. RESULTS: A third-order ODE can precisely describe the hemodynamic relationship between aortic pressure and flow rate. An optimized dual-source LPM with three energy-storage elements has been constructed, showing the potential in probing VAC under EECP. The LPM simulation results demonstrated that the VAC in terms of aortic pressure and flow rate yielded to the minimal ventricular output work under different EECP pressures. CONCLUSIONS: The ventricular-arterial coupling under EECP is subjected to the minimal ventricular output work, which can serve as a criterion for determining aortic pressure and flow rate. This study provides insight for the understanding of VAC and has the potential in characterizing the performance of the ventricular and arterial system under EECP.


Asunto(s)
Algoritmos , Contrapulsación , Ventrículos Cardíacos , Hemodinámica , Modelos Cardiovasculares , Humanos , Contrapulsación/métodos , Gasto Cardíaco , Arterias/fisiología , Presión Sanguínea , Simulación por Computador , Aorta/fisiología , Redes Neurales de la Computación
10.
J Biomech ; 166: 112057, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38520934

RESUMEN

Enhanced external counterpulsation (EECP) is a treatment and rehabilitation approach for ischemic diseases, including coronary artery disease. Its therapeutic benefits are primarily attributed to the improved blood circulation achieved through sequential mechanical compression of the lower extremities. However, despite the crucial role that hemodynamic effects in the lower extremity arteries play in determining the effectiveness of EECP treatment, most studies have focused on the diastole phase and ignored the systolic phase. In the present study, a novel siphon model (SM) was developed to investigate the interdependence of several hemodynamic parameters, including pulse wave velocity, femoral flow rate, the operation pressure of cuffs, and the mean blood flow changes in the femoral artery throughout EECP therapy. To verify the accuracy of the SM, we coupled the predicted afterload in the lower extremity arteries during deflation using SM with the 0D-1D patient-specific model. Finally, the simulation results were compared with clinical measurements obtained during EECP therapy to verify the applicability and accuracy of the SM, as well as the coupling method. The precision and reliability of the previously developed personalized approach were further affirmed in this study. The average waveform similarity coefficient between the simulation results and the clinical measurements during the rest state exceeded 90%. This work has the potential to enhance our understanding of the hemodynamic mechanisms involved in EECP treatment and provide valuable insights for clinical decision-making.


Asunto(s)
Contrapulsación , Análisis de la Onda del Pulso , Humanos , Reproducibilidad de los Resultados , Hemodinámica , Extremidad Inferior , Contrapulsación/métodos
11.
Int J Numer Method Biomed Eng ; 40(4): e3808, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409940

RESUMEN

Diastolic/systolic blood pressure ratio (D/S) ≥ 1.2 is the gold standard of enhanced external counterpulsation (EECP) treatment, but it does not show a clear clinical correspondence with the configuration of the EECP mode. As such, a single target results in different treatment effects in different individuals. The local haemodynamic effect (wall shear stress, WSS) of EECP on vascular endothelial cells is conducive to promote the growth of collateral circulation vessels and restore the blood supply distal to the stenosis lesion. Considering the haemodynamic effects of WSS on human arteries, this study developed a real-time patient-specific treatment strategy of EECP for patients with cardio-cerebrovascular diseases. Based on patient-specific haemodynamic data from 113 individuals, an optimization algorithm was developed to achieve the individualization of a 0D lumped-parameter model of the human circulatory system, thereby simulating the patient-specific global haemodynamic effects. 0D/3D coupled cardio-cerebrovascular models of two subjects were established to simulate the local WSS. We then established statistical models to evaluate clinically unmeasurable WSS based on measurable global haemodynamic indicators. With the aim of attaining appropriate area- and time-averaged WSS (ATAWSS, 4-7 Pa), as evaluated by global haemodynamic indicators, a closed-loop feedback tuning method was developed to provide patient-specific EECP treatment strategies. Results showed that for clinical data collected from 113 individuals, the individualized 0D model can accurately simulate patient-specific global haemodynamic effects (average error <5%). Based on two subjects, the statistical models can be used to evaluate local ATAWSS (error <6%) for coronary arteries and for cerebral arteries. An EECP mode planned by the patient-specific treatment strategy can promote an appropriate ATAWSS within a 16 s calculation time. The real-time patient-specific treatment strategy of EECP is expected to improve the long-term outcome for each patient and have potential clinical significance.


