Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Toxicol ; 21(11): 914-926, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34387844

RESUMEN

Myocardial ischemia can cause insufficient oxygen and functional damage to myocardial cells. Carbonic anhydrase III (CAIII) has been found to be closely related to the abnormality of cardiomyocytes. To investigate the role of CAIII in the apoptosis of myocytes under hypoxic conditions and facilitate the strategy for treating hypoxia-induced damage, in vitro experiments in H9c2 were employed. The protein expression of CAIII in H9c2 cells after hypoxia or normoxia treatment was determined by western blotting and immunohistochemistry. MTT assay was employed for cells viability measurement and LDH release was monitored. The apoptotic cells were observed using immunofluorescence assay, flow cytometric analysis, and TUNEL assay. CAIII-overexpression or -knockdown cells were constructed to determine the role of CAIII in regulating apoptosis-related proteins caspase-3, Bax, Bcl-2, and anti-apoptosis pathway PI3K/Akt/mTOR. The mRNA levels of CAIII and genes related to CAIII synthesis including REN, IGHM, APOBEC 3F, and SKOR2 were significantly upregulated in hypoxia fetal sheep. The expression of CAIII protein and content of apoptotic H9c2 cells were increased at 1, 3, 6, and 12 h after hypoxia treatment. Overexpression of CAIII significantly upregulated Bcl2 level and downregulated Bax and caspase-3 cleavage levels, while its knockdown led to the contrary results. Overexpressed CAIII promoted the HIF-1α level and activated the PI3K/Akt/mTOR pathway, thereby exerting an inhibitory effect on hypoxia-induced apoptosis. In conclusion, our findings revealed that CAIII could protect cell from hypoxia-apoptosis of H9c2 cells, in which, activated PI3K/Akt/mTOR signaling pathway may be involved.


Asunto(s)
Apoptosis , Anhidrasa Carbónica III/metabolismo , Corazón Fetal/enzimología , Miocitos Cardíacos/enzimología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Anhidrasa Carbónica III/genética , Hipoxia de la Célula , Línea Celular , Corazón Fetal/patología , Edad Gestacional , Miocitos Cardíacos/patología , Ratas , Oveja Doméstica , Transducción de Señal
2.
Cardiovasc Toxicol ; 20(6): 604-617, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32572764

RESUMEN

The developmental exposure to a single chemical may elicit apoptosis in the different fetal organs, while the combined effects are restricted. We have examined the protective role of flaxseed (FS) against diesel exhaust particles (DEPs)- and/or fenitrothion (FNT)-induced fetal cardiac oxidative stress and apoptosis. A total of 48 timed pregnant rats were divided into eight groups (n = 6). The first group was saved as the control and the second fed on 20% FS diet. Animals in the third, fourth, and fifth groups were administered with DEPs (2.0 mg/kg), FNT (3.76 mg/kg), and their combination, respectively, while the sixth, seventh, and eighth groups were supplemented with 20% FS through intoxication with DEPs, FNT, and their combination, respectively. Our results revealed that DEPs and/or FNT significantly elevated the level of protein carbonyl and superoxide dismutase activity in the fetal cardiac tissues. However, the catalase activity and total thiol level were decreased; besides the histopathological alterations were remarked. Moreover, DEPs and/or FNT exhibited significant down-regulation in the anti-apoptotic (Bcl-2) and paraoxonase-1 gene expression, and up-regulation in the apoptotic (Bax and caspase-3) gene expression along with DNA fragmentation. Remarkably, FS supplementation significantly ameliorated the fetal cardiac oxidative injury, down-regulated the expression of the apoptotic genes, up-regulated the anti-apoptotic and paraoxonase-1 gene expression, reduced DNA fragmentation, and alleviated the myocardial cell architectures. These findings revealed that FS attenuates DEPs- and/or FNT-induced apoptotic cell death by repairing the disturbance in the anti-apoptotic/pro-apoptotic gene balance toward cell survival in the fetal myocardial cells.


Asunto(s)
Antídotos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Arildialquilfosfatasa/metabolismo , Fenitrotión/toxicidad , Corazón Fetal/efectos de los fármacos , Lino , Insecticidas/toxicidad , Semillas , Emisiones de Vehículos/toxicidad , Alimentación Animal , Animales , Antídotos/administración & dosificación , Proteínas Reguladoras de la Apoptosis/genética , Arildialquilfosfatasa/genética , Cardiotoxicidad , Femenino , Corazón Fetal/enzimología , Corazón Fetal/patología , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Exposición Materna , Estrés Oxidativo/efectos de los fármacos , Embarazo , Ratas
3.
Biochem Biophys Res Commun ; 502(2): 283-288, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29842883

