Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000477

RESUMEN

The appearance of new respiratory virus infections in humans with epidemic or pandemic potential has underscored the urgent need for effective broad-spectrum antivirals (BSAs). Bioactive compounds derived from plants may provide a natural source of new BSA candidates. Here, we investigated the novel phytocomplex formulation SP4™ as a candidate direct-acting BSA against major current human respiratory viruses, including coronaviruses and influenza viruses. SP4™ inhibited the in vitro replication of SARS-CoV-2, hCoV-OC43, hCoV-229E, Influenza A and B viruses, and respiratory syncytial virus in the low-microgram range. Using hCoV-OC43 as a representative respiratory virus, most of the antiviral activity of SP4™ was observed to stem primarily from its dimeric A-type proanthocyanidin (PAC-A) component. Further investigations of the mechanistic mode of action showed SP4™ and its PAC-A-rich fraction to prevent hCoV-OC43 from attaching to target cells and exert virucidal activity. This occurred through their interaction with the spike protein of hCoV-OC43 and SARS-CoV-2, thereby interfering with spike functions and leading to the loss of virion infectivity. Overall, these findings support the further development of SP4™ as a candidate BSA of a natural origin for the prevention of human respiratory virus infections.


Asunto(s)
Antivirales , Coronavirus Humano OC43 , Proantocianidinas , SARS-CoV-2 , Replicación Viral , Proantocianidinas/farmacología , Proantocianidinas/química , Antivirales/farmacología , Antivirales/química , Humanos , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Animales , Perros , Virus de la Influenza A/efectos de los fármacos , Coronavirus Humano 229E/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Chlorocebus aethiops
2.
Eur J Med Chem ; 275: 116629, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38941718

RESUMEN

The family of human-infecting coronaviruses (HCoVs) poses a serious threat to global health and includes several highly pathogenic strains that cause severe respiratory illnesses. It is essential that we develop effective broad-spectrum anti-HCoV agents to prepare for future outbreaks. In this study, we used PROteolysis TArgeting Chimera (PROTAC) technology focused on degradation of the HCoV main protease (Mpro), a conserved enzyme essential for viral replication and pathogenicity. By adapting the Mpro inhibitor GC376, we produced two novel PROTACs, P2 and P3, which showed relatively broad-spectrum activity against the human-infecting CoVs HCoV-229E, HCoV-OC43, and SARS-CoV-2. The concentrations of these PROTACs that reduced virus replication by 50 % ranged from 0.71 to 4.6 µM, and neither showed cytotoxicity at 100 µM. Furthermore, mechanistic binding studies demonstrated that P2 and P3 effectively targeted HCoV-229E, HCoV-OC43, and SARS-CoV-2 by degrading Mpro within cells in vitro. This study highlights the potential of PROTAC technology in the development of broad-spectrum anti-HCoVs agents, presenting a novel approach for dealing with future viral outbreaks, particularly those stemming from CoVs.


Asunto(s)
Antivirales , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteolisis/efectos de los fármacos , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Desarrollo de Medicamentos , Lactamas , Leucina/análogos & derivados , Ácidos Sulfónicos
3.
J Med Virol ; 96(5): e29655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727091

RESUMEN

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Asunto(s)
Coronavirus Humano 229E , Gases em Plasma , Inactivación de Virus , Humanos , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/fisiología , Inactivación de Virus/efectos de los fármacos , Gases em Plasma/farmacología , Línea Celular , Porosidad , Desinfección/métodos , Acero Inoxidable
4.
Daru ; 32(1): 215-235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652363

RESUMEN

PURPOSE: Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS: We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS: CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION: We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.


Asunto(s)
Antivirales , Coronavirus Humano 229E , Reposicionamiento de Medicamentos , Mapas de Interacción de Proteínas , SARS-CoV-2 , Biología de Sistemas , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/efectos de los fármacos , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Nucleofosmina , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , Redes Reguladoras de Genes/efectos de los fármacos , COVID-19
5.
Bioorg Chem ; 147: 107353, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615475

RESUMEN

Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.