Asunto(s)
Contrapulsación , Células Endoteliales , Humanos , Hemodinámica , Presión Sanguínea/fisiología , Vasos Coronarios , Contrapulsación/métodos
12.
Am J Phys Med Rehabil ; 103(8): 734-739, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206585

RESUMEN

OBJECTIVE: The aim of this study is to determine the effects of enhanced external counterpulsation (EECP) in patients with long COVID and objectively assessed cognitive impairment. DESIGN: A retrospective evaluation of long COVID patients referred for EECP, with cognitive sequela, and having completed an objective digital assessment before and after therapy. Patients had either cognitive impairment or no cognitive impairment at baseline. We assessed changes in composite score using multifactor analysis of variance. Multiple linear and logistic regression analyses were conducted to evaluate several independent variables. RESULTS: Eighty long COVID patients (38 cognitive impairment vs. 42 no cognitive impairment) were included for analyses. All baseline characteristics were well matched. There was significant improvement in composite score post EECP in those with objective cognitive impairment at baseline. There were no notable documented safety concerns. CONCLUSIONS: This is the first study showing that EECP led to significant improvement in cognitive functioning of long COVID patients with objectively defined cognitive impairment. Although a lack of a negative control group is a limitation of this study, EECP seems to be highly safe and effective with the potential for widespread application.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Contrapulsación , Humanos , Masculino , COVID-19/complicaciones , Femenino , Estudios Retrospectivos , Contrapulsación/métodos , Disfunción Cognitiva/terapia , Disfunción Cognitiva/rehabilitación , Disfunción Cognitiva/etiología , Anciano , Persona de Mediana Edad , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Cognición
13.
Scand Cardiovasc J ; 57(1): 2273223, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37876280

RESUMEN

OBJECTIVES: Enhanced external counterpulsation (EECP) is an effective and noninvasive treatment for patients with refractory angina and chronic heart failure. However, previous studies evaluating the influence of EECP on endothelial function showed inconsistent results. This systematic review and meta-analysis was conducted to evaluate the effects of EECP on endothelial function measured by brachial artery flow-mediated dilation (FMD). DESIGN: PubMed, Embase, Cochrane Library, CNKI, and Wanfang databases were searched for randomized controlled trials comparing the influence of EECP versus usual care on FMD in adult population. A random-effects model incorporating the potential influence of heterogeneity was used to pool the results. RESULTS: Nineteen studies with 1647 patients were included in the meta-analysis. Compared with usual care or conventional therapy, additional treatment with EECP for 3-7 weeks was associated with a significantly improved FMD (mean difference [MD]: 1.96%, 95% confidence interval [CI]: 1.57-2.36, p < 0.001, I2 = 52%). Subgroup analysis showed consistent results in patients with coronary artery disease and in patients with other diseases (p for subgroup difference = 0.21). Results of meta-regression analysis showed that the mean baseline FMD level was positively correlated with the influence of EECP on FMD (coefficient = 0.42, p < 0.001). Results of subgroup analysis suggested that the increment of FMD following EECP was larger in patients with baseline FMD ≥ 5% (MD: 2.69, 95% CI: 2.27-3.10, p < 0.001; I2 = 15%) compared to those with baseline FMD < 5% (MD: 1.49, 95% CI: 1.13-1.85, p < 0.001; I2 = 0%; p for subgroup difference < 0.001). CONCLUSIONS: EECP may be effective in improving endothelial function measured by FMD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Contrapulsación , Adulto , Humanos , Vasodilatación , Ensayos Clínicos Controlados Aleatorios como Asunto , Angina de Pecho/terapia , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Contrapulsación/efectos adversos , Contrapulsación/métodos
14.
J Biomech ; 159: 111797, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37703718

