Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Stem Cells ; 42(7): 662-674, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38655781

RESUMEN

Cortactin (CTTN), a cytoskeletal protein and substrate of Src kinase, is implicated in tumor aggressiveness. However, its role in bone cell differentiation remains unknown. The current study revealed that CTTN was upregulated during osteoblast and adipocyte differentiation. Functional experiments demonstrated that CTTN promoted the in vitro differentiation of mesenchymal stem/progenitor cells into osteogenic and adipogenic lineages. Mechanistically, CTTN was able to stabilize the protein level of mechanistic target of rapamycin kinase (mTOR), leading to the activation of mTOR signaling. In-depth investigation revealed that CTTN could bind with casitas B lineage lymphoma-c (c-CBL) and counteract the function of c-CBL, a known E3 ubiquitin ligase responsible for the proteasomal degradation of mTOR. Silencing c-Cbl alleviated the impaired differentiation of osteoblasts and adipocytes caused by CTTN siRNA, while silencing mTOR mitigated the stimulation of osteoblast and adipocyte differentiation induced by CTTN overexpression. Notably, transplantation of CTTN-silenced bone marrow stromal cells (BMSCs) into the marrow of mice led to a reduction in trabecular bone mass, accompanied by a decrease in osteoblasts and an increase in osteoclasts. Furthermore, CTTN-silenced BMSCs expressed higher levels of receptor activator of nuclear factor κB ligand (RANKL) than control BMSCs did and promoted osteoclast differentiation when cocultured with bone marrow-derived osteoclast precursor cells. This study provides evidence that CTTN favors osteoblast differentiation by counteracting the c-CBL-induced degradation of mTOR and inhibits osteoclast differentiation by downregulating the expression of RANKL. It also suggests that maintaining an appropriate level of CTTN expression may be advantageous for maintaining bone homeostasis.


Asunto(s)
Diferenciación Celular , Cortactina , Homeostasis , Osteoblastos , Osteoclastos , Proteínas Proto-Oncogénicas c-cbl , Osteoblastos/metabolismo , Osteoblastos/citología , Animales , Osteoclastos/metabolismo , Ratones , Cortactina/metabolismo , Cortactina/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Serina-Treonina Quinasas TOR/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Osteogénesis , Huesos/metabolismo , Adipocitos/metabolismo , Adipocitos/citología , Ligando RANK/metabolismo , Transducción de Señal
2.
Eur J Cell Biol ; 103(2): 151409, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579603

RESUMEN

Neuromuscular junctions transmit signals from the nervous system to skeletal muscles, triggering their contraction, and their proper organization is essential for breathing and voluntary movements. αDystrobrevin-1 is a cytoplasmic component of the dystrophin-glycoprotein complex and has pivotal functions in regulating the integrity of muscle fibers and neuromuscular junctions. Previous studies identified that αDystrobrevin-1 functions in the organization of the neuromuscular junction and that its phosphorylation in the C-terminus is required in this process. Our proteomic screen identified several putative αDystrobrevin-1 interactors recruited to the Y730 site in phosphorylated and unphosphorylated states. Amongst various actin-modulating proteins, we identified the Arp2/3 complex regulator cortactin. We showed that similarly to αDystrobrevin-1, cortactin is strongly enriched at the neuromuscular postsynaptic machinery and obtained results suggesting that these two proteins interact in cell homogenates and at the neuromuscular junctions. Analysis of synaptic morphology in cortactin knockout mice showed abnormalities in the slow-twitching soleus muscle and not in the fast-twitching tibialis anterior. However, muscle strength examination did not reveal apparent deficits in knockout animals.


