RESUMEN
BACKGROUND: Disease-vector mosquito monitoring is an essential prerequisite to optimize control interventions and evidence-based risk predictions. However, conventional entomological monitoring methods are labor- and time-consuming and do not allow high temporal/spatial resolution. In 2022, a novel system coupling an optical sensor with machine learning technologies (VECTRACK) proved effective in counting and identifying Aedes albopictus and Culex pipiens adult females and males. Here, we carried out the first extensive field evaluation of the VECTRACK system to assess: (i) whether the catching capacity of a commercial BG-Mosquitaire trap (BGM) for adult mosquito equipped with VECTRACK (BGM + VECT) was affected by the sensor; (ii) the accuracy of the VECTRACK algorithm in correctly classifying the target mosquito species genus and sex; (iii) Ae. albopictus capture rate of BGM with or without VECTRACK. METHODS: The same experimental design was implemented in four areas in northern (Bergamo and Padua districts), central (Rome) and southern (Procida Island, Naples) Italy. In each area, three types of traps-one BGM, one BGM + VECT and the combination of four sticky traps (STs)-were rotated each 48 h in three different sites. Each sampling scheme was replicated three times/area. Collected mosquitoes were counted and identified by both the VECTRACK algorithm and operator-mediated morphological examination. The performance of the VECTRACK system was assessed by generalized linear mixed and linear regression models. Aedes albopictus capture rates of BGMs were calculated based on the known capture rate of ST. RESULTS: A total of 3829 mosquitoes (90.2% Ae. albopictus) were captured in 18 collection-days/trap/site. BGM and BGM + VECT showed a similar performance in collecting target mosquitoes. Results show high correlation between visual and automatic identification methods (Spearman Ae. albopictus: females = 0.97; males = 0.89; P < 0.0001) and low count errors. Moreover, the results allowed quantifying the heterogeneous effectiveness associated with different trap types in collecting Ae. albopictus and predicting estimates of its absolute density. CONCLUSIONS: Obtained results strongly support the VECTRACK system as a powerful tool for mosquito monitoring and research, and its applicability over a range of ecological conditions, accounting for its high potential for continuous monitoring with minimal human effort.
Asunto(s)
Aedes , Culex , Control de Mosquitos , Mosquitos Vectores , Animales , Aedes/fisiología , Aedes/clasificación , Culex/clasificación , Culex/fisiología , Italia , Control de Mosquitos/métodos , Control de Mosquitos/instrumentación , Femenino , Mosquitos Vectores/clasificación , Mosquitos Vectores/fisiología , Masculino , Densidad de Población , Aprendizaje AutomáticoRESUMEN
BACKGROUND: The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time. METHODS: We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained using European populations of Aedes albopictus and Culex pipiens. RESULTS: The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%). CONCLUSIONS: The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species.
Asunto(s)
Aedes , Culex , Mosquitos Vectores , Animales , Aedes/clasificación , Aedes/fisiología , Culex/clasificación , Mosquitos Vectores/clasificación , Brasil , Femenino , Masculino , Control de Mosquitos/métodos , Control de Mosquitos/instrumentaciónRESUMEN
BACKGROUND: The control and prevention of mosquito-borne diseases is mostly achieved with insecticides. However, their use has led to the rapid development and spread of insecticide resistance worldwide. Health experts have called for intensified efforts to find new approaches to reduce mosquito populations and human-mosquito contact. A promising new tool is the use of electrical fields (EFs), whereby mosquitoes are repelled by charged particles in their flight path. Such particles move between two or more conductors, and the use of uninsulated copper or aluminum plates as conductors has been proven to be effective at repelling mosquitoes. Here, for the first time, we assess if EFs generated using a single row of insulated conductor wires (ICWs) can also successfully repel mosquitoes, and whether mosquitoes are equally repelled at the same EF strength when the electrodes are a) orientated differently (horizontal vs. vertical placement), and b) spaced more apart. METHODOLOGY/PRINCIPAL FINDINGS: Over a period of 23 hours, the number of host-seeking female Aedes aegypti mosquitoes that were successfully repelled by EFs, using ICWs, at EF strengths ranging from 0 kV/cm (control) to 9.15 kV/cm were quantified. Mosquitoes were released inside a 220×220×180 cm room and lured into a BG-Pro trap that was equipped with a BG-counter and baited with CO2 using dry ice. Mosquitoes had to pass through an EF window, that contained a single row of ICWs with alternating polarity, to reach the bait. The baseline interaction between EF strength and repellency was assessed first, after which the impact of different ICW orientations and ICW distances on repellency were determined. Over 50% of mosquitoes were repelled at EF strengths of ≥ 3.66 kV/cm. A linear regression model showed that a vertical ICW orientation (vertical vs. horizontal) had a small but insignificant increased impact on mosquito repellency (p = 0.059), and increasing ICW distance (while maintaining the same EF strength) significantly reduced repellency (p = 0.01). CONCLUSIONS/SIGNIFICANCE: ICWs can be used to generate EFs that partially repel host-seeking mosquitoes, which will reduce human-mosquito contact. While future studies need to assess if (i) increased repellency can be achieved, and (ii) a repellency of 50-60% is sufficient to impact disease transmission, it is encouraging that EF repellency using ICWs is higher compared to that of some spatial repellent technologies currently in development. This technology can be used in the housing improvement toolkit (i.e. preventing mosquito entry through eaves, windows, and doors). Moreover, the use of cheap, over-the-counter ICWs will mean that the technology is more accessible worldwide, and easier to manufacture and implement locally.