RESUMEN

TSP50, a testis-specific gene encoding a serine protease-like protein, was specifically expressed in the spermatocytes of testes but abnormally activated and expressed in many different kinds of cancers. Here, we aimed to analyze the expression of TSP50 in mouse embryo and its function in early embryonic development. Firstly, the distribution of TSP50 in oocytes and embryonic development was characterized by immunofluorescence, RT-PCR and western blotting, and the results showed that TSP50 was detected at all studied stages with a dynamic expression pattern. When overexpressed TSP50 in zygotes by microinjection, the zygotes development was highly accelerated. On the contrary, knocking down TSP50 expression by RNA interference greatly retarded the zygote development. Furthermore, TSP50 expression at embryonic day 6.5 (E6.5), day 8.5 (E8.5) and day 10.5 (E10.5) were increasingly enhanced, However, the expression of TSP50 decreased gradually in the development and differentiation of cardiac myocyte from E12.5 to postnatal (P0). Additionally, we found that TSP50 expression was decreased during cardiac myocyte differentiation of P19 cells. Overexpression of TSP50 could decrease the expression of GATA-4, and knockdown of TSP50 markedly increase the expression of GATA-4. Taken together, our data indicate that TSP50 may play an important role during the process of mouse embryonic development as well as myocardial cell differentiation.


Asunto(s)
Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Femenino , Corazón Fetal/embriología , Corazón Fetal/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Embarazo
4.
Cardiovasc Res ; 114(7): 965-978, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29444209

RESUMEN

Aims: With the maturation of placenta, ventricular chamber maturation enhances cardiac contractile performance to adapt to the metabolic demand of growing embryo. The organization of cardiomyocytes is required for the morphological remodelling in ventricular chamber maturation. However, the mechanism governing the establishment of cardiac cytoarchitecture during ventricular chamber maturation is still poorly studied. Methods and results: Here, we found that the expression of geranylgeranyl pyrophosphate synthase (Ggpps), which mediates protein geranylgeranylation, increased in the mouse heart after the onset of placental function. By using different Cre lines, we found that the cardiac inactivation of Ggpps by the Nkx2.5Cre/+ line disrupted protein geranylgeranylation as early as E9.5, which affected ventricular chamber maturation and resulted in mid-gestational embryonic lethality. In contrast, α-SMA-Cre line mediated the disruption of protein geranylgeranylation from E13.5 did not affect embryonic heart development. Further analysis of Nkx2.5Cre/+; Ggppsfl/fl mutants showed that the loss of Ggpps caused disorganized cardiac cytoarchitecture as early as E11.5 by disturbing cell-cell junctions. Ggpps inactivation decreased Rho GTPase geranylgeranylation and their activity, which might account for the disruption of cell-cell junctions. Moreover, elevating the protein geranylgeranylation by supplement of geranylgeranyl pyrophosphate (GGPP) could recover the Ggpps deficient induced defects of cytoarchitecture and cell-cell junctions in vitro and in vivo. Conclusion: Our present study demonstrates that GGPPS-mediated protein geranylgeranylation plays an indispensable role in the ventricular chamber maturation and acts as a stage-specific signal to regulate the establishment of cardiac cytoarchitecture during mid-gestation.


Asunto(s)
Farnesiltransferasa/metabolismo , Corazón Fetal/enzimología , Complejos Multienzimáticos/metabolismo , Miocitos Cardíacos/enzimología , Prenilación de Proteína , Animales , Farnesiltransferasa/genética , Femenino , Corazón Fetal/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Células HeLa , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Uniones Intercelulares/enzimología , Uniones Intercelulares/ultraestructura , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfogénesis , Complejos Multienzimáticos/genética , Miocitos Cardíacos/ultraestructura , Fenotipo , Embarazo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo
5.
Cardiovasc Res ; 114(6): 830-845, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29409032