Asunto(s)
Antivirales , Coronavirus Humano 229E , Diseño de Fármacos , Subtipo H1N1 del Virus de la Influenza A , Simulación del Acoplamiento Molecular , Organofosfonatos , Pirimidinonas , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Humanos , Pirimidinonas/farmacología , Pirimidinonas/síntesis química , Pirimidinonas/química , Relación Estructura-Actividad , Organofosfonatos/farmacología , Organofosfonatos/química , Organofosfonatos/síntesis química , Coronavirus Humano 229E/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo
6.
Biometals ; 37(4): 849-856, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38133868

RESUMEN

Copper has well-documented antibacterial effects but few have evaluated it after prolonged use and against bacteria and viruses. Coupons from three copper formulations (solid, thermal coating, and decal applications) and carbon steel controls were subjected to 200 rounds simulated cleaning using a Wiperator™ and either an accelerated hydrogen peroxide, quaternary ammonium, or artificial sweat products. Antibacterial activity against S. aureus and P. aeruginosa was then evaluated using a modified Environmental Protection Agency protocol. Antiviral activity against coronavirus (229E) and norovirus (MNV-1) surrogates was assessed using the TCID50 method. Results were compared to untreated control coupons. One hour after inoculation, S. aureus exhibited a difference in log kill of 1.16 to 4.87 and P. aeruginosa a log kill difference of 3.39-5.23 (dependent upon copper product and disinfectant) compared to carbon steel. MNV-1 demonstrated an 87-99% reduction on each copper surfaces at 1 h and 99% reduction at 2 h compared to carbon steel. Similarly, coronavirus 229E exhibited a 97-99% reduction after 1 h and 90-99% after 2 h. Simulated use with artificial sweat did not hinder the antiviral nor the antibacterial activity of Cu surfaces. Self-sanitizing copper surfaces maintained antibacterial and antiviral activity after 200 rounds of simulated cleaning.


Asunto(s)
Antibacterianos , Antivirales , Cobre , Staphylococcus aureus , Cobre/farmacología , Cobre/química , Antibacterianos/farmacología , Antibacterianos/química , Antivirales/farmacología , Antivirales/química , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Norovirus/efectos de los fármacos , Coronavirus Humano 229E/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/química , Desinfectantes/farmacología , Desinfectantes/química
7.
Virology ; 571: 21-33, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35439707

RESUMEN

Since December 2019, the deadly novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the current COVID-19 pandemic. To date, vaccines are available in the developed countries to prevent the infection of this virus; however, medicines are necessary to help control COVID-19. Human coronavirus 229E (HCoV-229E) causes the common cold. The main protease (Mpro) is an essential enzyme required for the multiplication of these two viruses in the host cells, and thus is an appropriate candidate to screen potential medicinal compounds. Flavonols and dihydroflavonols are two groups of plant flavonoids. In this study, we report docking simulation with two Mpro enzymes and five flavonols and three dihydroflavonols, in vitro inhibition of the SARS-CoV-2 Mpro, and in vitro inhibition of the HCoV 229E replication. The docking simulation results predicted that (+)-dihydrokaempferol, (+)- dihydroquercetin, (+)-dihydromyricetin, kaempferol, quercetin, myricentin, isoquercitrin, and rutin could bind to at least two subsites (S1, S1', S2, and S4) in the binding pocket and inhibit the activity of SARS-CoV-2 Mpro. Their affinity scores ranged from -8.8 to -7.4 (kcal/mol). Likewise, these compounds were predicted to bind and inhibit the HCoV-229E Mpro activity with affinity scores ranging from -7.1 to -7.8 (kcal/mol). In vitro inhibition assays showed that seven available compounds effectively inhibited the SARS-CoV-2 Mpro activity and their IC50 values ranged from 0.125 to 12.9 µM. Five compounds inhibited the replication of HCoV-229E in Huh-7 cells. These findings indicate that these antioxidative flavonols and dihydroflavonols are promising candidates for curbing the two viruses.


