RESUMEN
The prolonged period of low temperatures in northern China poses a significant challenge to the bioremediation of antibiotic pollution. This study reports that a white-rot fungus Bjerkandera adusta DH0817, isolated from a poultry farm in Liaoning Province, can remove 60 % of SDZ within 20 days at 10°C and reduce the biotoxicity of SDZ. Six degradation pathways were proposed. SDZ biodegradation was primarily driven by cytochrome P450. Transcriptome analysis revealed that DH0817 upregulated genes associated with cell membrane, transcription factors and soluble sugars in response to low temperatures. Subsequently, genes associated with fatty acid, proteins and enzymes were upregulated to remove SDZ at low temperatures. This study provides valuable microbial resources and serves as a theoretical reference for addressing antibiotic pollution in livestock and poultry farms under low temperature conditions.
Asunto(s)
Biodegradación Ambiental , Frío , Coriolaceae/metabolismo , Coriolaceae/genética , Adaptación Fisiológica , AnimalesRESUMEN
Humanity is often fascinated by structures and materials developed by Nature. While structural materials such as wood have been widely studied, the structural and mechanical properties of fungi are still largely unknown. One of the structurally interesting fungi is the polypore Fomes fomentarius. The present study deals with the investigation of the light but robust fruiting body of F. fomentarius. The four segments of the fruiting body (crust, trama, hymenium, and mycelial core) were examined. The comprehensive analysis included structural, chemical, and mechanical characterization with particular attention to cell wall composition, such as chitin/chitosan and glucan content, degree of deacetylation, and distribution of trace elements. The hymenium exhibited the best mechanical properties even though having the highest porosity. Our results suggest that this outstanding strength is due to the high proportion of skeletal hyphae and the highest chitin/chitosan content in the cell wall, next to its honeycomb structure. In addition, an increased calcium content was found in the hymenium and crust, and the presence of calcium oxalate crystals was confirmed by SEM-EDX. Interestingly, layers with different densities as well as layers of varying calcium and potassium depletion were found in the crust. Our results show the importance of considering the different structural and compositional characteristics of the segments when developing fungal-inspired materials and products. Moreover, the porous yet robust structure of hymenium is a promising blueprint for the development of advanced smart materials.
Asunto(s)
Cuerpos Fructíferos de los Hongos , Cuerpos Fructíferos de los Hongos/química , Quitina/química , Quitina/metabolismo , Pared Celular/química , Coriolaceae/metabolismo , Coriolaceae/química , Quitosano/química , Fuerza Compresiva , Glucanos/química , Glucanos/metabolismo , PorosidadRESUMEN
The biocatalytic aerobic "in-water" reduction of anthranilic acid to 2-aminobenzaldehyde by growing cultures of the basidiomycetous white-rot fungus Bjerkandera adusta has been studied. The high specific activity of Bjerkandera adusta towards the carboxylic group of anthranilic acid that allows avoiding the formation of the corresponding alcohol has been demonstrated using different substrate concentrations. The presence of ethanol as co-solvent allows increasing the yield of target product. In contrast to chemical reducing agents that usually yield 2-aminobenzyl alcohol, an overreduction of anthranilic acid is completely suppressed by the fungus and gives the target flavor compound in satisfactory preparative yields. It was shown that the activity of Bjerkandera adusta towards anthranilic acid does not apply to its m- and p-isomers.
Asunto(s)
Benzaldehídos , ortoaminobenzoatos , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo , Benzaldehídos/química , Benzaldehídos/metabolismo , Oxidación-Reducción , Coriolaceae/metabolismo , Coriolaceae/químicaRESUMEN
The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin-DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the levels of phenolic compounds (PhC) and free radicals (SOR) were determined during the biotransformation of anthracyclines by B. adusta strain CCBAS 930. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (MARA assay), and genotoxicity of anthracyclines were evaluated after biological treatment. After 120 h, more than 90% of anthracyclines were removed by the immobilized mycelium of B. adusta CCBAS 930. The effective biotransformation of anthracyclines was correlated with detoxification and reduced genotoxicity.