RESUMEN

Aims: Phosphodiesterase 2 A (Pde2A), a cAMP-hydrolysing enzyme, is essential for mouse development; however, the cause of Pde2A knockout embryonic lethality is unknown. To understand whether Pde2A plays a role in cardiac development, hearts of Pde2A deficient embryos were analysed at different stage of development. Methods and results: At the stage of four chambers, Pde2A deficient hearts were enlarged compared to the hearts of Pde2A heterozygous and wild-type. Pde2A knockout embryos revealed cardiac defects such as absence of atrial trabeculation, interventricular septum (IVS) defects, hypertrabeculation and thinning of the myocardial wall and in rare cases they had overriding aorta and valves defects. E14.5 Pde2A knockouts showed reduced cardiomyocyte proliferation and increased apoptosis in the IVS and increased proliferation in the ventricular trabeculae. Analyses of E9.5 Pde2A knockout embryos revealed defects in cardiac progenitor and neural crest markers, increase of Islet1 positive and AP2 positive apoptotic cells. The expression of early cTnI and late Mef2c cardiomyocyte differentiation markers was strongly reduced in Pde2A knockout hearts. The master transcription factors of cardiac development, Tbx, were down-regulated in E14.5 Pde2A knockout hearts. Absence of Pde2A caused an increase of intracellular cAMP level, followed by an up-regulation of the inducible cAMP early repressor, Icer in fetal hearts. In vitro experiments on wild-type fetal cardiomyocytes showed that Tbx gene expression is down-regulated by cAMP inducers. Furthermore, Pde2A inhibition in vivo recapitulated the heart defects observed in Pde2A knockout embryos, affecting cardiac progenitor cells. Interestingly, the expression of Pde2A itself was dramatically affected by Pde2A inhibition, suggesting a potential autoregulatory loop. Conclusions: We demonstrated for the first time a direct relationship between Pde2A impairment and the onset of mouse congenital heart defects, highlighting a novel role for cAMP in cardiac development regulation.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/deficiencia , Corazón Fetal/enzimología , Cardiopatías Congénitas/enzimología , Miocitos Cardíacos/enzimología , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , AMP Cíclico/metabolismo , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Corazón Fetal/anomalías , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Edad Gestacional , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Miocitos Cardíacos/patología , Fenotipo , Transducción de Señal , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Troponina I/genética , Troponina I/metabolismo
6.
Physiol Rep ; 5(5)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28292876

RESUMEN

Maternal exercise during pregnancy has been shown to improve the long-term health of offspring in later life. Mitochondria are important organelles for maintaining adequate heart function, and mitochondrial dysfunction is linked to cardiovascular disease. However, the effects of maternal exercise during pregnancy on mitochondrial biogenesis in hearts are not well understood. Thus, the purpose of this study was to test the hypothesis that mitochondrial gene expression in fetal myocardium would be upregulated by maternal exercise. Twelve-week-old female C57BL/6 mice were divided into sedentary and exercise groups. Mice in the exercise group were exposed to a voluntary cage-wheel from gestational day 1 through 17. Litter size and individual fetal weights were taken when pregnant dams were sacrificed at 17 days of gestation. Three to four hearts from the same group were pooled to study gene expression, protein expression, and enzyme activity. There were no significant differences in litter size, sex distribution, and average fetal body weight per litter between sedentary and exercised dams. Genes encoding mitochondrial biogenesis and dynamics, including nuclear respiratory factor-1 (Nrf1), Nrf2, and dynamin-related GTPase termed mitofusin-2 (Mfn2) were significantly upregulated in the fetal hearts from exercised dams. Cytochrome c oxidase activity and ATP production were significantly increased, while the hydrogen peroxide level was significantly decreased in the fetal hearts by maternal exercise. Our results demonstrate that maternal exercise initiated at day 1 of gestation could transfer the positive mitochondrial phenotype to fetal hearts.


Asunto(s)
Corazón Fetal/enzimología , Expresión Génica , Genes Mitocondriales , Mitocondrias/genética , Condicionamiento Físico Animal/fisiología , Regulación hacia Arriba , Adenosina Trifosfato/metabolismo , Animales , Complejo IV de Transporte de Electrones/metabolismo , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor Nuclear 1 de Respiración/metabolismo
7.
Reprod Sci ; 20(3): 299-307, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22923417

RESUMEN

We hypothesized that chronic hypoxia disrupts mitochondrial function via oxidative stress in fetal organs. Pregnant guinea pig sows were exposed to either normoxia or hypoxia (10.5% O2, 14 days) in the presence or absence of the antioxidant, N-acetylcysteine (NAC). Near-term anesthetized fetuses were delivered via hysterotomy, and fetal livers, hearts, lungs, and forebrains harvested. We quantified the effects of chronic hypoxia on cytochrome oxidase (CCO) activity and 2 factors known to regulate CCO activity: malondialdehyde (MDA) and CCO subunit 4 (COX4). Hypoxia increased the MDA levels in fetal liver, heart, and lung with a corresponding reduction in CCO activity, prevented by prenatal NAC. The COX4 expression paralleled CCO activity in fetal liver and lung, but was unaltered in fetal hearts due to hypoxia. Hypoxia reduced the brain COX4 expression despite having no effect on CCO activity. This study identifies the mitochondrion as an important target site in tissue-specific oxidative stress for the induction of fetal hypoxic injury.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Corazón Fetal/enzimología , Hipoxia/enzimología , Hígado/enzimología , Pulmón/enzimología , Estrés Oxidativo/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Enfermedad Crónica , Activación Enzimática/fisiología , Femenino , Corazón Fetal/embriología , Cobayas , Hígado/embriología , Pulmón/embriología , Embarazo
8.
Exp Gerontol ; 47(6): 425-31, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22465812