Asunto(s)
Coronavirus Humano 229E , Proteasas 3C de Coronavirus , Flavonoles , SARS-CoV-2 , COVID-19 , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/fisiología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Flavonoles/farmacología , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos
8.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163977

RESUMEN

COVID-19 has spread around the world and caused serious public health and social problems. Although several vaccines have been authorized for emergency use, new effective antiviral drugs are still needed. Some repurposed drugs including Chloroquine, Hydroxychloroquine and Remdesivir were immediately used to treat COVID-19 after the pandemic. However, the therapeutic effects of these drugs have not been fully demonstrated in clinical studies. In this paper, we found an antimalarial drug, Naphthoquine, showed good broad-spectrum anti-coronavirus activity. Naphthoquineinhibited HCoV-229E, HCoV-OC43 and SARS-CoV-2 replication in vitro, with IC50 = 2.05 ± 1.44 µM, 5.83 ± 0.74 µM, and 2.01 ± 0.38 µM, respectively. Time-of-addition assay was also performed to explore at which stage Naphthoquine functions during SARS-CoV-2 replication. The results suggested that Naphthoquine may influence virus entry and post-entry replication. Considering the safety of Naphthoquine was even better than that of Chloroquine, we think Naphthoquine has the potential to be used as a broad-spectrum drug for coronavirus infection.


Asunto(s)
1-Naftilamina/análogos & derivados , Aminoquinolinas/farmacología , Antivirales/farmacología , Coronavirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , 1-Naftilamina/farmacología , Animales , Línea Celular , Chlorocebus aethiops , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano NL63/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Humanos , Técnicas In Vitro , Células Vero , Replicación Viral/efectos de los fármacos
9.
J Ethnopharmacol ; 287: 114965, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34990767

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Coronavirus and influenza virus infection seriously threaten human health. Cangma Huadu Granules (CMHD) is an in-hospital preparation composed of eight traditional Chinese medicines (TCM), which has been clinically used against COVID-19 in China and may be a promising candidate for the treatment of influenza. However, the role of its treatment urgently needs to be studied. AIM OF THE STUDY: To evaluate the therapeutic effects of CMHD on pneumonia induced by coronavirus (HCoV-229E) and influenza A virus (H1N1/FM1) in mice and explore its mechanism of anti-infection. MATERIALS AND METHODS: Mice were infected with HCoV-229E or H1N1/FM1 virus through the nasal cavity. CMHD (12.1, 6.05 and 3.03 g/kg/d) or the positive control drugs were administered intragastrically. The lung index and histopathological changes were used to evaluate the therapeutic effect of CMHD. The expression of TNF-α, IL-1ß, IL-6 and IL-4 in Serum and the proportion of CD4+ and CD8+ T lymphocytes in peripheral blood were detected to evaluate the anti-inflammatory and immune regulation effects of CMHD, respectively. Furthermore, the levels of p-NF-κBp65/ NF-κB p65, which was the key targets of the NF-κB pathway was analyzed. RESULTS: In HCoV-229E-induced pneumonia, the lung index was markedly reduced, and lung pathology was improved in mice that treated with CMHD (12.1, 6.05 g/kg/d). Meanwhile, the expression of TNF-α, IL-6 were obviously inhibited, but the expression of IL-4 was significantly increased in CMHD groups. Compared with the model group, CMHD could also markedly upregulate the level of CD4+ and CD8+. Furthermore, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. In H1N1-induced pneumonia, the lung index of mice in the CMHD (12.1 g/kg/d) treatment group was lower than that in the model group, and less inflammatory infiltration could be seen in the lung pathological. Moreover, CMHD could also obviously decrease the expression of TNF-α, IL-1ß, IL-6, but significantly increase the expression of IL-4. Except for that, CMHD could also markedly downregulate the level of CD4+ and upregulate the level of CD8+ compared with the model group. In addition, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. CONCLUSION: CMHD can significantly combats viral infections caused by HCoV-229E and H1N1, and the mechanism may be related to its multiple functions of anti-inflammatory, immunity regulating and inhibiting NF-κB signal transduction pathway.