Asunto(s)
Cortactina , Proteínas Asociadas a la Distrofina , Ratones Noqueados , Unión Neuromuscular , Animales , Unión Neuromuscular/metabolismo , Cortactina/metabolismo , Cortactina/genética , Ratones , Proteínas Asociadas a la Distrofina/metabolismo , Proteínas Asociadas a la Distrofina/genética , Músculo Esquelético/metabolismo , Humanos , Fosforilación
3.
Biochimie ; 222: 28-36, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38301884

RESUMEN

Isoprenyl cysteine carboxyl methyltransferase (ICMT) catalyzes the last step of the prenylation pathway. Previously, we found that high ICMT levels enhance tumorigenesis in vivo and that its expression is repressed by the p53 tumor suppressor. Based on evidence suggesting that some ICMT substrates affect invasive traits, we wondered if this enzyme may promote metastasis. In this work, we found that ICMT overexpression enhanced lung metastasis in vivo. Accordingly, ICMT overexpression also promoted cellular functions associated with aggressive phenotypes such as migration and invasion in vitro. Considering that some ICMT substrates are involved in the regulation of actin cytoskeleton, we hypothesized that actin-rich structures, associated with invasion and metastasis, may be affected. Our findings revealed that ICMT enhanced the formation of invadopodia. Additionally, by analyzing cancer patient databases, we found that ICMT is overexpressed in several tumor types. Furthermore, the concurrent expression of ICMT and CTTN, which encodes a crucial component of invadopodia, showed a significant correlation with clinical outcome. In summary, our work identifies ICMT overexpression as a relevant alteration in human cancer that promotes the development of metastatic tumors.


Asunto(s)
Podosomas , Proteína Metiltransferasas , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Cortactina/metabolismo , Cortactina/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/enzimología , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/patología , Neoplasias/genética , Neoplasias/enzimología , Neoplasias/metabolismo , Podosomas/metabolismo , Proteína Metiltransferasas/metabolismo , Proteína Metiltransferasas/genética
4.
J Cell Biol ; 223(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38353696

RESUMEN

The microtubule-associated protein MAP1B has been implicated in axonal growth and brain development. We found that MAP1B is highly expressed in the most aggressive and deadliest breast cancer subtype, triple-negative breast cancer (TNBC), but not in other subtypes. Expression of MAP1B was found to be highly correlated with poor prognosis. Depletion of MAP1B in TNBC cells impairs cell migration and invasion concomitant with a defect in tumorigenesis. We found that MAP1B interacts with key components for invadopodia formation, cortactin, and Tks5, the latter of which is a PtdIns(3,4)P2-binding and scaffold protein that localizes to invadopodia. We also found that Tks5 associates with microtubules and supports the association between MAP1B and α-tubulin. In accordance with their interaction, depletion of MAP1B leads to Tks5 destabilization, leading to its degradation via the autophagic pathway. Collectively, these findings suggest that MAP1B is a convergence point of the cytoskeleton to promote malignancy in TNBC and thereby a potential diagnostic and therapeutic target for TNBC.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Cortactina , Proteínas Asociadas a Microtúbulos , Neoplasias de la Mama Triple Negativas , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Cortactina/genética , Proteínas Asociadas a Microtúbulos/genética , Neoplasias de la Mama Triple Negativas/genética , Células MDA-MB-231 , Proteínas Adaptadoras del Transporte Vesicular/genética , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Femenino , Animales , Ratones , Ratones Endogámicos BALB C , Podosomas/metabolismo , Tubulina (Proteína)/metabolismo
5.
Sci Rep ; 14(1): 1218, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216638

RESUMEN

Vascular permeability is mediated by Cortactin (Cttn) and regulated by several molecules including cyclic-adenosine-monophosphate, small Rho family GTPases and the actin cytoskeleton. However, it is unclear whether Cttn directly interacts with any of the junctional components or if Cttn intervenes with signaling pathways affecting the intercellular contacts and the cytoskeleton. To address these questions, we employed immortalized microvascular myocardial endothelial cells derived from wild-type and Cttn-knock-out mice. We found that lack of Cttn compromised barrier integrity due to fragmented membrane distribution of different junctional proteins. Moreover, immunoprecipitations revealed that Cttn is within the VE-cadherin-based adherens junction complex. In addition, lack of Cttn slowed-down barrier recovery after Ca2+ repletion. The role of Cttn for cAMP-mediated endothelial barrier regulation was analyzed using Forskolin/Rolipram. In contrast to Cttn-KO, WT cells reacted with increased transendothelial electrical resistance. Absence of Cttn disturbed Rap1 and Rac1 activation in Cttn-depleted cells. Surprisingly, despite the absence of Cttn, direct activation of Rac1/Cdc42/RhoA by CN04 increased barrier resistance and induced well-defined cortical actin and intracellular actin bundles. In summary, our data show that Cttn is required for basal barrier integrity by allowing proper membrane distribution of junctional proteins and for cAMP-mediated activation of the Rap1/Rac1 signaling pathway.