RESUMEN

The longevity gene clk-1/coq7 encodes an enzyme that is essential for the biosynthesis of coenzyme Q (CoQ) in mitochondria and regulates the lifespan and behavioral timing in Caenorhabditis elegans and the chronological lifespan in fission yeast. However, whether the mammalian clk-1/coq7 ortholog (clk-1) regulates these phenotypes in mammals remains to be fully evaluated due to the embryonic lethality of clk-1-deficient (clk-1(-/-)) mice. To investigate whether clk-1 regulates biological functions, such as growth and heartbeat, through CoQ in mouse embryos, we cultivated the cells and hearts of clk-1(-/-) mouse embryos at embryonic day 10.5 (E10.5) for at least 10 days in the presence of fetal bovine serum. In embryonic cells, cardiomyocytes, and hearts, the growth and heart rates were significantly slowed in clk-1(-/-) compared with wild-type or heterozygous mouse tissues. Moreover, frequent apoptosis and a significant reduction in mitochondrial functions, including membrane potential and ATP production, were observed in the clk-1(-/-) cells and hearts. The slowed growth and heart rates and the reduced mitochondrial function of clk-1(-/-) embryonic cells and hearts in culture were almost completely rescued by the administration of exogenous CoQ(10). The results indicate that clk-1 regulates growth and heart rates through CoQ-mediated mitochondrial functions in mouse embryos.


Asunto(s)
Corazón Fetal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Tirosina Quinasas/fisiología , Ubiquinona/análogos & derivados , Vitaminas/farmacología , Adenosina Trifosfato/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Corazón Fetal/enzimología , Corazón Fetal/crecimiento & desarrollo , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Técnicas de Cultivo de Órganos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Tirosina Quinasas/deficiencia , Ubiquinona/administración & dosificación , Ubiquinona/farmacología , Vitaminas/administración & dosificación
9.
Circ Res ; 109(11): 1240-9, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21959220

RESUMEN

RATIONALE: The development of the cardiac outflow tract (OFT) and great vessels is a complex process that involves coordinated regulation of multiple progenitor cell populations. Among these populations, neural crest cells make important contributions to OFT formation and aortic arch remodeling. Although numerous signaling pathways, including Notch, have been implicated in this process, the role of epigenetics in OFT development remains largely unexplored. OBJECTIVE: Because histone deacetylases (Hdacs) play important roles in the epigenetic regulation of mammalian development, we have investigated the function of Hdac3, a class I Hdac, during cardiac neural crest development in mouse. METHODS AND RESULTS: Using 2 neural crest drivers, Wnt1-Cre and Pax3(Cre), we show that loss of Hdac3 in neural crest results in perinatal lethality and cardiovascular abnormalities, including interrupted aortic arch type B, aortic arch hypoplasia, double-outlet right ventricle, and ventricular septal defect. Affected embryos are deficient in aortic arch artery smooth muscle during midgestation, despite intact neural crest cell migration and preserved development of other cardiac and truncal neural crest derivatives. The Hdac3-dependent block in smooth muscle differentiation is cell autonomous and is associated with downregulation of the Notch ligand Jagged1, a key driver of smooth muscle differentiation in the aortic arch arteries. CONCLUSIONS: These results indicate that Hdac3 plays a critical and specific regulatory role in the neural crest-derived smooth muscle lineage and in formation of the OFT.


Asunto(s)
Corazón Fetal/enzimología , Cardiopatías Congénitas/enzimología , Histona Desacetilasas/fisiología , Músculo Liso/patología , Cresta Neural/patología , Timo/anomalías , Médula Suprarrenal/embriología , Animales , Aorta Torácica/anomalías , Diferenciación Celular/fisiología , Linaje de la Célula , Movimiento Celular , Ventrículo Derecho con Doble Salida/embriología , Ventrículo Derecho con Doble Salida/enzimología , Ventrículo Derecho con Doble Salida/genética , Femenino , Corazón Fetal/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Defectos del Tabique Interventricular/embriología , Defectos del Tabique Interventricular/enzimología , Defectos del Tabique Interventricular/genética , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/enzimología , Histona Desacetilasas/deficiencia , Histona Desacetilasas/genética , Masculino , Ratones , Ratones Transgénicos , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/fisiología , Receptores Notch/fisiología , Proteína Wnt1/fisiología
10.
Am J Physiol Heart Circ Physiol ; 301(5): H2113-21, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21856922

RESUMEN

Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart.


