Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.555
Filtrar
1.
Hear Res ; 447: 109027, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723386

RESUMEN

Despite that fact that the cochlear implant (CI) is one of the most successful neuro-prosthetic devices which allows hearing restoration, several aspects still need to be improved. Interactions between stimulating electrodes through current spread occurring within the cochlea drastically limit the number of discriminable frequency channels and thus can ultimately result in poor speech perception. One potential solution relies on the use of new pulse shapes, such as asymmetric pulses, which can potentially reduce the current spread within the cochlea. The present study characterized the impact of changing electrical pulse shapes from the standard biphasic symmetric to the asymmetrical shape by quantifying the evoked firing rate and the spatial activation in the guinea pig primary auditory cortex (A1). At a fixed charge, the firing rate and the spatial activation in A1 decreased by 15 to 25 % when asymmetric pulses were used to activate the auditory nerve fibers, suggesting a potential reduction of the spread of excitation inside the cochlea. A strong "polarity-order" effect was found as the reduction was more pronounced when the first phase of the pulse was cathodic with high amplitude. These results suggest that the use of asymmetrical pulse shapes in clinical settings can potentially reduce the channel interactions in CI users.


Asunto(s)
Corteza Auditiva , Implantes Cocleares , Estimulación Eléctrica , Animales , Cobayas , Corteza Auditiva/fisiología , Potenciales Evocados Auditivos , Nervio Coclear/fisiopatología , Estimulación Acústica , Cóclea/cirugía , Implantación Coclear/instrumentación , Potenciales de Acción , Femenino
2.
Curr Biol ; 34(10): 2200-2211.e6, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38733991

RESUMEN

The activity of neurons in sensory areas sometimes covaries with upcoming choices in decision-making tasks. However, the prevalence, causal origin, and functional role of choice-related activity remain controversial. Understanding the circuit-logic of decision signals in sensory areas will require understanding their laminar specificity, but simultaneous recordings of neural activity across the cortical layers in forced-choice discrimination tasks have not yet been performed. Here, we describe neural activity from such recordings in the auditory cortex of mice during a frequency discrimination task with delayed report, which, as we show, requires the auditory cortex. Stimulus-related information was widely distributed across layers but disappeared very quickly after stimulus offset. Choice selectivity emerged toward the end of the delay period-suggesting a top-down origin-but only in the deep layers. Early stimulus-selective and late choice-selective deep neural ensembles were correlated, suggesting that the choice-selective signal fed back to the auditory cortex is not just action specific but develops as a consequence of the sensory-motor contingency imposed by the task.


Asunto(s)
Corteza Auditiva , Conducta de Elección , Animales , Corteza Auditiva/fisiología , Ratones , Conducta de Elección/fisiología , Estimulación Acústica , Ratones Endogámicos C57BL , Percepción Auditiva/fisiología , Masculino , Neuronas/fisiología
3.
Nat Commun ; 15(1): 4071, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778078

RESUMEN

Adaptive behavior requires integrating prior knowledge of action outcomes and sensory evidence for making decisions while maintaining prior knowledge for future actions. As outcome- and sensory-based decisions are often tested separately, it is unclear how these processes are integrated in the brain. In a tone frequency discrimination task with two sound durations and asymmetric reward blocks, we found that neurons in the medial prefrontal cortex of male mice represented the additive combination of prior reward expectations and choices. The sensory inputs and choices were selectively decoded from the auditory cortex irrespective of reward priors and the secondary motor cortex, respectively, suggesting localized computations of task variables are required within single trials. In contrast, all the recorded regions represented prior values that needed to be maintained across trials. We propose localized and global computations of task variables in different time scales in the cerebral cortex.


Asunto(s)
Corteza Auditiva , Conducta de Elección , Recompensa , Animales , Masculino , Conducta de Elección/fisiología , Ratones , Corteza Auditiva/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Estimulación Acústica , Ratones Endogámicos C57BL , Corteza Cerebral/fisiología , Corteza Motora/fisiología , Percepción Auditiva/fisiología
4.
Nat Commun ; 15(1): 3941, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729937

RESUMEN

A relevant question concerning inter-areal communication in the cortex is whether these interactions are synergistic. Synergy refers to the complementary effect of multiple brain signals conveying more information than the sum of each isolated signal. Redundancy, on the other hand, refers to the common information shared between brain signals. Here, we dissociated cortical interactions encoding complementary information (synergy) from those sharing common information (redundancy) during prediction error (PE) processing. We analyzed auditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded synergistic and redundant information about PE processing. The information conveyed by ERPs and BB signals was synergistic even at lower stages of the hierarchy in the auditory cortex and between auditory and frontal regions. Using a brain-constrained neural network, we simulated the synergy and redundancy observed in the experimental results and demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance, feedback, and feedforward connections. These results indicate that distributed representations of PE signals across the cortical hierarchy can be highly synergistic.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Callithrix , Electrocorticografía , Animales , Corteza Auditiva/fisiología , Callithrix/fisiología , Masculino , Femenino , Potenciales Evocados/fisiología , Lóbulo Frontal/fisiología , Potenciales Evocados Auditivos/fisiología , Percepción Auditiva/fisiología , Mapeo Encefálico/métodos
5.
Nat Commun ; 15(1): 4313, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773109