Asunto(s)
Uniones Adherentes , Antígenos CD , Células Endoteliales , Ratones , Animales , Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Actinas/metabolismo , Cortactina/genética , Cortactina/metabolismo , Cadherinas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rac1/metabolismo
6.
Cancer Sci ; 115(3): 836-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38273817

RESUMEN

Matrix stiffness potently promotes the malignant phenotype in various biological contexts. Therefore, identification of gene expression to participate in mechanical force signals transduced into downstream biochemical signaling will contribute substantially to the advances in nasopharyngeal carcinoma (NPC) treatment. In the present study, we detected that cortactin (CTTN) played an indispensable role in matrix stiffness-induced cell migration, invasion, and invadopodia formation. Advances in cancer research have highlighted that dysregulated alternative splicing contributes to cancer progression as an oncogenic driver. However, whether WT-CTTN or splice variants (SV1-CTTN or SV2-CTTN) regulate matrix stiffness-induced malignant phenotype is largely unknown. We proved that alteration of WT-CTTN expression modulated matrix stiffness-induced cell migration, invasion, and invadopodia formation. Considering that splicing factors might drive cancer progression through positive feedback loops, we analyzed and showed how the splicing factor PTBP2 and TIA1 modulated the production of WT-CTTN. Moreover, we determined that high stiffness activated PTBP2 expression. Taken together, our findings showed that the PTBP2-WT-CTTN level increases upon stiffening and then promotes cell migration, invasion, and invadopodia formation in NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Podosomas , Humanos , Cortactina/genética , Cortactina/metabolismo , Carcinoma Nasofaríngeo/genética , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Nasofaríngeas/genética , Invasividad Neoplásica
7.
Arterioscler Thromb Vasc Biol ; 44(2): 366-390, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38126170

RESUMEN

BACKGROUND: Retinal neovascularization is a major cause of vision impairment. Therefore, the purpose of this study is to investigate the mechanisms by which hypoxia triggers the development of abnormal and leaky blood vessels. METHODS: A variety of cellular and molecular approaches as well as tissue-specific knockout mice were used to investigate the role of Cttn (cortactin) in retinal neovascularization and vascular leakage. RESULTS: We found that VEGFA (vascular endothelial growth factor A) stimulates Cttn phosphorylation at Y421, Y453, and Y470 residues in human retinal microvascular endothelial cells. In addition, we observed that while blockade of Cttn phosphorylation at Y470 inhibited VEGFA-induced human retinal microvascular endothelial cell angiogenic events, suppression of Y421 phosphorylation protected endothelial barrier integrity from disruption by VEGFA. In line with these observations, while blockade of Cttn phosphorylation at Y470 negated oxygen-induced retinopathy-induced retinal neovascularization, interference with Y421 phosphorylation prevented VEGFA/oxygen-induced retinopathy-induced vascular leakage. Mechanistically, while phosphorylation at Y470 was required for its interaction with Arp2/3 and CDC6 facilitating actin polymerization and DNA synthesis, respectively, Cttn phosphorylation at Y421 leads to its dissociation from VE-cadherin, resulting in adherens junction disruption. Furthermore, whereas Cttn phosphorylation at Y470 residue was dependent on Lyn, its phosphorylation at Y421 residue required Syk activation. Accordingly, lentivirus-mediated expression of shRNA targeting Lyn or Syk levels inhibited oxygen-induced retinopathy-induced retinal neovascularization and vascular leakage, respectively. CONCLUSIONS: The above observations show for the first time that phosphorylation of Cttn is involved in a site-specific manner in the regulation of retinal neovascularization and vascular leakage. In view of these findings, Cttn could be a novel target for the development of therapeutics against vascular diseases such as retinal neovascularization and vascular leakage.