Asunto(s)
Cardiomegalia/etiología , Corazón Fetal/enzimología , Hipoxia/complicaciones , Exposición Materna , Metaloproteinasas de la Matriz/metabolismo , Miocitos Cardíacos/enzimología , Efectos Tardíos de la Exposición Prenatal , Remodelación Ventricular , Animales , Animales Recién Nacidos , Western Blotting , Cardiomegalia/enzimología , Cardiomegalia/patología , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Corazón Fetal/patología , Peso Fetal , Colágenos Fibrilares/metabolismo , Edad Gestacional , Hipoxia/enzimología , Hipoxia/patología , Masculino , Miocitos Cardíacos/patología , Embarazo , Ratas , Ratas Sprague-Dawley , Inhibidores Tisulares de Metaloproteinasas/metabolismo
11.
Reprod Sci ; 18(11): 1103-10, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21775771

RESUMEN

This study tested the hypothesis that maternal nicotine ingestion increases matrix metalloproteinase (MMP) expression in fetal hearts, which is mediated by the generation of reactive oxygen species. Timed pregnant guinea pigs were administered either water alone, nicotine (200 µg/mL), N-acetylcysteine (NAC), or nicotine plus NAC in their drinking water for 10 days at 52-day gestation (term = 65 days). Near-term (62 days), anesthetized fetuses were extracted, hearts were excised, and left cardiac ventricles snap frozen for analysis of MMP-2/-9/-13 protein and activity levels. Interstitial collagens were identified by Picrosirius red stain to assess changes in the extracellular matrix. Prenatal nicotine increased active MMP-2 forms and interstitial collagen but had no effect on either pro- or active MMP-9 or MMP-13 forms. In the presence of nicotine, NAC decreased active MMP-2 protein levels and reversed the nicotine-induced increase in collagen staining. We conclude that prenatal nicotine alters MMP-2 expression in fetal hearts that may be mediated by reactive oxygen species generation.


Asunto(s)
Corazón Fetal/efectos de los fármacos , Corazón Fetal/enzimología , Intercambio Materno-Fetal , Metaloproteinasa 2 de la Matriz/análisis , Nicotina/toxicidad , Animales , Colágeno/análisis , Femenino , Cobayas , Inmunohistoquímica , Nicotina/administración & dosificación , Embarazo
12.
Mol Cell Biol ; 30(14): 3711-21, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20457809

RESUMEN

One essential downstream signaling pathway of receptor tyrosine kinases (RTKs), such as vascular endothelial growth factor receptor (VEGFR) and the Tie2 receptor, is the phosphoinositide-3 kinase (PI3K)-phosphoinositide-dependent protein kinase 1 (PDK1)-Akt/protein kinase B (PKB) cascade that plays a critical role in development and tumorigenesis. However, the role of PDK1 in cardiovascular development remains unknown. Here, we deleted PDK1 specifically in endothelial cells in mice. These mice displayed hemorrhage and hydropericardium and died at approximately embryonic day 11.5 (E11.5). Histological analysis revealed defective vascular remodeling and development and disrupted integrity between the endothelium and trabeculae/myocardium in the heart. The atrioventricular canal (AVC) cushion and valves failed to form, indicating a defect in epithelial-mesenchymal transition (EMT), together with increased endothelial apoptosis. Consistently, ex vivo AVC explant culture showed impeded mesenchymal outgrowth. Snail protein was reduced and was absent from the nucleus in AVC cells. Delivery of the Snail S6A mutant to the AVC explant effectively rescued EMT defects. Furthermore, adenoviral Akt delivery rescued EMT defects in AVC explant culture, and deletion of PTEN delayed embryonic lethality of PDK1 endothelial deletion mice by 1 day and rendered normal development of the AVC cushion in the PDK1-deficient heart. Taken together, these results have revealed an essential role of PDK1 in cardiovascular development through activation of Akt and Snail.


Asunto(s)
Corazón Fetal/embriología , Corazón Fetal/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Apoptosis , Nodo Atrioventricular/anomalías , Nodo Atrioventricular/embriología , Nodo Atrioventricular/enzimología , Secuencia de Bases , Cartilla de ADN/genética , Técnicas de Cultivo de Embriones , Células Endoteliales/enzimología , Células Endoteliales/patología , Epitelio/embriología , Epitelio/enzimología , Femenino , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/enzimología , Cardiopatías Congénitas/genética , Válvulas Cardíacas/anomalías , Válvulas Cardíacas/embriología , Válvulas Cardíacas/enzimología , Mesodermo/embriología , Mesodermo/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfohidrolasa PTEN/metabolismo , Embarazo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo
13.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 34(2): 139-47, 2009 Feb.
Artículo en Chino | MEDLINE | ID: mdl-19270354