Asunto(s)
Antraciclinas/metabolismo , Coriolaceae/metabolismo , Citostáticos/metabolismo , Micelio/metabolismo , Biotransformación/fisiología , Radicales Libres/metabolismo , Lepidium sativum/metabolismo , Oxidorreductasas/metabolismo , Fenoles/metabolismoRESUMEN
Aflatoxins (AFs) are biologically active toxic metabolites, which are produced by certain toxigenic Aspergillus sp. on agricultural crops. In this study, five edible mushroom-forming fungi were analyzed using high-performance liquid chromatography fluorescence detector (HPLC-FLD) for their ability to remove aflatoxin B1 (AFB1), one of the most potent naturally occurring carcinogens known. Bjerkandera adusta and Auricularia auricular-judae showed the most significant AFB1 removal activities (96.3% and 100%, respectively) among five strains after 14-day incubation. The cell lysate from B. adusta exhibited higher AFB1 removal activity (35%) than the cell-free supernatant (13%) after 1-day incubation and the highest removal activity (80%) after 5-day incubation at 40 °C. In addition, AFB1 analyses using whole cells, cell lysates, and cell debris from B. adusta showed that cell debris had the highest AFB1 removal activity at 5th day (95%). Moreover, exopolysaccharides from B. adusta showed an increasing trend (24-48%) similar to whole cells and cell lysates after 5- day incubation. Our results strongly suggest that AFB1 removal activity by whole cells was mainly due to AFB1 binding onto cell debris during early incubation and partly due to binding onto cell lysates along with exopolysaccharides after saturation of AFB1 binding process onto cell wall components.
Asunto(s)
Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Agaricales/metabolismo , Aspergillus/química , Aspergillus/metabolismo , Biodegradación Ambiental , Contaminación de Alimentos , Auricularia/metabolismo , Coriolaceae/metabolismo , Productos Agrícolas/microbiología , Hericium/metabolismo , República de Corea , Hongos Shiitake/metabolismo , Wolfiporia/metabolismoRESUMEN
White rot mushroom Fomes fomentarius is a medicinal fungus with great potential to be explored. This work focused on the chemical composition of a basic aqueous extract from F. fomentarius fruiting bodies. The extract was mostly composed of phenolics, carbohydrates, minerals, and crude fat with a low amount of proteins and chitin. One-third of the total carbohydrates were in the form of beta-glucans with minor amounts of alpha-glucans. The most valuable essential part of the extract was composed of an acid-resistant ultraviolet (UV)-absorbing mixture of phenolic compounds such as melanins, lignins, and humic acids. These compounds, also referred to as melanin-like pigments, provided for the high antioxidant activity of the extract measured in vitro. Moderate sun-protective capacity was observed with regard to UVB rays and also expected in the UVA range. Quantification of melanin-like pigments in the F. fomentarius extract was possible either gravimetrically as acid-insoluble residue or spectrophotometrically in the UV region. Melanin estimation, based on nitrogen measurements, offered misleading results due to the presence of nitrogen-free melanins along with other nitrogen-containing compounds such as proteins and chitin. F. fomentarius water-soluble basic extract, containing beta-glucans and rich in melanin-like substances, could be used, for example, for topical skin application to prevent cell damage caused by excessive UV exposure or cytotoxic free radicals. The bioactive potential, safety, and further applications of the F. fomentarius extract are currently being investigated.