RESUMEN

As a non-invasive assisted circulation therapy, enhanced external counterpulsation (EECP) has demonstrated potential in treatment of lower-extremity arterial disease (LEAD). However, the underlying hemodynamic mechanism remains unclear. This study aimed to conduct the first prospective investigation of the EECP-induced responses of blood flow behavior and wall shear stress (WSS) metrics in the femoral artery. Twelve healthy male volunteers were enrolled. A Doppler ultrasound-basedapproach was introduced for the in vivo determination of blood flow in the common femoral artery (CFA) and superficial femoral artery (SFA) during EECP intervention, with incremental treatment pressures ranging from 10 to 40 kPa. Three-dimensional subject-specific numerical models were developed in 6 subjects to quantitatively assess variations in WSS-derived hemodynamic metrics in the femoral bifurcation. A mesh-independence analysis was performed. Our results indicated that, compared to the pre-EECP condition, both the antegrade and retrograde blood flow volumes in the CFA and SFA were significantly augmented during EECP intervention, while the heart rate remained constant. The time average shear stress (TAWSS) over the entire femoral bifurcation increased by 32.41%, 121.30%, 178.24%, and 214.81% during EECP with treatment pressures of 10 kPa, 20 kPa, 30 kPa, and 40 kPa, respectively. The mean relative resident time (RRT) decreased by 24.53%, 61.01%, 69.81%, and 77.99%, respectively. The percentage of area with low TAWSS in the femoral artery dropped to nearly zero during EECP with a treatment pressure greater than or equal to 30 kPa. We suggest that EECP is an effective and non-invasive approach for regulating blood flow and WSS in lower extremity arteries.


Asunto(s)
Contrapulsación , Arteria Femoral , Humanos , Masculino , Arteria Femoral/diagnóstico por imagen , Arteria Femoral/fisiología , Voluntarios Sanos , Estudios Prospectivos , Hemodinámica , Extremidad Inferior , Contrapulsación/métodos
15.
Curr Cardiol Rep ; 25(10): 1291-1298, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37642929

RESUMEN

PURPOSE OF REVIEW: Heart failure is a serious global health problem, and coronary artery disease is one of the main causes. At present, the treatment options for ischemic heart failure (IHF) are limited. This article mainly aims to explore the evidence of enhanced external counterpulsation (EECP) as a non-invasive cardiac rehabilitation method in patients with IHF and to make a preliminary exploration of its mechanisms. RECENT FINDINGS: According to the existing evidence, the standard course of EECP is safe in patients with IHF and can significantly improve the quality of life of these patients. The effect of EECP on systolic function is still unclear, while EECP has a significant improvement effect on cardiac diastolic function. At the same time, this treatment can reduce the re-hospitalization rate and emergency visit rate of patients within 6 months. In terms of mechanisms, in addition to the immediate hemodynamic effect, existing evidence mostly suggests that its improvement of cardiac function may come from its upregulation of shear stress to improve myocardial perfusion. EECP is safe to use in patients with stable ischemic heart failure, and it can improve the performance status of patients and may be beneficial to cardiac function and reduce the short-term re-hospitalization rate.


Asunto(s)
Enfermedad de la Arteria Coronaria , Contrapulsación , Insuficiencia Cardíaca , Humanos , Calidad de Vida , Insuficiencia Cardíaca/terapia , Hemodinámica , Contrapulsación/métodos
16.
Comput Methods Programs Biomed ; 239: 107640, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37271049

RESUMEN

BACKGROUND AND OBJECTIVES: Currently, enhanced external counterpulsation (EECP) devices mainly produce one counterpulsation per cardiac cycle. However, the effect of other frequencies of EECP on the hemodynamics of coronary and cerebral arteries is still unclear. It should be investigated whether one counterpulsation per cardiac cycle leads to the optimal therapeutic effect in patients with different clinical indications. Therefore, we measured the effects of different frequencies of EECP on the hemodynamics of coronary and cerebral arteries to determine the optimal counterpulsation frequency for the treatment of coronary heart disease and cerebral ischemic stroke. METHODS: We established 0D/3D geometric multi-scale hemodynamics model of coronary and cerebral arteries in two healthy individuals, and performed clinical trials of EECP to verify the accuracy of the multi-scale hemodynamics model. The pressure amplitude (35 kPa) and pressurization duration (0.6 s) were fixed. The global and local hemodynamics of coronary and cerebral arteries were studied by changing counterpulsation frequency. Three frequency modes, including one counterpulsation in one, two and three cardiac cycles, were applied. Global hemodynamic indicators included diastolic / systolic blood pressure (D/S), mean arterial pressure (MAP), coronary artery flow (CAF), and cerebral blood flow (CBF), whereas local hemodynamic effects included area-time-averaged wall shear stress (ATAWSS) and oscillatory shear index (OSI). The optimal counterpulsation frequency was verified by analyzing the hemodynamic effects of different frequency modes of counterpulsation cycles and full cycles. RESULTS: In the full cycle, CAF, CBF and ATAWSS of coronary and cerebral arteries were the highest when one counterpulsation per cardiac cycle was applied. However, in the counterpulsation cycle, the global and local hemodynamic indicators of coronary and cerebral artery reached the highest when one counterpulsation in one cardiac cycle or two cardiac cycles was applied. CONCLUSIONS: For clinical application, the results of global hemodynamic indicators in the full cycle have more clinical practical significance. Combined with the comprehensive analysis of local hemodynamic indicators, it can be concluded that for coronary heart disease and cerebral ischemic stroke, applying one counterpulsation per cardiac cycle may provide the optimal benefit.