Asunto(s)
Antiinflamatorios/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Medicina Tradicional China/métodos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Animales , Antiinflamatorios/uso terapéutico , Coronavirus Humano 229E/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Inmunidad/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Neumonía/tratamiento farmacológico , Neumonía/patología , Linfocitos T/metabolismo , Factor de Transcripción ReIA/metabolismo
10.
Phytomedicine ; 95: 153874, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34923232

RESUMEN

BACKGROUND: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) pose a huge threat to human public health, no specific treatment is available. Jinzhen granule (JZ) is a traditional eight ingredients-Chinese medicine with prominent efficacy for treating viral-induced diseases. However, little is known about the antiviral effect and mechanism of JZ against SARS-CoV-2 and HCoV-229E. PURPOSE: This study aimed to reveal the antiviral effects of JZ against SARS-CoV-2 and HCoV-229E, and to further explore the underlying mechanisms regulating the host immune response. METHODS: The chromatographic separation of JZ was performed using a Shimadzu analytical high-performance liquid chromatograph with UV detection and Alltech ELSD 2000ES. We conducted cytopathic effect (CPE) and plaque reduction assays to evaluate the antiviral effect of JZ. A lethal human angiotensin converting enzyme 2 (hACE2) transgenic mouse model of SARS-CoV-2 was established to determine the protective effect of JZ on mortality and lung virus titers. Real-time quantitative PCR assays were used to analyze the expression of proinflammatory cytokines in vitro and in vivo. Western blotting was further performed to determine the activities on regulating the nuclear factor kappa B (NF-κB)/MAPK pathway. Finally, mitochondrial membrane potential assays, flow cytometry analysis and western blotting were used to assess the anti-apoptotic potency toward HCoV-229E infection. RESULTS: The results showed that 13 chemical components were identified and five peaks were determined and quantitated (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g). We found that JZ exerted inhibitory potency against SARS-CoV-2 and HCoV-229E in vitro by using CPE and plaque reduction assays, and it was further found that JZ protected mice infected by SARS-CoV-2 from death and inhibited lung virus titers. JZ also significantly decreased the induction of inflammatory cytokines (IL-1α, IL-6, CCL-5 and MIP-1ß), similar to the observed in vitro effect. Moreover, JZ suppressed the release of inflammatory cytokines in vitro and it decreased the protein expression of p-p38 MAPK, p-JNK, p-NF-κB p65 and p-IκBα induced by HCoV-229E and increased the expression of IκBα. Notably, JZ significantly protected HCoV-229E-infected Huh-7 cells from mitochondrial damage and decreased apoptotic cells. The activation of the mitochondria-mediated apoptotic pathway was inhibited by JZ, as shown by the reduced expression of cleaved caspase-9, caspase-3 and p-PARP. CONCLUSIONS: In conclusion, JZ (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g) exhibited antiviral activities against SARS-CoV-2 and HCoV-229E by regulating the NF-κB/MAPK pathway and the mitochondria-mediated apoptotic pathway. These findings demonstrated the efficacy of JZ against CoVs and suggested JZ treatment as a novel clinical therapeutic strategy for COVID-19.


Asunto(s)
Antivirales , Coronavirus Humano 229E , Medicamentos Herbarios Chinos/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacología , COVID-19 , Coronavirus Humano 229E/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , FN-kappa B
11.
Cells ; 10(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34831176

RESUMEN

Human coronavirus (HCoV) similar to other viruses rely on host cell machinery for both replication and to spread. The p97/VCP ATPase is associated with diverse pathways that may favor HCoV replication. In this study, we assessed the role of p97 and associated host responses in human lung cell line H1299 after HCoV-229E or HCoV-OC43 infection. Inhibition of p97 function by small molecule inhibitors shows antiviral activity, particularly at early stages of the virus life cycle, during virus uncoating and viral RNA replication. Importantly, p97 activity inhibition protects human cells against HCoV-induced cytopathic effects. The p97 knockdown also inhibits viral production in infected cells. Unbiased quantitative proteomics analyses reveal that HCoV-OC43 infection resulted in proteome changes enriched in cellular senescence and DNA repair during virus replication. Further analysis of protein changes between infected cells with control and p97 shRNA identifies cell cycle pathways for both HCoV-229E and HCoV-OC43 infection. Together, our data indicate a role for the essential host protein p97 in supporting HCoV replication, suggesting that p97 is a therapeutic target to treat HCoV infection.