Asunto(s)
Neovascularización Retiniana , Animales , Humanos , Ratones , Cortactina/genética , Cortactina/metabolismo , Células Endoteliales/metabolismo , Ratones Noqueados , Oxígeno/metabolismo , Fosforilación , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Tirosina/efectos adversos , Tirosina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Respir Res ; 24(1): 157, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316833

RESUMEN

BACKGROUND: The recruitment of the actin-regulatory proteins cortactin and profilin-1 (Pfn-1) to the membrane is important for the regulation of actin cytoskeletal reorganization and smooth muscle contraction. Polo-like kinase 1 (Plk1) and the type III intermediate filament protein vimentin are involved in smooth muscle contraction. Regulation of complex cytoskeletal signaling is not entirely elucidated. The aim of this study was to evaluate the role of nestin (a type VI intermediate filament protein) in cytoskeletal signaling in airway smooth muscle. METHODS: Nestin expression in human airway smooth muscle (HASM) was knocked down by specific shRNA or siRNA. The effects of nestin knockdown (KD) on the recruitment of cortactin and Pfn-1, actin polymerization, myosin light chain (MLC) phosphorylation, and contraction were evaluated by cellular and physiological approaches. Moreover, we assessed the effects of non-phosphorylatable nestin mutant on these biological processes. RESULTS: Nestin KD reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Moreover, contractile stimulation enhanced nestin phosphorylation at Thr-315 and the interaction of nestin with Plk1. Nestin KD also diminished phosphorylation of Plk1 and vimentin. The expression of T315A nestin mutant (alanine substitution at Thr-315) reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Furthermore, Plk1 KD diminished nestin phosphorylation at this residue. CONCLUSIONS: Nestin is an essential macromolecule that regulates actin cytoskeletal signaling via Plk1 in smooth muscle. Plk1 and nestin form an activation loop during contractile stimulation.


Asunto(s)
Actinas , Cortactina , Humanos , Nestina/genética , Vimentina , Cortactina/genética , Citoesqueleto
10.
Cancer Med ; 12(3): 3299-3312, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35894387

RESUMEN

BACKGROUND: Emerging evidence indicates that myristoylated alanine-rich C kinase substrate like 1 (MARCKSL1) is involved in the progression of esophageal squamous cell carcinoma (ESCC). However, the underpinning mechanism is unclear. Here, we investigated the mechanisms involving MARCKSL1 in ESCC progression. METHODS: CCK8, Transwell and wound-healing assays were employed to test the effect of MARCKSL1 on proliferation, invasion and migration in vitro. Next, transcriptome profiling was conducted through RNA sequencing to reveal the underlying mechanism of MARCKSL1 in ESCC progression, which was subsequently verified by western blot and qPCR analysis. Moreover, immunofluorescence and gelatin degradation assays were performed to reveal the ability of MARCKSL1 to mediate invadopodia formation and extracellular matrix (ECM) degradation. Finally, the correlation between MARCKSL1 and the clinicopathological features of ESCC patients was assessed based on TCGA database analysis and immunohistochemistry staining of tissue microarrays. RESULTS: Knockdown of MARCKSL1 markedly attenuated the cell motility capacity of ESCC cells in vitro, while MARCKSL1 overexpression had the opposite effect. Transcriptomic analysis showed that MARCKSL1 mediated the mobility and migration of ESCC cells. In addition, overexpression of MARCKSL1 increased the colocalization of F-actin and cortactin at the frontier edge of migrating cells and ECM degradation. Furthermore, in ESCC patients, the mRNA level of MARCKSL1 in esophageal carcinomas (n = 182) was found to be notably higher than that in adjacent esophageal epithelia (n = 286) and the expression levels of MARCKSL1 in the tumor tissues (n = 811) were significantly increased compared to those in noncancerous esophageal tissues (n = 442) with a large sample size. Higher expression of MARCKSL1 was positively correlated with lymph node metastasis and associated with worse survival rates of patients with ESCC. CONCLUSION: MARCKSL1 promotes cell migration and invasion by interacting with F-actin and cortactin to regulate invadopodia formation and ECM degeneration. High MARCKSL1 expression is positively correlated with poor prognosis in ESCC patients with lymph node metastasis.