RESUMEN

OBJECTIVE: To investigate the effect of hyperglycaemia on the cardiomyodial change of rat fetus. METHODS: Thirty clean SD pregnant rats were randomly dividing into group A, B and C, 10 in each group. Group A were injected intraperitoneally 50 mg/kg streptozotocin on the 6th day of pregnancy, Group B were injected the same dose on the 13th day of pregnancy, while Group C were injected intraperitoneally 0.1 mmol/L citrate buffer solution on the 6th day of pregnancy. All rats were killed on the 21st day of pregnancy, the total fetus, live fetus, weight, and length of fetus were recorded. The blood glucose in the fetal rats was measured, and the fetal hearts were collected. The fetal hearts were pathologically examined under light microscope and electron microscope. Immunohistochemical staining was applied to determine Caspase-3 in the heart of fetus. RESULTS: (1) The blood glucose of pregnant rats in the 3 groups showed no difference before intervening (P>0.05). There was significant difference between Group A and C, Group B and C after intervening (P<0.01), but no significant difference between Group A and B was found (P>0.05). (2 )The fetus in Group A and B was heavier and longer than in Group C, with significant difference (P<0.01), but not between Group A and B (P>0.05). The blood glucose of fetus in Group A and B was lower than that in Group C, with significant difference (P<0.01), but not between Group A and B (P>0.05). The rate of fetal death in Group A, B, and C were 31.96%,12.84%, and 3.88%, respectively. Significant deviation existed in the 3 groups (P<0.01). (3) Under light microscope, fetal hearts in Group A and B showed disorder, cardiac muscle cells swelled. There were vacuoles in cytolymph and necrosis in the myocardial tissue. Significant deviation in the integral of fetal necrosis existed in the 3 groups (P<0.01). (4) Caspase-3 was detected in the fetal hearts, the positive area ratio and mean OD value had significant deviation in the 3 groups (P<0.01).(5) Under the electron microscope, cardiomyocytes wrinkled, mitochondrion decreased, myofibril ruptured, while sarcomere blurred. The density of mitochondria in cardiamyocyte in Group A was lower than that in Group B and C (P<0.01), and the average volume of mitochondria of Group A and B was higher than that in Group C (P<0.01). CONCLUSION: There is apparent pathological change of fetal hearts in pregnant rats with hyperglycaemia. The longer the duration, the more obvious the change.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Gestacional/sangre , Corazón Fetal/ultraestructura , Animales , Caspasa 3/metabolismo , Femenino , Corazón Fetal/enzimología , Intercambio Materno-Fetal , Embarazo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
14.
BMC Dev Biol ; 8: 47, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18439271

RESUMEN

BACKGROUND: The PKD family of serine/threonine kinases comprises a single member in Drosophila (dPKD), two isoforms in C. elegans (DKF-1 and 2) and three members, PKD1, PKD2 and PKD3 in mammals. PKD1 and PKD2 have been the focus of most studies up to date, which implicate these enzymes in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, immune responses, apoptosis and cell proliferation. Concerning PKD3, a role in the formation of vesicular transport carriers at the trans-Golgi network (TGN) and in basal glucose transport has been inferred from in vitro studies. So far, however, the physiological functions of the kinase during development remain unknown. RESULTS: We have examined the expression pattern of PKD3 during the development of mouse embryos by immunohistochemistry. Using a PKD3 specific antibody we demonstrate that the kinase is differentially expressed during organogenesis. In the developing heart a strong PKD3 expression is constantly detected from E10 to E16.5. From E12.5 on PKD3 is increasingly expressed in neuronal as well as in the supporting connective tissue and in skeletal muscles. CONCLUSION: The data presented support an important role for PKD3 during development of these tissues.


Asunto(s)
Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica , Proteína Quinasa C/genética , Animales , Western Blotting , Tejido Conectivo/embriología , Tejido Conectivo/enzimología , Embrión de Mamíferos/metabolismo , Femenino , Corazón Fetal/embriología , Corazón Fetal/enzimología , Regulación Enzimológica de la Expresión Génica/genética , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/embriología , Músculo Esquelético/enzimología , Tejido Nervioso/embriología , Tejido Nervioso/enzimología , Organogénesis , Embarazo
15.
Circulation ; 117(11): 1414-22, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18316483

RESUMEN

BACKGROUND: Protein kinase A signaling has long been known to play an important role in cardiac function. Dysregulation of the protein kinase A system, caused by mutation of the protein kinase A regulatory subunit gene PRKAR1A, causes the inherited tumor syndrome Carney complex, which includes cardiac myxomas as one of its cardinal features. Mouse models of this genetic defect have been unsatisfactory because homozygote null animals die early in development and heterozygotes do not exhibit a cardiac phenotype. METHODS AND RESULTS: To study the cardiac-specific effects resulting from complete loss of Prkar1a, we used cre-lox technology to generate mice lacking this protein specifically in cardiomyocytes. Conditional knockout mice died at day 11.5 to 12.5 of embryogenesis with thin-walled, dilated hearts. These hearts showed elevated protein kinase A activity and decreased cardiomyocyte proliferation before demise. Analysis of the expression of transcription factors required for cardiogenesis revealed downregulation of key cardiac transcription factors such as the serum response factor, Gata4, and Nkx2-5. Although heart wall thickness was reduced overall, specific areas exhibited morphological changes consistent with myxomatous degeneration in the walls of knockout hearts. CONCLUSIONS: Loss of Prkar1a from the heart causes a failure of proper myocardial development with subsequent cardiac failure and embryonic demise. These changes appear to be due to suppression of cardiac-specific transcription by increased protein kinase A activity. These biochemical changes lead to myxoma-like changes, indicating that these mice may be a good model with which to study the formation of these tumors.