Asunto(s)
Coriolaceae/química , Cuerpos Fructíferos de los Hongos/química , Rayos Ultravioleta , Álcalis , Carbohidratos/análisis , Coriolaceae/metabolismo , Grasas/análisis , Cuerpos Fructíferos de los Hongos/metabolismo , Proteínas Fúngicas/análisis , Minerales/análisis , Capacidad de Absorbancia de Radicales de Oxígeno , Fenoles/análisis , Protectores Solares/químicaRESUMEN
Fermentation is a metabolic process that converts sugars into acids, gases, or alcohol. This process occurs in yeasts and bacteria, as well as in muscle cells when faced with a lack of oxygen. In this paper, isolation, culture, purification and extracellular polysaccharides of strain Fomes fomentarius were studied. Extraction of polysaccharides from a culture based on F. fomentarius extracellular polysaccharides, extracellular polysaccharides fermentation experiments was optimized and compared, the optimal fermentation method was obtained; extracellular polysaccharides were sulfated, phosphorylated experiments, selenium acidified, discussed the preparation of derivative polysaccharides and microscopic detection, and finally studied extracellular polysaccharides on DPPH, The scavenging ability, superoxide anion radical and hydroxyl radical scavenging ability of the derived polysaccharides were compared. The results showed that the extracellular polysaccharide and derivatized polysaccharide of F. fomentarius had certain antioxidant activity.
Asunto(s)
Antioxidantes/metabolismo , Coriolaceae/metabolismo , Espacio Extracelular/química , Fermentación , Polisacáridos/metabolismo , Biomasa , Carbono/farmacología , Fermentación/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Concentración de Iones de Hidrógeno , Micelio/efectos de los fármacos , Nitrógeno/farmacología , Fosforilación , Polisacáridos/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Espectrofotometría Infrarroja , Temperatura , Oligoelementos/análisisRESUMEN
Fungal mycelia can eliminate almost all cocultured cyanobacterial cells within a short time. However, molecular mechanisms of algicidal fungi are poorly understood. In this study, a time-course transcriptomic analysis of algicidal fungus Bjerkandera adusta T1 was applied to investigate gene expression and regulation. A total of 132, 300, 422, and 823 differentially expressed genes (DEGs) were identified at 6, 12, 24, and 48 hr, respectively. Most DEGs exhibited high endopeptidase activity, cellulose catabolic process, and transmembrane transporter activity by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Many decomposition genes encoding endopeptidases were induced a little later in B. adusta T1 when compared with previously investigated algicidal fungus Trametes versicolor F21a. Besides, the accumulated expression of Polysaccharide lyases8 (PL8) gene with peptidoglycan and alginate decomposition abilities was greatly delayed in B. adusta T1 relative to T. versicolor F21a. It was implied that endopeptidases and enzymes of PL8 might be responsible for the strong algicidal ability of B. adusta T1 as well as T. versicolor F21a.
Asunto(s)
Antibiosis/fisiología , Coriolaceae/genética , Cianobacterias/metabolismo , Endopeptidasas/genética , Polyporaceae/genética , Polisacárido Liasas/genética , Alginatos/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiología , Celulosa/genética , Celulosa/metabolismo , Coriolaceae/metabolismo , Endopeptidasas/metabolismo , Eutrofización/fisiología , Perfilación de la Expresión Génica , Genoma Fúngico/genética , Peptidoglicano/metabolismo , Polyporaceae/metabolismo , Polisacárido Liasas/metabolismo , Transcriptoma , Secuenciación Completa del GenomaRESUMEN
The aim of the present work is to evaluate the ability of 'fungi' for the biodegradation of recalcitrant xenobiotic compound, 'Atrazine' in batch liquid cultures. Different parameters like pH (2.0-8.0) temperature (16-32 °C), biomass (1-5 g), and concentration (25-100 ppm) were optimized for the efficient degradation of atrazine. The decomposition behavior of atrazine is analyzed with the help of Fourier Transform Infrared (FTIR) spectroscopy. Herein, we have reported that the Bjerkandera adusta possess high removal efficiency of the xenobiotic compound (atrazine) up to 92%. The fungal strain investigated could prove to be a valuable active pesticide degrading micro-organism, with high detoxification values. These results are useful for improved understanding and prediction of the behavior and fate of B. adusta in the bio-purification of wastewater contaminated with xenobiotics. Thus providing a new and green approach for the remediation of toxicants without altering the environmental components.