Asunto(s)
Proteínas de Unión a Calmodulina , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Podosomas , Humanos , Actinas/metabolismo , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Cortactina/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Metástasis Linfática , Invasividad Neoplásica/genética , Podosomas/metabolismo
11.
Invest Ophthalmol Vis Sci ; 63(12): 14, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36350618

RESUMEN

Purpose: Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+) dependent deacetylase, which plays an essential role in cellular metabolism, autophagy, and chromatin accessibility. Our study aimed to determine its role in controlling corneal epithelial wound healing (CEWH). Methods: Corneal epithelial (CE)-specific Sirt1 deletion mice were created using the Cre-lox system. CE debridement was used to create a CEWH model. Corneal epithelial cells (CECs) were collected with an Algerbrush. Western blot analysis and RT-qPCR were performed to determine protein and mRNA expression levels. SiRNA transfection technology knocked down SIRT1 and cortactin expression levels in human corneal epithelial cells. Scratch wound assay, MTS assay, and TUNEL assay determined cell migratory, proliferative, and apoptotic behavior, respectively. Co-immunoprecipitation probed for SIRT1 and cortactin interaction. Immunofluorescence staining evaluated the location and expression levels of SIRT1, cortactin, acetylated-cortactin, and F-actin. Results: During CEWH, increases in SIRT1 mRNA and protein expression levels accompanied the downregulation of acetylated lysine in non-histone proteins. The loss of SIRT1 function reduced cell migration and, in turn, delayed CEWH. SIRT1 bound to and deacetylated cortactin in vitro and in vivo. Loss of either SIRT1 or cortactin suppressed wound edge lamellipodia formation, which is consistent with migration retardation. Conclusions: During CEWH, SIRT1 upregulation and its modification of cortactin boost CEC migration by increasing the development of lamellipodia at the wound edge. Therefore SIRT1 may serve as a potential target to enhance CEWH.


Asunto(s)
Cortactina , Sirtuina 1 , Humanos , Ratones , Animales , Cortactina/genética , Cortactina/metabolismo , Sirtuina 1/metabolismo , Movimiento Celular/fisiología , ARN Interferente Pequeño/genética , ARN Mensajero/genética
12.
Cell Death Dis ; 13(10): 856, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209218

RESUMEN

The microtubule (MT) plus-end binding protein Clip170 is associated closely with breast cancer invasion and migration. In this study, Clip170 tension observed by a newly designed cpstFRET tension probe was suggested to be positive related to breast cancer aggressiveness, which could be regulated by α-tubulin detyrosination-induced MT disassembly. Clip170 phosphorylation induced by Ribosomal protein S6 kinase (RSK) could also increase its tension and promote the conversion of a discrete comet-like Clip-170 distribution into a spotty pattern during cancer metastasis. Heightened Clip170 tension was correlated with the formation of cortactin-associated filopodia and lamellipodia, and then promoted invasion and metastasis both in vitro and in vivo. Meanwhile, Clip170 tension enhanced at the leading edge in directional migration, accompanying with IQGAP1 subcellular distribution variation. Our work indicates that the malignancy and directionality during breast cancer migration depend on the magnitude and polarization of Clip170 tension, and we suggest Clip170 tension as a new potential drug target for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Mama/patología , Cortactina/genética , Cortactina/metabolismo , Femenino , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Tubulina (Proteína)/metabolismo
13.
Cell Death Dis ; 13(9): 812, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36137995