Asunto(s)
Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/deficiencia , Corazón Fetal/patología , Neoplasias Cardíacas/genética , Mixoma/genética , Animales , Apoptosis , División Celular , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Regulación hacia Abajo , Muerte Fetal/enzimología , Muerte Fetal/genética , Corazón Fetal/enzimología , Corazón Fetal/ultraestructura , Genes Letales , Neoplasias Cardíacas/patología , Integrasas , Ratones , Ratones Noqueados , Modelos Animales , Miocitos Cardíacos/enzimología , Mixoma/patología , Síndromes Neoplásicos Hereditarios/enzimología , Síndromes Neoplásicos Hereditarios/genética , Especificidad de Órganos , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
16.
Circulation ; 116(12): 1413-23, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17875982

RESUMEN

Mitogen-activated protein (MAP) kinases belong to a highly conserved family of Ser-Thr protein kinases in the human kinome and have diverse roles in broad physiological functions. The 4 best-characterized MAP kinase pathways, ERK1/2, JNK, p38, and ERK5, have been implicated in different aspects of cardiac regulation, from development to pathological remodeling. Recent advancements in the development of kinase-specific inhibitors and genetically engineered animal models have revealed significant new insights about MAP kinase pathways in the heart. However, this explosive body of new information also has yielded many controversies about the functional role of specific MAP kinases as either detrimental promoters or critical protectors of the heart during cardiac pathological processes. These uncertainties have raised questions on whether/how MAP kinases can be targeted to develop effective therapies against heart diseases. In this review, recent studies examining the role of MAP kinase subfamilies in cardiac development, hypertrophy, and survival are summarized.


Asunto(s)
Cardiopatías/enzimología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Miocardio/enzimología , Animales , Animales Modificados Genéticamente , Ensayos Clínicos como Asunto , Cricetinae , Evaluación Preclínica de Medicamentos , Corazón Fetal/enzimología , Cardiopatías Congénitas/enzimología , Cardiopatías/tratamiento farmacológico , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
17.
Genes Dev ; 21(14): 1790-802, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17639084

RESUMEN

Histone deacetylases (HDACs) tighten chromatin structure and repress gene expression through the removal of acetyl groups from histone tails. The class I HDACs, HDAC1 and HDAC2, are expressed ubiquitously, but their potential roles in tissue-specific gene expression and organogenesis have not been defined. To explore the functions of HDAC1 and HDAC2 in vivo, we generated mice with conditional null alleles of both genes. Whereas global deletion of HDAC1 results in death by embryonic day 9.5, mice lacking HDAC2 survive until the perinatal period, when they succumb to a spectrum of cardiac defects, including obliteration of the lumen of the right ventricle, excessive hyperplasia and apoptosis of cardiomyocytes, and bradycardia. Cardiac-specific deletion of either HDAC1 or HDAC2 does not evoke a phenotype, whereas cardiac-specific deletion of both genes results in neonatal lethality, accompanied by cardiac arrhythmias, dilated cardiomyopathy, and up-regulation of genes encoding skeletal muscle-specific contractile proteins and calcium channels. Our results reveal cell-autonomous and non-cell-autonomous functions for HDAC1 and HDAC2 in the control of myocardial growth, morphogenesis, and contractility, which reflect partially redundant roles of these enzymes in tissue-specific transcriptional repression.


Asunto(s)
Corazón Fetal/enzimología , Corazón Fetal/crecimiento & desarrollo , Histona Desacetilasas/fisiología , Proteínas Represoras/fisiología , Animales , Animales Recién Nacidos , Apoptosis , Canales de Calcio/genética , Proliferación Celular , Femenino , Corazón Fetal/fisiología , Eliminación de Gen , Expresión Génica , Cardiopatías Congénitas/enzimología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Histona Desacetilasas/deficiencia , Histona Desacetilasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Morfogénesis , Proteínas Musculares/genética , Contracción Miocárdica , Embarazo , Proteínas Represoras/genética
18.
Mol Pharmacol ; 71(5): 1203-5, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17303699

RESUMEN

Why babies of crack-cocaine mothers develop heart problems has always been a mystery. In this issue of Molecular Pharmacology, Zhang et al. (p. 1319) show that a specific methylation occurs at the protein kinase Cepsilon (PKCepsilon) promoter of the babies born of mother rats exposed to cocaine. This reduces the expression of PKCepsilon, a naturally cardioprotective enzyme, which provides a plausible molecular mechanism for cardiac failure.