Asunto(s)
Atrazina/metabolismo , Coriolaceae/fisiología , Xenobióticos/metabolismo , Biodegradación Ambiental , Biomasa , Coriolaceae/metabolismo , Aguas ResidualesRESUMEN
Wheat bran was solid state fermented by Fomitopsis pinicola. The results showed that the processing properties were increased by fermentation and the content of total phenol and alkylresorcinols was 5.91 and 1.55 times of the unfermented bran respectively by the 6th day. The total antioxidant capacity was 5.73 times of the unfermented sample by the 4th day. Electronic nose analysis showed that the fermented wheat bran had a special flavor. GC-MS analysis found that 4-ethyl-2-methoxy-phenol was the main flavor substance, which was sharply increased during the fermentation. Furthermore, the textural properties of the dough and bread containing fermented bran were significantly improved. The content of phytic acid in the bread was significantly decreased, while the protein, total phenol and alkylresorcinols contents were significantly increased. Results suggest that solid state fermentation by Fomitopsis pinicola is a promising way to improve wheat bran to a nutritious and flavorful cereal food ingredient.
Asunto(s)
Coriolaceae/metabolismo , Fibras de la Dieta/análisis , Antioxidantes/química , Técnicas de Cultivo Celular por Lotes , Pan/análisis , Nariz Electrónica , Aromatizantes/análisis , Cromatografía de Gases y Espectrometría de Masas , Fenoles/química , Fenoles/metabolismo , Resorcinoles/química , Resorcinoles/metabolismo , Compuestos Orgánicos Volátiles/análisisRESUMEN
Medicinal mushrooms of the order Polyporales have a long history of use, which is evidenced by the finding of dissected fruiting bodies with Ötzi, who lived over 5000â years ago. Because of its valuable biological properties and its use in 18th and 19th-century pharmacy, Fomitopsis officinalis used to be mass-collected. Moreover, the large demand for larch wood and non-wood materials (resin) caused an excessive exploitation of larch forests, which directly contributed to the disappearance of F. officinalis from its natural environment. The qualities of medicinal preparations obtained from the F. officinalis fruiting bodies are determined by the unique composition of its bioactive compounds, such as: triterpenoids, polysaccharides, organic acids, coumarins and phenolic compounds. It has been proved that both crude extracts and the compounds isolated from F. officinalis have a wide spectrum of therapeutic effects, including anti-inflammatory, cytotoxic, and antimicrobial effects.
Asunto(s)
Coriolaceae/química , Medicina Tradicional , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Bacterias/efectos de los fármacos , Coriolaceae/metabolismo , Cuerpos Fructíferos de los Hongos/química , Cuerpos Fructíferos de los Hongos/metabolismo , Hongos/efectos de los fármacos , Humanos , Polisacáridos/química , Polisacáridos/farmacología , Triterpenos/química , Triterpenos/farmacologíaRESUMEN
Abstract: A main cellular functional module that becomes dysfunctional during aging is the proteostasis network. In the present study, we show that benzoic acid derivatives isolated from Bjerkandera adusta promote the activity of the two main protein degradation systems, namely the ubiquitin-proteasome (UPP) and especially the autophagy-lysosome pathway (ALP) in human foreskin fibroblasts. Our findings were further supported by in silico studies, where all compounds were found to be putative binders of both cathepsins B and L. Among them, compound 3 (3-chloro-4-methoxybenzoic acid) showed the most potent interaction with both enzymes, which justifies the strong activation of cathepsins B and L (467.3 ± 3.9%) on cell-based assays. Considering that the activity of both the UPP and ALP pathways decreases with aging, our results suggest that the hydroxybenzoic acid scaffold could be considered as a promising candidate for the development of novel modulators of the proteostasis network, and likely of anti-aging agents.