RESUMEN

Distant metastasis is the main cause of mortality in breast cancer patients. Using the breast cancer genomic data from The Cancer Genome Atlas (TCGA), we identified brain specific Cav2.2 as a critical regulator of metastasis. Cav2.2 expression is significantly upregulated in breast cancer and its higher expression is inversely correlated with survival suggesting a previously unappreciated role of Cav2.2 in breast cancer. Cav2.2 is required for breast cancer migration, invasion, and metastasis. Interestingly, Cav2.2 promotes invadopodia formation and extracellular matrix (ECM) degradation through the stabilization of invadopodia component cortactin in a proteosome-dependent manner. Moreover, deubiquitinating enzyme USP43 mediated the functions of Cav2.2 in cortactin stabilization, invadopodia formation, ECM degradation, and metastasis. Interestingly, Cav2.2 upregulates USP43 expression through NFAT2 dephosphorylation and nuclear localization. Our study uncovered a novel pathway that regulates cortactin expression and invadopodia formation in breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Canales de Calcio Tipo N , Enzimas Desubicuitinizantes , Factores de Transcripción NFATC , Podosomas , Neoplasias de la Mama/patología , Canales de Calcio Tipo N/metabolismo , Línea Celular Tumoral , Cortactina/genética , Cortactina/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Factores de Transcripción NFATC/metabolismo , Invasividad Neoplásica , Podosomas/metabolismo
14.
J Recept Signal Transduct Res ; 42(6): 588-598, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36043996

RESUMEN

The E3 ubiquitin ligase is an important regulator of cell signaling and proteostasis and is tightly controlled in many diseases, including cancer. Our study aimed to investigate the biological role of the E3 ubiquitin ligase CBLC in breast cancer and elucidate the specific mechanistic network underlying CBLC-mediated target substrate degradation, cell proliferation and metastasis. Here, we showed that CBLC expression was higher in breast cancer tissues and cells than that in normal tissues and cells. Higher expression of CBLC predicted a better prognosis for breast cancer patients. CBLC inhibited the proliferation, migration and invasion of breast cancer cells. Co-IP and immunofluorescence co-localization assays demonstrated that CBLC interacted with CTTN in the cytoplasm. CBLC promoted the degradation of CTTN through the ubiquitin-proteasome pathway without affecting its mRNA level. The inhibitory effect of CBLC on breast cancer cell proliferation, migration and invasion could partly be reversed by CTTN. Taken together, our study clarified the biological role of CBLC as a tumor suppressor and discovered its functional substrate, providing a molecular basis for CBLC/CTTN as a potential therapeutic target in breast cancer.


Asunto(s)
Neoplasias de la Mama , Cortactina , Proteínas Proto-Oncogénicas c-cbl , Femenino , Humanos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Cortactina/genética , Cortactina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas Proto-Oncogénicas c-cbl/genética
15.
J Cell Sci ; 135(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35848790

RESUMEN

Respiratory syncytial virus (RSV) infection is the leading cause of acute lower respiratory tract infection in young children worldwide. Our group recently revealed that RSV infection disrupts the airway epithelial barrier in vitro and in vivo. However, the underlying molecular pathways were still elusive. Here, we report the critical roles of the filamentous actin (F-actin) network and actin-binding protein cortactin in RSV infection. We found that RSV infection causes F-actin depolymerization in 16HBE cells, and that stabilizing the F-actin network in infected cells reverses the epithelial barrier disruption. RSV infection also leads to significantly decreased cortactin in vitro and in vivo. Cortactin-knockout 16HBE cells presented barrier dysfunction, whereas overexpression of cortactin protected the epithelial barrier against RSV. The activity of Rap1 (which has Rap1A and Rap1B forms), one downstream target of cortactin, declined after RSV infection as well as in cortactin-knockout cells. Moreover, activating Rap1 attenuated RSV-induced epithelial barrier disruption. Our study proposes a key mechanism in which RSV disrupts the airway epithelial barrier via attenuating cortactin expression and destabilizing the F-actin network. The identified pathways will provide new targets for therapeutic intervention toward RSV-related disease. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Actinas/metabolismo , Niño , Preescolar , Cortactina/genética , Cortactina/metabolismo , Células Epiteliales/metabolismo , Humanos , Infecciones por Virus Sincitial Respiratorio/metabolismo , Sistema Respiratorio/metabolismo
16.
Clin Exp Metastasis ; 39(4): 691-710, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35661947