Asunto(s)
Metilación de ADN , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Animales , Cocaína/administración & dosificación , Cocaína/farmacología , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Femenino , Corazón Fetal/efectos de los fármacos , Corazón Fetal/enzimología , Humanos , Embarazo , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Ratas , Factor de Transcripción AP-1/metabolismo
19.
Mol Pharmacol ; 71(5): 1319-28, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17202284

RESUMEN

Protein kinase Cepsilon (PKCepsilon) plays a pivotal role in cardioprotection during cardiac ischemia and reperfusion injury. Recent studies demonstrated that prenatal cocaine exposure caused a decrease in PKCepsilon expression and increased heart susceptibility to ischemic injury in adult offspring, suggesting an in utero programming of PKCepsilon gene expression pattern in the heart. The present investigation aimed to elucidate whether an epigenetic mechanism, DNA methylation, accounts for cocaine-mediated repression of the PKCepsilon gene in the heart. Pregnant rats were administered either saline or cocaine intraperitoneally (15 mg/kg) twice daily from days 15 to 20 of gestational age, and term fetal hearts were studied. Cocaine treatment significantly decreased PKCepsilon mRNA and protein levels in the heart. CpG dinucleotides found in cAMP response element-binding protein (CREB), CREB/c-Jun1, and CREB/c-Jun2 binding sites at the proximal promoter region of the PKCepsilon gene were densely methylated and were not affected by cocaine. In contrast, methylation of CpGs in the activator protein 1 (AP-1) binding sites was low but was significantly increased by cocaine. Reporter gene assays showed that the AP-1 binding site played a strong stimulatory role of PKCepsilon gene transcription. Methylation of the AP-1 binding sites significantly decreased AP-1 binding to the PKCepsilon promoter. Supershift analyses implicated c-Jun homodimers binding to the AP-1 binding sites. Cocaine did not affect nuclear c-Jun levels or the binding of c-Jun to the unmethylated AP-1 binding sites. The results indicate a role for DNA methylation in cocaine-mediated PKCepsilon gene repression in the developing heart and suggest an epigenetic mechanism affecting this gene linked with vulnerability of ischemic injury in the heart of adult offspring.


Asunto(s)
Cocaína/farmacología , Epigénesis Genética/efectos de los fármacos , Corazón Fetal/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Proteína Quinasa C-epsilon/genética , Animales , Secuencia de Bases , Sitios de Unión/efectos de los fármacos , Cocaína/administración & dosificación , Metilación de ADN/efectos de los fármacos , Ensayo de Cambio de Movilidad Electroforética , Femenino , Corazón Fetal/enzimología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Exposición Materna , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Embarazo , Regiones Promotoras Genéticas/efectos de los fármacos , Proteína Quinasa C-epsilon/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/enzimología , Factor de Transcripción AP-1/metabolismo
20.
J Soc Gynecol Investig ; 13(7): 483-90, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16979353

RESUMEN

OBJECTIVE: The purpose of the present study was to quantify the effect of chronic hypoxia on endothelial nitric oxide synthase (eNOS) gene and protein expression of fetal coronary artery segments and cardiac tissue of fetal guinea pig hearts. METHODS: Time-mated pregnant guinea pigs (term = 65 days) were housed in room air (NMX, n = 6) or in a hypoxic chamber containing 10.5% O2 for 14 days (HPX14, n = 6). At near term (60 days gestation), fetuses were excised from anesthetized animals via hysterotomy and hearts were removed and weighed. Both coronary artery segments and cardiac ventricle were excised from the same hearts, frozen, and stored at -80 C until ready for study. eNOS mRNA was quantified using real-time polymerase chain reaction (PCR) based on SYBR Green I labeling (BioRad Laboratories, Hercules, CA) using eNOS primers obtained from GeneBank normalized to 18S. eNOS proteins were quantified by Western immunoblotting using eNOS antibody (1:200) and normalized to normoxic controls. eNOS cell-specific localization in the fetal guinea pig heart was performed by double immunofluorescence staining. RESULTS: Both coronary artery endothelial cells (EC) and cardiomyocytes (CM) but not vascular smooth muscle cells of normoxic hearts exhibited positive immunostaining of eNOS protein. Chronic hypoxia significantly (P < .05) increased both eNOS mRNA and protein levels of coronary artery segments (by 210.6% and 51.4%, respectively) but decreased (P < .05) mRNA and protein of cardiac tissue (by 50.0% and 40.6%, respectively) in the same hearts. CONCLUSIONS: Chronic fetal hypoxia, after 14 days, induces sustained changes in eNOS gene and eNOS protein expression that differ between coronary and cardiac tissue in the fetal guinea pig heart. This study suggests that while the functional roles of altered eNOS expression in hypoxic fetal hearts remain unclear, the site at which eNOS expression is altered may be important in the adaptive response of the fetal heart to hypoxia.


Asunto(s)
Vasos Coronarios/enzimología , Corazón Fetal/enzimología , Hipoxia Fetal/enzimología , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética , Animales , Western Blotting , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Cobayas , Modelos Animales , Reacción en Cadena de la Polimerasa , Embarazo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...