Asunto(s)
Autofagia/fisiología , Coriolaceae/química , Hidroxibenzoatos/farmacología , Lisosomas/fisiología , Proteostasis/efectos de los fármacos , Ácido Benzoico/farmacología , Catepsinas/metabolismo , Extractos Celulares/farmacología , Línea Celular , Coriolaceae/metabolismo , Humanos , Hidroxibenzoatos/química , Simulación del Acoplamiento Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
During submerged cultivation, the edible basidiomycete Fomitopsis betulina (previously Piptoporus betulinus) developed a fruity odor, strongly reminding of pineapple. Olfactometric analysis showed that this impression was mainly caused by the two (5E/Z,7E,9)-decatrien-2-ones. At the time of maximum concentration on the 5th day, the (5E/5Z)-ratio was 94:6. Three hypotheses were experimentally examined to shed light onto the genesis of the uncommon volatiles: first, an indirect effect of agro-industrial side-streams, such as cabbage cuttings, supporting good growth; second, an unsaturated odd-numbered fatty acid precursor; and third, a polyketide-like pathway. In the presence of 1-13C- or 2-13C-acetate up to five acetates were incorporated into the molecular ions of the C10-body. Addition of 1-13C-pyruvate or 1-13C-lactate did not confirm an odd-numbered starter of the polyketide chain. None of the methylketones was found in pineapple or any other food before.
Asunto(s)
Coriolaceae/química , Odorantes/análisis , Compuestos Orgánicos Volátiles/química , Acetatos/análisis , Isótopos de Carbono/análisis , Coriolaceae/crecimiento & desarrollo , Coriolaceae/metabolismo , Cetonas/química , Compuestos Orgánicos Volátiles/metabolismoRESUMEN
The aim of this study was to evaluate of possibility of biotransformation and toxicity effect of monoanthraquinone dyes in cultures of Bjerkandera adusta CCBAS 930. Phenolic compounds, free radicals, phytotoxicity (Lepidium sativum L.), ecotoxicity (Vibrio fischeri) and cytotoxicity effect were evaluated to determine the toxicity of anthraquinone dyes before and after the treatment with B. adusta CCBAS 930. More than 80% of ABBB and AB129 was removed by biodegradation (decolorization) and biosorption, but biodegradation using oxidoreductases was the main dye removing mechanism. Secondary products toxic to plants and bacteria were formed in B. adusta strain CCBAS 930 cultures, despite efficient decolorization. ABBB and AB129 metabolites increased reactive oxygen species (ROS) production in human fibroblasts, but did not increase LDH release, did not affect the resazurine reduction assay and did not change caspase-9 or caspase-3 activity.
Asunto(s)
Antraquinonas/metabolismo , Antraquinonas/toxicidad , Colorantes/metabolismo , Colorantes/toxicidad , Coriolaceae/metabolismo , Aliivibrio fischeri/efectos de los fármacos , Biodegradación Ambiental , Biotransformación , Colorantes/química , Humanos , Lepidium sativum/efectos de los fármacos , Fenoles/análisisRESUMEN
The study characterizes the anamorphic Bjerkandera adusta strain CCBAS 930, including growth conditions, physiological properties, and enzymatic activities related to basic metabolism and specific properties coupled with the fungal secondary metabolism. It was established that the fungus grows in a wide pH range (3.5-7.5), up to 3% of salt concentration and a temperature of 5-30 °C. Media rich in natural organic components (potato, maize extracts, whey) are optimal for biomass propagation. Minimal media, containing mineral salts and glucose as well as static growth conditions, are required to obtain idiophasic mycelium, equivalent to the secondary metabolism of the fungus. Of the 7 complex C, N, and energy sources tested, the strain did not utilize only fibrous cellulose. Lipolytic activity reached the highest values of the enzymatic activities corresponding to those capabilities. The specific properties of strain B. adusta CCBAS 930 determined by the production of HRP-like peroxidase were related to the decolorization and biodegradation of anthraquinone derivative daunomycin. The decolorization of 30% of daunomycin effluents occurred most rapidly in iso-osmotic medium and non-enriched with nitrogen, containing 0.25% glucose, pH = 5.0-6.0, and 25-30 °C. In agitated cultures, the strain decolorized solutions of daunomycin by biosorption, which coincided with the inhibition of aerial mycelium production and HRP-like biosynthesis. Based on knowledge, potential and real possibilities of using the strain in bioremediation of colored industrial sewage were discussed.