Asunto(s)
Aedes , Control de Mosquitos , Animales , Aedes/fisiología , Femenino , Control de Mosquitos/métodos , Control de Mosquitos/instrumentación , Electricidad , HumanosRESUMEN
BACKGROUND: Malaria impacts nearly 250 million individuals annually. Specifically, Uganda has one of the highest burdens, with 13 million cases and nearly 20,000 deaths. Controlling the spread of malaria relies on vector surveillance, a system where collected mosquitos are analyzed for vector species' density in rural areas to plan interventions accordingly. However, this relies on trained entomologists known as vector control officers (VCOs) who identify species via microscopy. The global shortage of entomologists and this time-intensive process cause significant reporting delays. VectorCam is a low-cost artificial intelligence-based tool that identifies a mosquito's species, sex, and abdomen status with a picture and sends these results electronically from surveillance sites to decision makers, thereby deskilling the process to village health teams (VHTs). OBJECTIVE: This study evaluates the usability of the VectorCam system among VHTs by assessing its efficiency, effectiveness, and satisfaction. METHODS: The VectorCam system has imaging hardware and a phone app designed to identify mosquito species. Two users are needed: (1) an imager to capture images of mosquitos using the app and (2) a loader to load and unload mosquitos from the hardware. Critical success tasks for both roles were identified, which VCOs used to train and certify VHTs. In the first testing phase (phase 1), a VCO and a VHT were paired to assume the role of an imager or a loader. Afterward, they swapped. In phase 2, two VHTs were paired, mimicking real use. The time taken to image each mosquito, critical errors, and System Usability Scale (SUS) scores were recorded for each participant. RESULTS: Overall, 14 male and 6 female VHT members aged 20 to 70 years were recruited, of which 12 (60%) participants had smartphone use experience. The average throughput values for phases 1 and 2 for the imager were 70 (SD 30.3) seconds and 56.1 (SD 22.9) seconds per mosquito, respectively, indicating a decrease in the length of time for imaging a tray of mosquitos. The loader's average throughput values for phases 1 and 2 were 50.0 and 55.7 seconds per mosquito, respectively, indicating a slight increase in time. In terms of effectiveness, the imager had 8% (6/80) critical errors and the loader had 13% (10/80) critical errors in phase 1. In phase 2, the imager (for VHT pairs) had 14% (11/80) critical errors and the loader (for VHT pairs) had 12% (19/160) critical errors. The average SUS score of the system was 70.25, indicating positive usability. A Kruskal-Wallis analysis demonstrated no significant difference in SUS (H value) scores between genders or users with and without smartphone use experience. CONCLUSIONS: VectorCam is a usable system for deskilling the in-field identification of mosquito specimens in rural Uganda. Upcoming design updates will address the concerns of users and observers.
Asunto(s)
Malaria , Mosquitos Vectores , Animales , Malaria/epidemiología , Humanos , Uganda , Culicidae/clasificación , Aplicaciones Móviles , Femenino , Control de Mosquitos/instrumentación , Control de Mosquitos/métodos , MasculinoRESUMEN
BACKGROUND: Eave spaces are major entry points through which malaria vectors enter houses. Interventions that target mosquitoes at the eaves have recently been developed. However, most of these interventions are based on insecticides for which resistance has been reported. Here we evaluated the efficacy of mosquito electrocuting eave tubes (MEETs) against Anopheles gambiae sensu stricto (An. gambiae s.s.) and Anopheles funestus s.s. under semi-field conditions. METHODS: Experiments were conducted in two semi-field chambers, each containing one experimental hut. Six electrocuting eave tubes were installed in each hut to assess their impact on laboratory-reared An. gambiae s.s. and An. funestus s.s.. Each species was assessed separately over 10 nights by releasing 200 unfed females per night into each chamber. One volunteer slept in each hut from 7 p.m. to 5 a.m. Mosquitoes were collected indoors and outdoors using mouth and Prokopack aspirators. RESULTS: The placement of MEETs significantly reduced the nightly An. gambiae s.s. indoor and outdoor biting, by 21.1% and 37.4%, respectively. Indoor-biting An. funestus s.s. were reduced by 87.5% while outdoor-biting numbers of An. funestus s.s. declined by 10.4%. CONCLUSIONS: MEETs represent a promising tool for controlling mosquitoes at the point of house entry. Further validation of their potential under natural field conditions is necessary. Several advantages over insecticide-based eave tubes are indicated and discussed in this article.