Asunto(s)
Enfermedad Coronaria , Contrapulsación , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Enfermedad Coronaria/terapia , Hemodinámica , Accidente Cerebrovascular/terapia , Vasos Coronarios , Contrapulsación/métodos
17.
Acta Physiol (Oxf) ; 237(3): e13913, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599365

RESUMEN

AIMS: We aimed to investigate the tolerability, safety, and effectiveness of enhanced external counterpulsation therapy (EECP) versus individual shear rate therapy (ISRT) in patients with lower extremity atherosclerotic disease (LEAD). METHODS: Eighteen patients (age: 73.1 ± 6 years) underwent EECP and ISRT, each daily over five consecutive days in a cross-over design with a 1 week resting period in between the two regimens. A quality-of-life questionnaire was used to assess the therapy experience. Oxygen saturation (SO2 ), relative hemoglobin amount (rHb) and blood flow (Flow) in the capillary-venous-system (microcirculation) of the skin were monitored continuously during all therapy sessions using the micro-lightguide spectrophotometer, also known as oxygen to see (O2C). The effects of EECP and ISRT on the renal function and skeletal muscles were evaluated using serial blood and urine tests. RESULTS: EECP therapy had to be terminated early before the end of the 5th session in 10 patients (55.6%) because of discomfort. Four patients (22.2%) experienced signs of critical limb ischaemia under EECP. The total score of the quality-of-life questionnaire was significantly higher (= better tolerated) post-ISRT compared with EECP. Microcirculation monitoring revealed that ISRT significantly increased the SO2 , blood flow and rHb during the therapy. All three parameters remained significantly increased in the observation period after ISRT. The serum levels of creatin kinase and myoglobin increased significantly under EECP. CONCLUSIONS: ISRT significantly improves tolerability, safety, and effectiveness over EECP in patients with LEAD.


Asunto(s)
Aterosclerosis , Contrapulsación , Extremidad Inferior , Anciano , Humanos , Contrapulsación/métodos , Hemodinámica , Extremidad Inferior/patología , Estudios Prospectivos , Aterosclerosis/terapia
18.
Comput Methods Programs Biomed ; 227: 107224, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36379202

RESUMEN

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a non-invasive treatment modality capable of treating a variety of ischemic diseases. Currently, no effective methods of predicting the patient-specific hemodynamic effects of EECP are available. In this study, a personalized 0D-1D model of the cardiovascular system was developed for hemodynamic simulation to simulate the changes in blood flow in the EECP state and develop the best treatment protocol for each individual. METHODS: A 0D-1D closed-loop model of the cardiovascular system was developed for hemodynamic simulation, consisting of a 1D wave propagation model for arteries, a 0D model for veins and capillaries, and a one-fiber model for the heart. Additionally, a simulation model coupling EECP with a 1D model was established. Physiological data, including the blood flow in different arteries, were clinically collected from 22 volunteers at rest and in the EECP state. Sensitivity analysis and a simulated annealing algorithm were used to build personalized 0D-1D models using the clinical data in the rest state as optimization objectives. Then, the clinical data on EECP were used to verify the applicability and accuracy of the personalized models. RESULTS: The simulation results and clinical data were found to be in agreement for all 22 subjects, with waveform similarity coefficients (r) exceeding 90% for most arteries at rest and 80% for most arteries during EECP. CONCLUSIONS: The 0D-1D closed-loop model and the optimized method can facilitate personalized modeling of the cardiovascular system using the data in the rest state and effectively predict the hemodynamic changes in the EECP state, which is significant for the numerical simulation of personalized hemodynamics. The model can also potentially be used to make decisions regarding patient-specific treatment.