Asunto(s)
Biodegradación Ambiental , Coriolaceae , Daunorrubicina/metabolismo , Antineoplásicos/metabolismo , Coriolaceae/crecimiento & desarrollo , Coriolaceae/metabolismo , Residuos IndustrialesRESUMEN
The wastewaters from distilleries of winemaking by-products, a scarcely studied type of vinasse, were treated by white-rot fungal strains from species Irpex lacteus, Ganoderma resinaceum, Trametes versicolor, Phlebia rufa and Bjerkandera adusta. The main objectives of this study were to evaluate fungal performance during vinasse biodegradation, their enzyme patterns and ecotoxicity evolution throughout treatment. Despite all strains were able to promote strong (>80%) dephenolization and reduction of total organic carbon (TOC), P. rufa was less affected by vinasse toxicity and exhibit better decolorization. In batch cultures at 28⯰C and pH 4.0, the first phase of P. rufa biodegradation kinetics was characterized by strong metabolic activity with simultaneous depletion of TOC, phenolics and sugars. The main events of second phase are the increase of peroxidases production after the peak of laccase activity, and strong color removal. At the end of treatment, it was observed highly significant (pâ¯<â¯0.001) abatement of pollution parameters (83-100% removal). Since water reclamation and reuse for e.g. crop irrigation is a priority issue, vinasse ecotoxicity was assessed with bioindicators representing three different phylogenetic and trophic levels: a marine bacterium (Aliivibrio fischeri), a freshwater microcrustacean (Daphnia magna) and a dicotyledonous macrophyte (Lepidium sativum). It was observed significant (pâ¯<â¯0.05) reduction of initial vinasse toxicity, as evaluated by these bioindicators, deserving special mention an almost complete phytotoxicity elimination.
Asunto(s)
Aliivibrio fischeri/crecimiento & desarrollo , Coriolaceae/metabolismo , Daphnia/crecimiento & desarrollo , Lepidium sativum/crecimiento & desarrollo , Polyporales/metabolismo , Trametes/metabolismo , Aguas Residuales/química , Aguas Residuales/toxicidad , Aliivibrio fischeri/metabolismo , Animales , Biodegradación Ambiental , Daphnia/metabolismo , Destilación , Biomarcadores Ambientales/efectos de los fármacos , Lacasa/metabolismo , Lepidium sativum/metabolismo , Peroxidasas/metabolismo , Fenoles/metabolismo , FilogeniaRESUMEN
This study examined biological characteristics, liquid fermentation, and cultivation of Fomitopsis pinicola. A single-factor test concluded that the optimal carbon and nitrogen sources for mycelial growth were soluble starch and yeast paste; the optimal culture temperature was 31°C, and the optimal pH was 6.0. The orthogonal experiment indicated that the optimal formula for mycelial culture was 25 g soluble starch, 2 g yeast extract, 1 g KH2PO4, and 1.5 g MgSO4 added to 1 L water. The optimal conditions for liquid fermentation culture consisted of the following: a loading volume 90 mL, inoculation volume 30 mL, and rotation speed 160 rpm. The optimal substrate formula for domestic culture was 20% corn cob, 30% sawdust, 20% wheat bran, 25% cotton seed shell, 3% corn meal, 1% gypsum, and 1% lime, which produced the highest yield of fruiting bodies. The results provided basic data for deep liquid fermentation culture and recommendations for the further development and utilization of F. pinicola.