Asunto(s)
Anopheles , Control de Mosquitos , Mosquitos Vectores , Animales , Anopheles/fisiología , Control de Mosquitos/métodos , Control de Mosquitos/instrumentación , Tanzanía , Femenino , Mosquitos Vectores/fisiología , Humanos , Malaria/prevención & control , Malaria/transmisión , Vivienda , Insecticidas/farmacologíaRESUMEN
Smart technology coupled with digital sensors and deep learning networks have emerging scopes in various fields, including surveillance of mosquitoes. Several studies have been conducted to examine the efficacy of such technologies in the differential identification of mosquitoes with high accuracy. Some smart trap uses computer vision technology and deep learning networks to identify live Aedes aegypti and Culex quinquefasciatus in real time. Implementing such tools integrated with a reliable capture mechanism can be beneficial in identifying live mosquitoes without destroying their morphological features. Such smart traps can correctly differentiates between Cx. quinquefasciatus and Ae. aegypti mosquitoes, and may also help control mosquito-borne diseases and predict their possible outbreak. Smart devices embedded with YOLO V4 Deep Neural Network algorithm has been designed with a differential drive mechanism and a mosquito trapping module to attract mosquitoes in the environment. The use of acoustic and optical sensors in combination with machine learning techniques have escalated the automatic classification of mosquitoes based on their flight characteristics, including wing-beat frequency. Thus, such Artificial Intelligence-based tools have promising scopes for surveillance of mosquitoes to control vector-borne diseases. However working efficiency of such technologies requires further evaluation for implementation on a global scale.
Asunto(s)
Control de Mosquitos , Mosquitos Vectores , Animales , Control de Mosquitos/métodos , Control de Mosquitos/instrumentación , Mosquitos Vectores/fisiología , Aedes/fisiología , Aedes/clasificación , Culex/fisiología , Aprendizaje Profundo , Enfermedades Transmitidas por Vectores/prevención & control , Culicidae/clasificación , Culicidae/fisiología , Inteligencia Artificial , Redes Neurales de la ComputaciónRESUMEN
Mosquito-borne diseases such as malaria, dengue, Zika, and chikungunya cause significant morbidity and mortality globally, resulting in over 600,000 deaths from malaria and around 36,000 deaths from dengue each year, with millions of people infected annually, leading to substantial economic losses. The existing mosquito control measures, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), helped to reduce the infections. However, mosquito-borne diseases are still among the deadliest diseases, forcing us to improve the existing control methods and look for alternative methods simultaneously. Advanced monitoring techniques, including remote sensing, and geographic information systems (GIS) have significantly enhanced the efficiency and effectiveness of mosquito control measures. Mosquitoes' behavioural traits, such as locomotion, blood-feeding, and fertility are the key determinants of disease transmission and epidemiology. Technological advancements, such as high-resolution cameras, infrared imaging, and artificial intelligence (AI) driven object detection models, including groundbreaking convolutional neural networks, have provided efficient and precise options to monitor various mosquito behaviours, including locomotion, oviposition, fertility, and host-seeking. However, they are not commonly employed in mosquito-based research. This review highlights the novel and significant advancements in behaviour-monitoring tools, mostly from the last decade, due to cutting-edge video monitoring technology and artificial intelligence. These advancements can offer enhanced accuracy, efficiency, and the ability to quickly process large volumes of data, enabling detailed behavioural analysis over extended periods and large sample sizes, unlike traditional manual methods prone to human error and labour-intensive. The use of behaviour-assaying techniques can support or replace existing monitoring techniques and directly contribute to improving control measures by providing more accurate and real-time data on mosquito activity patterns and responses to interventions. This enhanced understanding can help establish the role of behavioural changes in improving epidemiological models, making them more precise and dynamic. As a result, mosquito management strategies can become more adaptive and responsive, leading to more effective and targeted interventions. Ultimately, this will reduce disease transmission and significantly improve public health outcomes.