RESUMEN

Plexin-domain containing 2 (PLXDC2) has been reported as an oncoprotein in several human malignancies. However, its expression and roles in gastric cancer remain largely unclear. In this study, we found that PLXDC2 was highly expressed in gastric cancer tissues, and the expression levels were positively correlated with clinicopathological features, but negatively with the patients' outcome. Cox regression analysis identified PLXDC2 as an independent prognostic indicator for the patients. Knockdown of PLXDC2 markedly suppressed the in vitro invasion and in vivo metastasis of gastric cancer cells, while overexpression of PLXDC2 resulted in opposite effects. Mechanistically, PLXDC2 enhanced the level of phosphorylated Cortactin (p-Cortactin) by physically interacting with protein tyrosine phosphatase 1B (PTP1B), an important dephosphorylase, to prevent its dephosphorylating of p-Cortactin, thereby promoting the formation of invadopodia. Collectively, our results indicate that PLXDC2 contributes to the invasion and metastasis of gastric cancer by inhibiting PTP1B to facilitate the invadopodium formation, and may serve as a potential prognostic biomarker and a therapeutic target for this disease.


Asunto(s)
Podosomas , Neoplasias Gástricas , Línea Celular Tumoral , Cortactina/genética , Cortactina/metabolismo , Humanos , Invasividad Neoplásica , Monoéster Fosfórico Hidrolasas/metabolismo , Podosomas/metabolismo , Podosomas/patología , Receptores de Superficie Celular , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
17.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L890-L897, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35503995

RESUMEN

In patients with sickle cell disease (SCD), acute chest syndrome (ACS) is a common form of acute lung injury and a major cause of morbidity and mortality. The pathophysiology of ACS is complex, and hemin, the prosthetic moiety of hemoglobin, has been implicated in endothelial cell (EC) activation and subsequent acute lung injury (ALI) and ACS in vitro and in animal studies. Here, we examined the role of cortactin (CTTN), a cytoskeletal protein that regulates EC function, in response to hemin-induced ALI and ACS. Cortactin heterozygous (Cttn+/-) mice (n = 8) and their wild-type siblings (n = 8) were irradiated and subsequently received bone marrow cells (BMCs) extruded from the femurs of SCD mice (SS) to generate SS Cttn+/- and SS CttnWT chimeras. Following hemoglobin electrophoretic proof of BMC transplantation, the mice received 35 µmol/kg of hemin. Within 24 h, surviving mice were euthanized, and bronchoalveolar fluid (BAL) and lung samples were analyzed. For in vitro studies, human lung microvascular endothelial cells (HLMVECs) were used to determine hemin-induced changes in gene expression and reactive oxygen species (ROS) generation in cortactin deficiency and control conditions. When compared with wild-type littermates, the mortality for SS Cttn+/- mice trended to be lower after hemin infusion and these mice exhibited less severe lung injury and less necroptotic cell death. In vitro studies confirmed that cortactin deficiency is protective against hemin-induced injury in HMLVECs, by decreasing protein expression of p38/HSP27, improving cell barrier function, and decreasing the production of ROS. Further studies examining the role of CTTN in ACS are warranted and may open a new avenue of potential treatment for this devastating disease.


Asunto(s)
Lesión Pulmonar Aguda , Anemia de Células Falciformes , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/prevención & control , Anemia de Células Falciformes/complicaciones , Animales , Cortactina/genética , Cortactina/metabolismo , Células Endoteliales/metabolismo , Hemina/metabolismo , Hemina/farmacología , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo
18.
Transl Res ; 244: 56-74, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35181549

RESUMEN

The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. In a separate cohort of sickle cell disease (SCD) subjects with and without ACS (177 SCD Black subjects), significantly increased risk of ACS and increased ACS severity (need for mechanical ventilation) was observed in carriers of the A allele. Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Animales , Permeabilidad Capilar , Cortactina/genética , Cortactina/metabolismo , Humanos , Pulmón/metabolismo , Ratones , Polimorfismo de Nucleótido Simple , Síndrome de Dificultad Respiratoria/genética , Índice de Severidad de la Enfermedad
19.
Clin Exp Med ; 22(3): 403-410, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34533670