Asunto(s)
Coronavirus Humano 229E/fisiología , Coronavirus Humano OC43/fisiología , Proteína que Contiene Valosina/metabolismo , Replicación Viral/fisiología , Antivirales/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Efecto Citopatogénico Viral/efectos de los fármacos , Humanos , Proteoma/efectos de los fármacos , Proteoma/metabolismo , ARN Interferente Pequeño/genética , ARN Viral/biosíntesis , Proteína que Contiene Valosina/antagonistas & inhibidores , Proteína que Contiene Valosina/genética , Replicación Viral/efectos de los fármacos , Desencapsidación Viral/efectos de los fármacos
12.
Viruses ; 13(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34835033

RESUMEN

The COVID-19 pandemic has deeply influenced sanitization procedures, and high-level disinfection has been massively used to prevent SARS-CoV-2 spread, with potential negative impact on the environment and on the threat of antimicrobial resistance (AMR). Aiming to overcome these concerns, yet preserving the effectiveness of sanitization against enveloped viruses, we assessed the antiviral properties of the Probiotic Cleaning Hygiene System (PCHS), an eco-sustainable probiotic-based detergent previously proven to stably abate pathogen contamination and AMR. PCHS (diluted 1:10, 1:50 and 1:100) was tested in comparison to common disinfectants (70% ethanol and 0.5% sodium hypochlorite), in suspension and carrier tests, according with the European UNI EN 14476:2019 and UNI EN 16777:2019 standards. Human alpha- and beta-coronaviruses hCoV-229E and SARS-CoV-2, human herpesvirus type 1, human and animal influenza viruses, and vaccinia virus were included in the study. The results showed that PCHS was able to inactivate 99.99% of all tested viruses within 1-2 h of contact, both in suspension and on surface. Notably, while control disinfectants became inactive within 2 h after application, the PCHS antiviral action persisted up to 24 h post-application, suggesting that its use may effectively allow a continuous prevention of virus spread via contaminated environment, without worsening environmental pollution and AMR concern.


Asunto(s)
Desinfección/métodos , Probióticos/farmacología , Saneamiento/métodos , Virosis/prevención & control , Virus/efectos de los fármacos , Animales , Antivirales/farmacología , COVID-19/prevención & control , COVID-19/virología , Coronavirus Humano 229E/efectos de los fármacos , Desinfectantes/farmacología , Microbiología Ambiental , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Orthomyxoviridae/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Virus Vaccinia/efectos de los fármacos , Virosis/virología
13.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769299

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to global public health and the economy. The enzymatic product of cholesterol 25-hydroxylase (CH25H), 25-Hydroxycholesterol (25-HC), was reported to have potent anti-SARS-CoV-2 activity. Here, we found that the combination of 25-HC with EK1 peptide, a pan-coronavirus (CoV) fusion inhibitor, showed a synergistic antiviral activity. We then used the method of 25-HC modification to design and synthesize a series of 25-HC-modified peptides and found that a 25-HC-modified EK1 peptide (EK1P4HC) was highly effective against infections caused by SARS-CoV-2, its variants of concern (VOCs), and other human CoVs, such as HCoV-OC43 and HCoV-229E. EK1P4HC could protect newborn mice from lethal HCoV-OC43 infection, suggesting that conjugation of 25-HC with a peptide-based viral inhibitor was a feasible and universal strategy to improve its antiviral activity.


Asunto(s)
Antivirales/farmacología , Hidroxicolesteroles/química , Lipopéptidos/química , SARS-CoV-2/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antivirales/química , Antivirales/uso terapéutico , Peso Corporal/efectos de los fármacos , COVID-19/virología , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/patogenicidad , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/patogenicidad , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Humanos , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/uso terapéutico , Lipopéptidos/farmacología , Lipopéptidos/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Tasa de Supervivencia , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
14.
Virology ; 564: 33-38, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619630

RESUMEN

Endemic seasonal coronaviruses cause morbidity and mortality in a subset of patients, but no specific treatment is available. Molnupiravir is a promising pipeline antiviral drug for treating SARS-CoV-2 infection potentially by targeting RNA-dependent RNA polymerase (RdRp). This study aims to evaluate the potential of repurposing molnupiravir for treating seasonal human coronavirus (HCoV) infections. Molecular docking revealed that the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC), has similar binding affinity to RdRp of SARS-CoV-2 and seasonal HCoV-NL63, HCoV-OC43 and HCoV-229E. In cell culture models, treatment of molnupiravir effectively inhibited viral replication and production of infectious viruses of the three seasonal coronaviruses. A time-of-drug-addition experiment indicates the specificity of molnupiravir in inhibiting viral components. Furthermore, combining molnupiravir with the protease inhibitor GC376 resulted in enhanced antiviral activity. Our findings highlight that the great potential of repurposing molnupiravir for treating seasonal coronavirus infected patients.