Asunto(s)
Culicidae , Control de Mosquitos , Animales , Control de Mosquitos/métodos , Control de Mosquitos/instrumentación , Humanos , Culicidae/fisiología , Mosquitos Vectores/fisiología , Conducta Animal , Tecnología de Sensores Remotos/métodos , Sistemas de Información GeográficaRESUMEN
Automated misting systems are a convenient way for homeowners or small businesses to control adult mosquitoes. One such system was presented to the Anastasia Mosquito Control District (AMCD) for evaluation to control caged Aedes aegypti. The system consisted of 3 spray tanks, 2 pumps, water level sensors, and flow meters, and was controlled through an Android tablet loaded with dedicated control software. The evaluation of the system included calibration tests, droplet characterization, spray dispersion in the open field, and effectiveness testing using bio-assay cages for mortality assessment. For these tests, a loop of 14 nozzles 4 m apart was connected and held at 1 m height utilizing a total of 120 m tube. All nozzles were arranged in a 16 × 12 m rectangle laid in the East-West direction. Water was sprayed for calibration and droplet size measurements at pressures of 13.0, 15.5, and 18 bar; water and 10 % red dye solution for spray dispersion at 18 bar pressure, and 0.17 % solution of equalizer 20-20 was sprayed at 18 bar pressure for mortality tests. All 3 replicated tests were conducted in the morning between 9:00 and 11:30am. During this time, temperature ranged from 21 to 26 °C, relative humidity from 54 to 95%, and wind speed from 0 - 2 km/hr. The combined flow rate from all 14 nozzles was significantly affected by pressure and was in agreement with the machine-calculated flow rate. There was a similar flow rate from all nozzles, indicated by a standard error of 0.82 mL/min. The droplet characteristics represented by DV0.1, DV0.5, and DV0.9 were not affected by nozzles but decreased with an increase in pressure as expected. The percentage of coverage on the cards, an indicator of spray dispersion, ranged from 20 -100%, and it was found to increase in the direction of the wind. Mosquito mortality showed a similar trend of increasing in the wind direction and ranged from 30 to 100 %. There was no effect of the location of cages on mosquito mortality. These results indicate that the effectiveness of this spray depends upon wind direction. The results, however, may be different when there is no wind, which may be the case during the times these applications are made.
Asunto(s)
Aedes , Control de Mosquitos , Animales , Control de Mosquitos/métodos , Control de Mosquitos/instrumentación , Aedes/fisiología , Insecticidas , Automatización/instrumentación , Automatización/métodos , FemeninoRESUMEN
Effective mosquito population suppression has been repeatedly demonstrated in field trials through the release of male mosquitoes to induce sterile mating with wild females using the incompatible insect technique (IIT), the sterile insect technique (SIT), or their combination. However, upscaling these techniques requires a highly efficient and scalable approach for the sex separation of mass-reared mosquitoes to minimize the unintentional release of females, which can lead to either population replacement or biting nuisance, a major bottleneck up to now. Here, we report the successful development of an automated mosquito pupa sex sorter that can effectively separate large numbers of males from females for population suppression of Aedes aegypti, A. albopictus, and Culex quinquefasciatus. The male production capacity of the automated sex sorter was increased by ~17-fold compared with manual sex separation with the Fay-Morlan sorter and enabled one person to separate 16 million males per week. With ~0.5% female contamination, the produced males exhibited high flight ability and mating performance. The field trial demonstrates that the quality of A. albopictus males produced using the automated sex sorter is suitable for inducing population suppression. These results indicate that the automated sex sorter offers the potential to upscale IIT and SIT against mosquito vectors for disease control.
Asunto(s)
Aedes , Control de Mosquitos , Conducta Sexual Animal , Animales , Masculino , Femenino , Aedes/fisiología , Control de Mosquitos/instrumentación , Control de Mosquitos/métodos , Conducta Sexual Animal/fisiología , Pupa/fisiología , Culex/fisiología , Automatización , Robótica/instrumentación , Control Biológico de Vectores/métodos , Diseño de EquipoRESUMEN
Insects are a promising source of high-quality protein, and the insect farming industry will lead to higher sustainability when it overcomes scaling up, cost effectiveness, and automation. In contrast to insect farming (raising and breeding insects as livestock), wild insect harvesting (collecting agricultural insect pests), may constitute a simple sustainable animal protein supplementation strategy. For wild harvest to be successful sufficient insect biomass needs to be collected while simultaneously avoiding the collection of nontarget insects. We assessed the performance of the USDA Biomass Harvest Trap (USDA-BHT) device to collect flying insect biomass and as a mosquito surveillance tool. The USDA-BHT device was compared to other suction traps commonly used for mosquito surveillance (Centers for Disease Control and Prevention (CDC) light traps, Encephalitis virus surveillance traps, and Biogents Sentinel traps). The insect biomass harvested in the USDA-BHT was statistically higher than the one harvested in the other traps, however the mosquito collections between traps were not statistically significantly different. The USDA-BHT collected some beneficial insects, although it was observed that their collection was minimized at night. These findings coupled with the fact that sorting time to separate the mosquitoes from the other collected insects was significantly longer for the USDA-BHT, indicate that the use of this device for insect biomass collection conflicts with its use as an efficient mosquito surveillance tool. Nevertheless, the device efficiently collected insect biomass, and thus can be used to generate an alternative protein source for animal feed.