RESUMEN

To study the role of HER2/cortactin co-overexpression in advanced gastric cancer (GC). This study retrospectively enrolled 246 patients with stage III GC from January 2015 to December 2016 at our hospital. We explored, using immunostaining techniques, the role of the expression of cortactin and HER2 in the progression of advanced GC. The patient data, including age, sex, cortactin and HER2 expression, pathological parameters and survival, were collected. Univariate and multivariate analyses were used to analyze the characteristics, survival, and prognostic factors of the patients. The results showed that the expression of cortactin was significantly associated with vascular-lymphatic invasion (P < 0.001), N stage (P = 0.001), and TNM stage (P = 0.046). HER2 overexpression correlated with tumor size (P = 0.002), neural invasion (P = 0.002), Lauren classification (P = 0.005) and N stage (P = 0.034). Through univariate analysis using the Kaplan-Meier method, vascular-lymphatic invasion (P = 0.015), neural invasion (P = 0.021), N stage (P < 0.003), and HER2/cortactin co-overexpression (P < 0.028) were shown to be significantly associated with overall survival. Multivariate analysis demonstrated that vascular lymphatic invasion (hazard ratio = 1.481, 95% CI, 1.064 to 2.061, P = 0.020), neural invasion (hazard ratio = 1.505, 95% CI, 1.084 to 2.089, P = 0.015), N stage (N2/N1: hazard ratio = 1.655, 95% CI, 1.048 to 2.641, P < 0.031, N3/N1: hazard ratio = 2.089, 95% CI, 1.325 to 3.295, P < 0.002), and HER2/cortactin co-overexpression (hazard ratio = 1.427, 95% CI, 1.007 to 2.024, P = 0.046) were independent prognostic factors for poor overall survival. The results suggested that HER2/cortactin co-overexpression is an important predictive biomarker for GC patients. GC patients with HER2/cortactin co-overexpression may receive dual-targeted therapy to improve survival prognosis in the future.


Asunto(s)
Cortactina , Receptor ErbB-2 , Neoplasias Gástricas , Biomarcadores de Tumor/genética , Cortactina/genética , Humanos , Estadificación de Neoplasias , Pronóstico , Receptor ErbB-2/genética , Estudios Retrospectivos , Neoplasias Gástricas/genética
20.
Cells ; 10(11)2021 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-34831092

RESUMEN

Cigarette smoke (CS) is the primary cause of Chronic Obstructive Pulmonary Disease (COPD), and an important pathophysiologic event in COPD is CS-induced apoptosis in lung endothelial cells (EC). Cortactin (CTTN) is a cytoskeletal actin-binding regulatory protein with modulation by Src-mediated tyrosine phosphorylation. Based upon data demonstrating reduced CTTN mRNA levels in the lungs of smokers compared to non-smokers, we hypothesized a functional role for CTTN in CS-induced mitochondrial ROS generation and apoptosis in lung EC. Exposure of cultured human lung EC to CS condensate (CSC) led to the rearrangement of the actin cytoskeleton and increased CTTN tyrosine phosphorylation (within hours). Exposure to CS significantly increased EC mitochondrial ROS generation and EC apoptosis. The functional role of CTTN in these CSC-induced EC responses was explored using cortactin siRNA to reduce its expression, and by using a blocking peptide for the CTTN SH3 domain, which is critical to cytoskeletal interactions. CTTN siRNA or blockade of its SH3 domain resulted in significantly increased EC mitochondrial ROS and apoptosis and augmented CSC-induced effects. Exposure of lung EC to e-cigarette condensate demonstrated similar results, with CTTN siRNA or SH3 domain blocking peptide increasing lung EC apoptosis. These data demonstrate a novel role for CTTN in modulating lung EC apoptosis induced by CS or e-cigarettes potentially providing new insights into COPD pathogenesis.


Asunto(s)
Apoptosis , Cortactina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Pulmón/patología , Fumar/efectos adversos , Apoptosis/genética , Cortactina/química , Cortactina/genética , Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Modelos Biológicos , Fosfotirosina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fumadores , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...