Asunto(s)
Coronavirus Humano 229E/genética , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus Humano NL63/genética , Coronavirus Humano OC43/genética , Citidina/análogos & derivados , Hidroxilaminas/farmacología , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Resfriado Común/tratamiento farmacológico , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/fisiología , Coronavirus Humano NL63/efectos de los fármacos , Coronavirus Humano NL63/fisiología , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/fisiología , Citidina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Pirrolidinas/farmacología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Estaciones del Año , Ácidos Sulfónicos/farmacología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
15.
Nat Commun ; 12(1): 6055, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663813

RESUMEN

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. PF-00835231, a 3CL protease inhibitor, has exhibited potent in vitro antiviral activity against SARS-CoV-2 as a single agent. Here we report, the design and characterization of a phosphate prodrug PF-07304814 to enable the delivery and projected sustained systemic exposure in human of PF-00835231 to inhibit coronavirus family 3CL protease activity with selectivity over human host protease targets. Furthermore, we show that PF-00835231 has additive/synergistic activity in combination with remdesivir. We present the ADME, safety, in vitro, and in vivo antiviral activity data that supports the clinical evaluation of PF-07304814 as a potential COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasa de Coronavirus/administración & dosificación , Indoles/administración & dosificación , Leucina/administración & dosificación , Pirrolidinonas/administración & dosificación , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/efectos adversos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacocinética , Alanina/administración & dosificación , Alanina/efectos adversos , Alanina/análogos & derivados , Alanina/farmacocinética , Animales , COVID-19/virología , Chlorocebus aethiops , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/enzimología , Inhibidores de Proteasa de Coronavirus/efectos adversos , Inhibidores de Proteasa de Coronavirus/farmacocinética , Modelos Animales de Enfermedad , Diseño de Fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Células HeLa , Humanos , Indoles/efectos adversos , Indoles/farmacocinética , Infusiones Intravenosas , Leucina/efectos adversos , Leucina/farmacocinética , Ratones , Pirrolidinonas/efectos adversos , Pirrolidinonas/farmacocinética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Células Vero
16.
Biosensors (Basel) ; 11(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34436052

RESUMEN

Cell-based assays are a valuable tool for examination of virus-host cell interactions and drug discovery processes, allowing for a more physiological setting compared to biochemical assays. Despite the fact that cell-based SPR assays are label-free and thus provide all the associated benefits, they have never been used to study viral growth kinetics and to predict drug antiviral response in cells. In this study, we prove the concept that the cell-based SPR assay can be applied in the kinetic analysis of the early stages of viral infection of cells and the antiviral drug activity in the infected cells. For this purpose, cells immobilized on the SPR slides were infected with human coronavirus HCov-229E and treated with hydroxychloroquine. The SPR response was measured at different time intervals within the early stages of infection. Methyl Thiazolyl Tetrazolium (MTT) assay was used to provide the reference data. We found that the results of the SPR and MTT assays were consistent, and SPR is a reliable tool in investigating virus-host cell interaction and the mechanism of action of viral inhibitors. SPR assay was more sensitive and accurate in the first hours of infection within the first replication cycle, whereas the MTT assay was not so effective. After the second replication cycle, noise was generated by the destruction of the cell layer and by the remnants of dead cells, and masks useful SPR signals.