Asunto(s)
Biomasa , Animales , Estados Unidos , United States Department of Agriculture , Control de Mosquitos/instrumentación , Culicidae , InsectosRESUMEN
BACKGROUND: Mosquitoes are important vectors of pathogens. They are usually collected with CO2-baited traps and subsequently identified by morphology. This procedure is very time-consuming. Automatic counting traps could facilitate timely evaluation of the local risk for mosquito-borne pathogen transmission or decision-making on vector control measures, but the counting accuracy of such devices has rarely been validated in the field. METHODS: The Biogents (BG)-Counter 2 automatically counts mosquitoes by discriminating the size of captured objects directly in the field and transmits the data to a cloud server. To assess the accuracy of this counting device, 27 traps were placed at 19 sampling sites across Germany and used in daily, weekly or bimonthly intervals from April until October 2021. The BG-Counter 2 was attached to a CO2-trap (BG-Pro trap = CO2-Pro) and the same trap was converted to also attract gravid mosquitoes (upside-down BG-Pro trap with a water container beneath = CO2-Pro-gravid). All captured mosquitoes were identified by morphology. The number of females (unfed and gravid), mosquito diversity and the number of identified specimens in relation to the counting data of the BG-Counter were compared between the two trapping devices to evaluate sampling success and counting accuracy. RESULTS: In total 26,714 mosquitoes were collected during 854 trap days. The CO2-Pro-gravid trap captured significantly more mosquitoes per trap day for all specimens, gravid females and non-gravid females, while there was no difference in the mosquito diversity. The linear model with the captured mosquitoes as a response and the counted specimens as a predictor explained only a small degree of the variation within the data (R2 = 0.16), but per individual trap the value could reach up to 0.62 (mean R2 = 0.23). The counting accuracy for the daily samples had a significant positive correlation with sample size, resulting in higher accuracy for the CO2-Pro-gravid trap and higher accuracy for sites and sampling months with high mosquito abundance. CONCLUSIONS: While the accuracy of the BG-Counter 2 is quite low, the device is able to depict mosquito phenology and provide information about local population dynamics.
Asunto(s)
Culicidae , Control de Mosquitos , Mosquitos Vectores , Animales , Control de Mosquitos/métodos , Control de Mosquitos/instrumentación , Mosquitos Vectores/fisiología , Femenino , Culicidae/fisiología , AlemaniaRESUMEN
BACKGROUND: Vector mosquito control is important for preventing and controlling mosquito-borne infectious diseases. This study designed and developed a mosquito killer (MK) with a specific light wavelength, simulated human body temperature, human odor, and a photocatalyst to stimulate CO2 based on the physiological characteristics and ecological habits of mosquitoes. We tested the trapping effect of individual and multiple mosquito-trapping elements of the MK through two-way selection experiments and compared them with several commercial mosquito traps. RESULTS: The 365 nm wavelength MK was significantly more effective than the 395 nm (Cx. quinquefasciatus: 62.00% vs. 34.25%; Ae. albopictus: 50.75% vs 45.00%, An. sinensis: 49.75% vs 39.00%). Mosquitoes captured by the MK with heaters at 365 nm were significantly more than those captured by the MK without heaters at 365 nm. A trap with a 365 nm wavelength, heating element, and lure showed significantly better capture effectiveness than MK with a 365 nm wavelength, heating element, but without lure (Cx. quinquefasciatus: 67.00% vs. 29.75%, Ae. albopictus: 60.25% vs 36.25%, An. sinensis: 49.75% vs 39.75%). The coated photocatalyst trap with a 365 nm wavelength, heating element, and lure showed significantly better capture effectiveness than the trap without coating (Cx. quinquefasciatus: 54.25% vs. 42.50%; Ae. albopictus: 53.50% vs 44.00%, An. sinensis: 50.00% vs 41.25%). This trap demonstrated a significantly better capture advantage for Cx. quinquefasciatus and Ae. albopictus compared to the three commercial products. CONCLUSION: The developed mosquito trap with multiple attractant factors significantly enhanced the capture effectiveness of common mosquitoes. © 2024 Society of Chemical Industry.
Asunto(s)
Control de Mosquitos , Animales , Control de Mosquitos/métodos , Control de Mosquitos/instrumentación , Aedes/fisiología , Culex , Odorantes/análisis , Luz , Femenino , HumanosRESUMEN
Light-Emitting Diodes (LEDs) have been effective light sources in attracting Anopheles mosquitoes, but the broad-spectrum white light, even with a wide-ranging application in lighting, have not been evaluated yet. In this study, the white light was field evaluated against the green one in the light trapping of anopheline mosquitoes by using two non-suction Silva traps and two CDC-type suction light traps. Anopheline mosquitoes were captured for two 21-night periods of collecting (2022 and 2023). In the first period, two LEDs were used per Silva trap, but three were used in the second one to increase the luminance/illuminance at traps. A CDC-type suction light trap equipped with an incandescent lamp was used in 2022 and a CDC-type suction light trap equipped with a 6 V-white light (higher luminance/illuminance) in 2023. A total of eight species and 3,289 specimens were captured in both periods. The most frequent species were Anopheles triannulatus s.l., An. goeldii, An. evansae and An. argyritarsis. In 2022, white LEDs were less attractive to anopheline mosquitoes than the other light sources, but without statistical difference among treatments (F = 2.703; P = 0.0752; df = 2). In 2023, even with an increased luminance/illuminance at traps, no statistical difference was found between the two LED-baited Silva traps (F = 6.690; P = 0.0024; df = 2), but rather between the 6 V-white-baited CDC-type suction light trap and green-baited Silva traps. Due to some drawbacks and the lower abundance of individuals caught by using white LEDs, the narrow-banded green LEDs is preferable to white ones for attracting anophelines.