Asunto(s)
Agaricales/crecimiento & desarrollo , Coriolaceae/crecimiento & desarrollo , Agaricales/metabolismo , Carbono/metabolismo , Coriolaceae/metabolismo , Medios de Cultivo/análisis , Medios de Cultivo/metabolismo , Concentración de Iones de Hidrógeno , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Nitrógeno/metabolismo , TemperaturaRESUMEN
Chemometric methods and correlation of spectroscopic or spectrometric data with bioactivity results are known to improve dereplication in classical bio-guided isolation approaches. However, in drug discovery from natural sources the isolation of bioactive constituents from a crude extract containing close structural analogues remains a significant challenge. This study is a 1H NMR-MS workflow named ELINA (Eliciting Nature's Activities) which is based on statistical heterocovariance analysis (HetCA) of 1H NMR spectra detecting chemical features that are positively ("hot") or negatively ("cold") correlated with bioactivity prior to any isolation. ELINA is exemplified in the discovery of steroid sulfatase (STS) inhibiting lanostane triterpenes (LTTs) from a complex extract of the polypore fungus Fomitopsis pinicola.
Asunto(s)
Productos Biológicos/química , Descubrimiento de Drogas/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Coriolaceae/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Triterpenos/químicaRESUMEN
Novel α-(1 â 3)-glucooligosaccharides (α-(1 â 3)-GOS) were prepared by acid hydrolysis of α-(1â 3)-glucan isolated from Fomitopsis betulina fruiting bodies and characterized. Their anti-cancer potential was evaluated in in vitro assays in a colon cancer cell model. The tested α-(1 â 3)-GOS showed antiproliferative (MTT assay) and pro-apoptotic (Annexin V-FITC and PI technique) features against colon cancer but not against normal epithelial colon cells. Additionally, we did not observe cytotoxic activity (neutral red and lactate dehydrogenase assays) of α-(1 â 3)-GOS against several types of normal cell lines. In the present study, we demonstrated the anticancer potential of α-(1 â 3)-GOS in a colon carcinoma model. The anti-tumour effect of α-(1 â 3)-GOS is related with induction of apoptosis. Based on these results, we conclude that α-(1 â 3)-GOS may be considered as a dietary or therapeutic agent with an ability to inhibit the growth of cancer cells.
Asunto(s)
Coriolaceae/química , Coriolaceae/metabolismo , Glucanos/química , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon , Cuerpos Fructíferos de los Hongos/química , Cuerpos Fructíferos de los Hongos/metabolismo , Glucanos/metabolismo , Glucanos/farmacología , Humanos , Hidrólisis , Ratones , Oligosacáridos/química , Oligosacáridos/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
Fungal exopolysaccharides are important natural products having diverse biological functions. In this study, exopolysaccharides from Fomitopsis castanea mycelia (FEPS) were prepared, and the highest mushroom tyrosinase inhibitory activity was found. FEPS were prepared from cultivation broth by ethanol precipitation method. The extraction yield and protein concentration of FEPS were 213.1 mg/l and 0.03%, respectively. FEPS inhibited mushroom tyrosinase with the half maximal inhibitory concentration (IC50) of 16.5 mg/ml and dose-dependently inhibited cellular tyrosinase activity (63.9% at 50 µg/ml, and 83.3% at 100 µg/ml) in the cell-free extract of SK-MEL-5 human melanoma cell and α-melanocytestimulating hormone (α-MSH)-stimulated melanin formation in intact SK-MEL-5 human melanoma cell. The IC50 of FEPS against NO production from RAW264.7 macrophage cells was 42.8 ± 0.64 µg/ml. By in vivo study using a zebrafish model, exposure of FEPS at 400 µg/ml to dechorionated zebrafish embryos for 18 h decreased the pigment density, compared to that without FEPS-treated control.