Asunto(s)
Antivirales/uso terapéutico , Coronavirus Humano 229E/fisiología , Infecciones por Coronavirus/tratamiento farmacológico , Hidroxicloroquina/uso terapéutico , Resonancia por Plasmón de Superficie/métodos , Animales , Antivirales/farmacología , Chlorocebus aethiops , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/aislamiento & purificación , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Humanos , Hidroxicloroquina/farmacología , Cinética , Índice de Severidad de la Enfermedad , Células Vero
17.
Viruses ; 13(8)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452529

RESUMEN

An escalating pandemic of the novel SARS-CoV-2 virus is impacting global health, and effective antivirals are needed. Umifenovir (Arbidol) is an indole-derivative molecule, licensed in Russia and China for prophylaxis and treatment of influenza and other respiratory viral infections. It has been shown that umifenovir has broad spectrum activity against different viruses. We evaluated the sensitivity of different coronaviruses, including the novel SARS-CoV-2 virus, to umifenovir using in vitro assays. Using a plaque assay, we revealed an antiviral effect of umifenovir against seasonal HCoV-229E and HCoV-OC43 coronaviruses in Vero E6 cells, with estimated 50% effective concentrations (EC50) of 10.0 ± 0.5 µM and 9.0 ± 0.4 µM, respectively. Umifenovir at 90 µM significantly suppressed plaque formation in CMK-AH-1 cells infected with SARS-CoV. Umifenovir also inhibited the replication of SARS-CoV-2 virus, with EC50 values ranging from 15.37 ± 3.6 to 28.0 ± 1.0 µM. In addition, 21-36 µM of umifenovir significantly suppressed SARS-CoV-2 virus titers (≥2 log TCID50/mL) in the first 24 h after infection. Repurposing of antiviral drugs is very helpful in fighting COVID-19. A safe, pan-antiviral drug such as umifenovir could be extremely beneficial in combating the early stages of a viral pandemic.


Asunto(s)
Antivirales/farmacología , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Indoles/farmacología , SARS-CoV-2/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Animales , Antivirales/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Coronavirus Humano 229E/fisiología , Coronavirus Humano OC43/fisiología , Efecto Citopatogénico Viral/efectos de los fármacos , Humanos , Indoles/administración & dosificación , Pruebas de Sensibilidad Microbiana , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2/fisiología , Células Vero , Carga Viral/efectos de los fármacos , Ensayo de Placa Viral , Replicación Viral/efectos de los fármacos
18.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360797

RESUMEN

A novel series of N-substituted cis- and trans-3-aryl-4-(diethoxyphosphoryl)azetidin-2-ones were synthesized by the Kinugasa reaction of N-methyl- or N-benzyl-(diethyoxyphosphoryl)nitrone and selected aryl alkynes. Stereochemistry of diastereoisomeric adducts was established based on vicinal H3-H4 coupling constants in azetidin-2-one ring. All the obtained azetidin-2-ones were evaluated for the antiviral activity against a broad range of DNA and RNA viruses. Azetidin-2-one trans-11f showed moderate inhibitory activity against human coronavirus (229E) with EC50 = 45 µM. The other isomer cis-11f was active against influenza A virus H1N1 subtype (EC50 = 12 µM by visual CPE score; EC50 = 8.3 µM by TMS score; MCC > 100 µM, CC50 = 39.9 µM). Several azetidin-2-ones 10 and 11 were tested for their cytostatic activity toward nine cancerous cell lines and several of them appeared slightly active for Capan-1, Hap1 and HCT-116 cells values of IC50 in the range 14.5-97.9 µM. Compound trans-11f was identified as adjuvant of oxacillin with significant ability to enhance the efficacy of this antibiotic toward the highly resistant S. aureus strain HEMSA 5. Docking and molecular dynamics simulations showed that enantiomer (3R,4S)-11f can be responsible for the promising activity due to the potency in displacing oxacillin at ß-lactamase, thus protecting the antibiotic from undesirable biotransformation.