Asunto(s)
Anopheles , Luz , Control de Mosquitos , Animales , Anopheles/fisiología , Anopheles/efectos de la radiación , Control de Mosquitos/métodos , Control de Mosquitos/instrumentaciónRESUMEN
Dengue remains a major public threat and existing dengue control/surveillance programs lack sensitivity and proactivity. More efficient methods are needed. A cluster randomized controlled trial was conducted for 18 months to determine the efficacy of using a combination of gravid oviposition sticky (GOS) traps and dengue non-structural 1 (NS1) antigen for early surveillance of dengue among Aedes mosquito. Eight residential apartments were randomly assigned into intervention and control groups. GOS traps were placed at the intervention apartments weekly to trap Aedes mosquitoes and these tested for dengue NS1 antigen. When dengue-positive pool was detected, the community were notified and advised to execute protective measures. Fewer dengue cases were recorded in the intervention group than the control. Detection of NS1-positive mosquitoes was significantly associated with GOS Aedes index (rs = 0.68, P < 0.01) and occurrence of dengue cases (rs = 0.31, P < 0.01). Participants' knowledge, attitude, and practice (KAP) toward dengue control indicated significant improvement for knowledge (P < 0.01), practice (P < 0.01) and total scores (P < 0.01). Most respondents thought this surveillance method is good (81.2%) and supported its use nationwide. Thus, GOS trap and dengue NS1 antigen test can supplement the current dengue surveillance/control, in alignment with the advocated integrated vector management for reducing Aedes-borne diseases.
Asunto(s)
Aedes/virología , Dengue/prevención & control , Control de Mosquitos/instrumentación , Mosquitos Vectores/virología , Proteínas no Estructurales Virales/aislamiento & purificación , Animales , Dengue/epidemiología , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Malasia/epidemiología , Masculino , Control de Mosquitos/estadística & datos numéricos , Vigilancia de la Población/métodosRESUMEN
BACKGROUND: There is an increased need to mitigate the emergence of insecticide resistance and incorporate new formulations and modes of application to control the urban vector Aedes aegypti. Most research and development of insecticide formulations for the control of Ae. aegypti has focused on their peridomestic use as truck-mounted ULV-sprays or thermal fogs despite the widespread knowledge that most resting Ae. aegypti are found indoors. A recent modification of indoor residual spraying (IRS), termed targeted IRS (TIRS) works by restricting applications to 1.5 m down to the floor and on key Ae. aegypti resting sites (under furniture). TIRS also opens the possibility of evaluating novel residual insecticide formulations currently being developed for malaria IRS. METHODS: We evaluated the residual efficacy of chlorfenapyr, formulated as Sylando 240SC, for 12 months on free-flying field-derived pyrethroid-resistant Ae. aegypti using a novel experimental house design in Merida, Mexico. On a monthly basis, 600 female Ae. aegypti were released into the houses and left indoors with access to sugar solution for 24 hours. After the exposure period, dead and alive mosquitoes were counted in houses treated with chlorfenapyr as well as untreated control houses to calculate 24-h mortality. An evaluation for these exposed cohorts of surviving mosquitoes was extended up to seven days under laboratory conditions to quantify "delayed mortality". RESULTS: Mean acute (24-h) mortality of pyrethroid-resistant Ae. aegypti ranged 80-97% over 5 months, dropping below 30% after 7 months post-TIRS. If delayed mortality was considered (quantifying mosquito mortality up to 7 days after exposure), residual efficacy was above 90% for up to 7 months post-TIRS application. Generalized Additive Mixed Models quantified a residual efficacy of chlorfenapyr of 225 days (ca. 7.5 months). CONCLUSIONS: Chlorfenapyr represents a new option for TIRS control of Ae. aegypti in urban areas, providing a highly-effective time of protection against indoor Ae. aegypti females of up to 7 months.
Asunto(s)
Aedes/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Control de Mosquitos/métodos , Piretrinas/farmacología , Aedes/fisiología , Animales , Femenino , Vivienda , Humanos , Malaria/transmisión , Masculino , Control de Mosquitos/instrumentación , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiologíaRESUMEN
BACKGROUND: Insecticide resistance-and especially pyrethroid resistance-is a major challenge for vector control in public health. The use of insecticide mixtures utilizing alternative modes of action, as well as new formulations facilitating their uptake, is likely to break resistance and slow the development of resistance. METHODS: We used genetically defined highly resistant lines of Drosophila melanogaster with distinct target-site mutations and detoxification enzymes to test the efficacy and anti-resistance potential of novel mixture formulations (i.e. Fludora® Fusion consisting of deltamethrin and clothianidin), as well as emulsifiable concentrate transfluthrin, compared to alternative, currently used pyrethroid insecticide formulations for vector control. RESULTS: The commercial mixture Fludora® Fusion, consisting of both a pyrethroid (deltamethrin) and a neonicotinoid (clothianidin), performed better than either of the single active ingredients against resistant transgenic flies. Transfluthrin, a highly volatile active ingredient with a different molecular structure and primary exposure route (respiration), was also efficient and less affected by the combination of metabolic and target-site resistance. Both formulations substantially reduced insecticide resistance across different pyrethroid-resistant Drosophila transgenic strains. CONCLUSIONS: The use of mixtures containing two unrelated modes of action as well as a formulation based on transfluthrin showed increased efficacy and resistance-breaking potential against genetically defined highly resistant Drosophila flies. The experimental model remains to be validated with mosquito populations in the field. The possible introduction of new transfluthrin-based products and mixtures for indoor residual spraying, in line with other combination and mixture vector control products recently evaluated for use in public health, will provide solutions for better insecticide resistance management.
Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Resistencia a los Insecticidas , Insecticidas/farmacología , Piretrinas/farmacología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Drosophila melanogaster/crecimiento & desarrollo , Composición de Medicamentos , Evaluación de Medicamentos , Guanidinas/química , Guanidinas/farmacología , Insecticidas/química , Control de Mosquitos/instrumentación , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/crecimiento & desarrollo , Nebulizadores y Vaporizadores , Neonicotinoides/química , Neonicotinoides/farmacología , Nitrilos/química , Nitrilos/farmacología , Salud Pública , Piretrinas/química , Tiazoles/química , Tiazoles/farmacologíaRESUMEN
This study aims to examine the efficacy of mosquito mat vaporizers on Aedes aegypti and their associated metabolic detoxication mechanisms. For this purpose, Aedes aegypti (Linnaeus) was collected from nine districts in Selangor, Malaysia and tested with mosquito vaporizing mat bioassays. The same populations were also subjected to biochemical assays to investigate activities of detoxifying enzymes, namely non-specific esterase (EST), glutathione-S-transferase (GST) and mixed function oxidase (MFO). The efficacy of Ae. aegypti on the active ingredients tested in decreasing order were d- allethrin > dimefluthrin > prallethrin with PBO > prallethrin. The results further indicated significant enhancement mean levels of EST, GST and MFO in pyrethroid-resistant populations. The mortality rate of Ae. aegypti in response to pyrethroid active ingredients was associated with MFO activity, suggesting it is an important detoxification enzyme for the populations tested. In view of the presence of resistance against household insecticide products, pyrethroid efficacy on Ae. aegypti populations needs to be monitored closely to ensure the implementation of an effective vector control program in Malaysia.
Asunto(s)
Aedes , Insecticidas , Control de Mosquitos/instrumentación , Nebulizadores y Vaporizadores , Piretrinas , Animales , Glutatión Transferasa , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Malasia , Mosquitos Vectores , Piretrinas/farmacologíaRESUMEN
BACKGROUND: Dengue is a significant public health issue that is caused by Aedes spp. mosquitoes. The current vector control methods are unable to effectively reduce Aedes populations and thus fail to decrease dengue transmission. Hence, there is an urgent need for new tools and strategies to reduce dengue transmission in a wide range of settings. In this study, the Mosquito Home System (MHS) and Mosquito Home Aqua (MHAQ) formulations were assessed as commercial autodissemination traps in laboratory and small-scale field trials. METHOD: Multiple series of laboratory and small-scale field trials were performed to assess the efficacy of MHS and MHAQ exposed to Ae. aegypti. In the laboratory trials, various parameters such as fecundity, fertility, wing size, oviposition preferences, residual effects, and MHAQ transference to other containers through controlled experiments were tested. For small-scale field trials, the efficacy of the MHS and MHAQ approaches was determined to ascertain whether wild mosquitoes could transfer the MHAQ formulation from MHS stations to ovitraps. RESULTS: The data revealed that Ae. aegypti was highly susceptible to low concentrations of MHAQ formulations and had a residual effect of up to 3 months, with MHAQ exposure affecting fecundity, fertility, and mosquito wing size. In the oviposition studies, gravid females strongly preferred the hay infusion compared to tap water and MHAQ during egg-laying in the laboratory. Nevertheless, the use of commercial MHAQ by MHS was highly attractive in field settings compared to conventional ovitraps among local Aedes spp. mosquitoes. In addition, MHAQ horizontal transfer activities in the laboratory and small-scale field trials were demonstrated through larval bioassays. These findings demonstrated the potential of MHAQ to be transferred to new containers in each study site. CONCLUSION: This study provided proof of principle for the autodissemination of MHAQ. Through further refinement, this technique and device could become an effective oviposition trap and offer an alternative preventive tool for vector control management.