Asunto(s)
Contrapulsación , Humanos , Contrapulsación/métodos , Hemodinámica/fisiología , Simulación por Computador , Arterias , Algoritmos
19.
Anatol J Cardiol ; 26(5): 401-406, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35552177

RESUMEN

BACKGROUND: Venous diseases encompass a large spectrum of abnormalities in the venous system with complaints, such as aching and swelling. Enhanced external counterpulsa-tion, proven safe and effective in patients with coronary artery disease and chronic heart failure, is a technique that increases venous return and augments diastolic blood pres-sure. This study assessed the effects of enhanced external counterpulsation on symp-toms of venous disease using the Venous Insufficiency Epidemiological and Economic Study-Quality of Life/Symptoms questionnaire. METHODS: This study was designed prospectively for evaluating venous symptoms before and after enhanced external counterpulsation treatment. The study population con-sisted of 30 consecutive patients who were admitted to the cardiology clinic. The Venous Insufficiency Epidemiological and Economic Study-Quality of Life/Symptoms ques-tionnaire was applied to assess venous symptoms one day before and after enhanced external counterpulsation treatment. RESULTS: The mean age of the patients was 64.62 ± 9.67 years. After 35 hours of enhanced external counterpulsation, 28 patients (93%) had at least 1 New York Heart Association functional class reduction compared with baseline and 43% of patients had 2 New York Heart Association functional classes improvement. The New York Heart Association class significantly decreased after enhanced external counterpulsation treatment (P<.001). There was a significant improvement in their swelling and night cramps symptoms compared with baseline (P< .001 and P = .05, respectively). Also, The left ventricular ejec-tion fraction significantly increased after the enhanced external counterpulsation treat- ment (P = .02). CONCLUSIONS: The findings obtained in the present study suggested that patients treated with enhanced external counterpulsation showed a significant reduction in swelling and night cramps symptoms. Although the total VEIN score did not change after the enhanced external counterpulsation procedure, improvement in swelling and night cramps under-lines the beneficial effects of enhanced external counterpulsation through the venousvascular territory.


Asunto(s)
Contrapulsación , Insuficiencia Venosa , Anciano , Contrapulsación/efectos adversos , Contrapulsación/métodos , Humanos , Pierna , Persona de Mediana Edad , Calambre Muscular/etiología , Calidad de Vida , Resultado del Tratamiento , Insuficiencia Venosa/etiología
20.
Biomed Res Int ; 2022: 1336184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463986

RESUMEN

Objective: By detecting the levels of external counterpulsation combined with exercise therapy on the levels of moesin, angiopoietin-like protein2 (Angptl 2), angiopoietin-like protein (Angptl 3), hypoxia inducible factor-1α (HIF-1α), and RNA-34a (miR-34a) in patients with coronary artery occlusive disease, the effect of external counterpulsation combined with exercise therapy on the establishment of occluded coronary collateral circulation was studied. Methods: A retrospective analysis of 166 patients with coronary heart disease was confirmed by coronary angiography results that at least one coronary artery (anterior descending branch, circumflex branch, and right coronary artery) was completely occluded and was classified into the control group (routine medication) and the treatment group (routine drug therapy plus exercise therapy and external counterpulsation) according to the treatment plan of the patient. The serum levels of moesin, Angptl 2, Angptl 3, and HIF-1α were detected by enzyme-linked immunosorbent assay (ELISA) test. The index of microcirculatory resistance (IMR) and coronary flow reserve (CFR) of the two groups of patients were measured before and after 2 weeks of treatment. The formation of collateral circulation was analyzed according to the Rentrop classification method. Results: After treatment, the IMR levels of the two groups were significantly decreased, and the CFR levels were significantly increased. The decrease of IMR level and the increase of CFR level in the experimental group were better than those in the control group (P < 0.05). There was no significant difference in the positive detection rate of moesin antibody between the two groups, but the OD detection value of the treatment group decreased significantly (P < 0.05). The levels of Angptl 2, Angptl 3, and miR-34a in the treatment group were lower than those in the control group, while the relative expression of HIF-1α was higher than that in the control group. The difference was statistically significant (P < 0.05). External counterpulsation combined with exercise therapy improved the formation rate of collateral circulation (P < 0.05). Conclusions: External counterpulsation combined with exercise therapy can reduce moesin antibody, Angptl 2, Angptl 3, and miR-34a levels increase HIF-1α levels, and promote the establishment of occluded coronary collateral circulation.


Asunto(s)
Circulación Colateral , Enfermedad de la Arteria Coronaria , Contrapulsación , Terapia por Ejercicio , MicroARNs , Angiopoyetinas , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/terapia , Circulación Coronaria , Vasos Coronarios , Contrapulsación/métodos , Humanos , Microcirculación , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...