Asunto(s)
Adyuvantes Farmacéuticos/química , Adyuvantes Farmacéuticos/farmacología , Antivirales/química , Antivirales/farmacología , Azetidinas/farmacología , Infecciones/tratamiento farmacológico , Antibacterianos/química , Antibacterianos/farmacología , Azetidinas/química , Proteínas Bacterianas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Coronavirus Humano 229E/efectos de los fármacos , Citostáticos/química , Citostáticos/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Simulación de Dinámica Molecular , Oxacilina/química , Proteínas de Unión a las Penicilinas/química , Staphylococcus aureus/efectos de los fármacos , Estereoisomerismo , beta-Lactamasas/química
19.
Antiviral Res ; 193: 105127, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34217752

RESUMEN

In this study, a series of 10 quinoline analogues was evaluated for their in vitro antiviral activity against a panel of alpha- and beta-coronaviruses, including the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2), as well as the human coronaviruses (HCoV) 229E and OC43. Chloroquine and hydroxychloroquine were the most potent with antiviral EC50 values in the range of 0.12-12 µM. Chloroquine displayed the most favorable selectivity index (i.e. ratio cytotoxic versus antiviral concentration), being 165 for HCoV-OC43 in HEL cells. Potent anti-coronavirus activity was also observed with amodiaquine, ferroquine and mefloquine, although this was associated with substantial cytotoxicity for mefloquine. Primaquine, quinidine, quinine and tafenoquine only blocked coronavirus replication at higher concentrations, while piperaquine completely lacked antiviral and cytotoxic effects. A time-of-addition experiment in HCoV-229E-infected HEL cells revealed that chloroquine interferes with viral entry at a post-attachment stage. Using confocal microscopy, no viral RNA synthesis could be detected upon treatment of SARS-CoV-2-infected cells with chloroquine. The inhibition of SARS-CoV-2 replication by chloroquine and hydroxychloroquine coincided with an inhibitory effect on the autophagy pathway as visualized by a dose-dependent increase in LC3-positive puncta. The latter effect was less pronounced or even absent with the other quinolines. In summary, we showed that several quinoline analogues, including chloroquine, hydroxychloroquine, amodiaquine, ferroquine and mefloquine, exhibit broad anti-coronavirus activity in vitro.


Asunto(s)
Antimaláricos/farmacología , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus/efectos de los fármacos , Quinolinas/farmacología , Animales , Chlorocebus aethiops , Cloroquina/farmacología , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Humanos , Hidroxicloroquina/farmacología , SARS-CoV-2/efectos de los fármacos , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
20.
Appl Environ Microbiol ; 87(19): e0109821, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34288707

RESUMEN

A novel and robust approach to evaluate the antiviral activity of coatings was developed, assessing three commercially available leave-on surface coating products for efficacy against human coronaviruses (HCoVs) HCoV-229E and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The assessment is based on three criteria that reflect real-life settings, namely, (i) immediate antiviral effect, (ii) effect after repeated cleaning of the coated surface, and (iii) antiviral activity in the presence of organic material. The results showed that only a copper compound-based coating successfully met all three criteria. A quaternary ammonium compound-based coating did not meet the second criterion, and a coating based on reactive oxygen species showed no antiviral effect. Moreover, the study demonstrated that HCoV-229E is a relevant SARS-CoV-2 surrogate for such experiments. This new approach allows benchmarking of currently available antiviral coatings and future coating developments to avoid unjustified claims. The deployment of efficient antiviral coatings can offer an additional measure to mitigate the risk of transmission of respiratory viruses like SARS-CoV-2 or influenza viruses from high-touch surfaces. IMPORTANCE SARS-CoV-2, the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, is transmitted mainly person-to-person through respiratory droplets, while the contribution of fomite transmission is less important than suspected at the beginning of the pandemic. Nevertheless, antiviral-coating solutions can offer an additional measure to mitigate the risk of SARS-CoV-2 transmission from high-touch surfaces. The deployment of antiviral coatings is not new, but what is currently lacking is solid scientific evidence of the efficacy of commercially available self-disinfecting surfaces under real-life conditions. Therefore, we developed a novel, robust approach to evaluate the antiviral activity of such coatings, applying strict quality criteria to three commercially available products to test their efficacies against SARS-CoV-2. We also showed that HCoV-229E is a relevant surrogate for such experiments. Our approach will also bring significant benefit to the evaluation of the effects of coatings on the survival of nonenveloped viruses, which are known to be more tolerant to desiccation and disinfectants and for which high-touch surfaces play an important role.


Asunto(s)
Antivirales/farmacología , Coronavirus Humano 229E/efectos de los fármacos , Desinfectantes/farmacología , SARS-CoV-2/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...