Asunto(s)
Aedes/efectos de los fármacos , Insecticidas/farmacología , Control de Mosquitos/instrumentación , Control de Mosquitos/normas , Mosquitos Vectores/efectos de los fármacos , Animales , Femenino , Larva/efectos de los fármacos , Control de Mosquitos/métodos , Oviposición/efectos de los fármacosRESUMEN
BACKGROUND: ICON® Maxx (Syngenta) is an insecticide treatment kit of pyrethroid and binding agent for long-lasting treatment of mosquito nets. Interim recommendation for use on nets was granted by the World Health Organization (WHO) after successful evaluation in experimental huts following multiple washes. A full WHO recommendation is contingent upon demonstration of continued bio-efficacy after 3 years of use. METHODS: A household-randomized prospective study design was used to assess ICON Maxx-treated nets over 3 years in north-eastern Tanzania. Conventional treated nets (with lambda-cyhalothrin, but without binder) served as a positive control. At 6-monthly intervals, cross-sectional household surveys monitored net use and physical integrity, while cone and tunnel tests assessed insecticidal efficacy. Pyrethroid content was determined after 12 and 36 months. A parallel cohort of nets was monitored annually for evidence of net deterioration and attrition. RESULTS: After 12 months' use, 97% of ICON Maxx-treated nets but only 67% of CTN passed the WHO efficacy threshold for insecticidal durability (> 80% mortality in cone or tunnel or 90% feeding inhibition in tunnel). After 24- and 36-months use, 67% and 26% of ICON Maxx treated nets met the cone criteria, respectively, and over 90% met the combined cone and tunnel criteria. Lambda-cyhalothrin content after 36 months was 17% (15.8 ± 4.3 mg/m2) of initial content. ICON Maxx nets were used year-round and washed approximately 4 times per year. In cross-sectional survey after 36 months the average number of holes was 20 and hole index was 740 cm2 per net. Cohort nets had fewer holes and smaller hole index than cross-sectional nets. However, only 15% (40/264) of cohort nets were not lost to follow-up or not worn out after 36 months. CONCLUSIONS: Because more than 80% of nets met the WHO efficacy criteria after 36 months use, ICON Maxx was granted WHO full recommendation. Cross-sectional and cohort surveys were complementary and gave a fuller understanding of net durability. To improve net usage and retention, stronger incentives and health messaging should be introduced in WHO LLIN longitudinal trials. Untreated polyester nets may be made long-lastingly insecticidal in Africa through simple household treatment using ICON Maxx pyrethroid-binder kits.
Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria/prevención & control , Control de Mosquitos , Nitrilos , Piretrinas , Animales , Estudios Transversales , Control de Mosquitos/instrumentación , Poliésteres , Estudios Prospectivos , TanzaníaRESUMEN
BACKGROUND: Aedes (Stegomyia) albopictus (Skuse) impacts human outdoor activity because of its aggressive biting behavior, and as a major vector of mosquito-borne diseases, it is also of public health importance. Although most mosquito species exhibit crepuscular activity by primarily host seeking at dawn and dusk, Ae. albopictus has been traditionally characterized as a diurnal or day-biting mosquito. With the global expansion and increased involvement of Ae. albopictus in mosquito-borne diseases, it is imperative to elucidate the diel activity of this species, particularly in newly invaded areas. METHODOLOGY AND PRINCIPAL FINDINGS: Human sweep netting and carbon dioxide-baited rotator traps were used to evaluate the diel activity of Ae. albopictus in two study sites. Both trapping methods were used in New Jersey's Mercer County, USA (temperate/urban), while only human sweep netting was used in Florida's Volusia County, USA (subtropical/suburban). Human sweep netting was performed to determine adult mosquito activity at Sunrise, Solar Noon, Sunset, and Lunar Midnight. Because New Jersey is in a temperate area, diel activity was investigated during the early season (3-19 July), peak season (25 July-19 September), and late season (22 September- 22 October). Aedes albopictus showed the highest activity during peak and late seasons at Solar Noon (P < 0.05). At Sunrise and Sunset during the peak season, Ae. albopictus activity was similar. Lunar Midnight activity was significantly lower than Sunrise and Solar Noon (P < 0.05) but was similar to that of Sunset. In the late season, the highest activity was observed during Solar Noon while the least activity was observed during Sunrise and Lunar Midnight (P<0.05). Bottle rotator traps used in conjunction with the human sweep net technique exhibited similar results. Seasonal activity was not differentiated in Florida due to the consistent subtropical climate. The highest adult activity was observed at Sunrise using human sweep netting, but it was not significantly different from Solar Noon and Sunset. The lowest adult activity was observed at Lunar Midnight; however, it was not significantly different from Solar Noon and Sunset. These results provide evidence that the diel activity of Ae. albopictus, contrary to the common perception of its diurnal activity, is much more varied. CONCLUSION/SIGNIFICANCE: Involvement of Ae. albopictus in the transmission of debilitating mosquito-borne pathogens such as chikungunya, dengue, and Zika virus, coupled with its affinity to thrive in human peridomestic environments, substantiates that our findings have global implications in areas where Ae. albopictus populations established. It also highlights the importance of behavioral studies of vector species which will not only help mosquito control professionals plan the timing of their control efforts but also provides empirical evidence against conventional wisdoms that may unjustly persist within public health stewards.