RESUMEN

Our brain is constantly extracting, predicting, and recognising key spatiotemporal features of the physical world in order to survive. While neural processing of visuospatial patterns has been extensively studied, the hierarchical brain mechanisms underlying conscious recognition of auditory sequences and the associated prediction errors remain elusive. Using magnetoencephalography (MEG), we describe the brain functioning of 83 participants during recognition of previously memorised musical sequences and systematic variations. The results show feedforward connections originating from auditory cortices, and extending to the hippocampus, anterior cingulate gyrus, and medial cingulate gyrus. Simultaneously, we observe backward connections operating in the opposite direction. Throughout the sequences, the hippocampus and cingulate gyrus maintain the same hierarchical level, except for the final tone, where the cingulate gyrus assumes the top position within the hierarchy. The evoked responses of memorised sequences and variations engage the same hierarchical brain network but systematically differ in terms of temporal dynamics, strength, and polarity. Furthermore, induced-response analysis shows that alpha and beta power is stronger for the variations, while gamma power is enhanced for the memorised sequences. This study expands on the predictive coding theory by providing quantitative evidence of hierarchical brain mechanisms during conscious memory and predictive processing of auditory sequences.


Asunto(s)
Corteza Auditiva , Percepción Auditiva , Magnetoencefalografía , Humanos , Masculino , Femenino , Adulto , Percepción Auditiva/fisiología , Adulto Joven , Corteza Auditiva/fisiología , Encéfalo/fisiología , Estimulación Acústica , Mapeo Encefálico , Música , Giro del Cíngulo/fisiología , Memoria/fisiología , Hipocampo/fisiología , Reconocimiento en Psicología/fisiología
6.
Curr Biol ; 34(10): 2162-2174.e5, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38718798

RESUMEN

Humans make use of small differences in the timing of sounds at the two ears-interaural time differences (ITDs)-to locate their sources. Despite extensive investigation, however, the neural representation of ITDs in the human brain is contentious, particularly the range of ITDs explicitly represented by dedicated neural detectors. Here, using magneto- and electro-encephalography (MEG and EEG), we demonstrate evidence of a sparse neural representation of ITDs in the human cortex. The magnitude of cortical activity to sounds presented via insert earphones oscillated as a function of increasing ITD-within and beyond auditory cortical regions-and listeners rated the perceptual quality of these sounds according to the same oscillating pattern. This pattern was accurately described by a population of model neurons with preferred ITDs constrained to the narrow, sound-frequency-dependent range evident in other mammalian species. When scaled for head size, the distribution of ITD detectors in the human cortex is remarkably like that recorded in vivo from the cortex of rhesus monkeys, another large primate that uses ITDs for source localization. The data solve a long-standing issue concerning the neural representation of ITDs in humans and suggest a representation that scales for head size and sound frequency in an optimal manner.


Asunto(s)
Corteza Auditiva , Señales (Psicología) , Localización de Sonidos , Corteza Auditiva/fisiología , Humanos , Masculino , Localización de Sonidos/fisiología , Animales , Femenino , Adulto , Electroencefalografía , Macaca mulatta/fisiología , Magnetoencefalografía , Estimulación Acústica , Adulto Joven , Percepción Auditiva/fisiología
7.
Nat Commun ; 15(1): 3093, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600118

RESUMEN

Sensory-motor interactions in the auditory system play an important role in vocal self-monitoring and control. These result from top-down corollary discharges, relaying predictions about vocal timing and acoustics. Recent evidence suggests such signals may be two distinct processes, one suppressing neural activity during vocalization and another enhancing sensitivity to sensory feedback, rather than a single mechanism. Single-neuron recordings have been unable to disambiguate due to overlap of motor signals with sensory inputs. Here, we sought to disentangle these processes in marmoset auditory cortex during production of multi-phrased 'twitter' vocalizations. Temporal responses revealed two timescales of vocal suppression: temporally-precise phasic suppression during phrases and sustained tonic suppression. Both components were present within individual neurons, however, phasic suppression presented broadly regardless of frequency tuning (gating), while tonic was selective for vocal frequencies and feedback (prediction). This suggests that auditory cortex is modulated by concurrent corollary discharges during vocalization, with different computational mechanisms.


Asunto(s)
Corteza Auditiva , Animales , Corteza Auditiva/fisiología , Neuronas/fisiología , Retroalimentación Sensorial/fisiología , Retroalimentación , Callithrix/fisiología , Vocalización Animal/fisiología , Percepción Auditiva/fisiología , Estimulación Acústica
8.
Nat Commun ; 15(1): 3116, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600132

RESUMEN

Spatiotemporally congruent sensory stimuli are fused into a unified percept. The auditory cortex (AC) sends projections to the primary visual cortex (V1), which could provide signals for binding spatially corresponding audio-visual stimuli. However, whether AC inputs in V1 encode sound location remains unknown. Using two-photon axonal calcium imaging and a speaker array, we measured the auditory spatial information transmitted from AC to layer 1 of V1. AC conveys information about the location of ipsilateral and contralateral sound sources to V1. Sound location could be accurately decoded by sampling AC axons in V1, providing a substrate for making location-specific audiovisual associations. However, AC inputs were not retinotopically arranged in V1, and audio-visual modulations of V1 neurons did not depend on the spatial congruency of the sound and light stimuli. The non-topographic sound localization signals provided by AC might allow the association of specific audiovisual spatial patterns in V1 neurons.


Asunto(s)
Corteza Auditiva , Localización de Sonidos , Corteza Visual , Percepción Visual/fisiología , Corteza Auditiva/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Estimulación Luminosa/métodos , Estimulación Acústica/métodos
9.
PLoS Comput Biol ; 20(4): e1011975, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38669271

RESUMEN

The brain produces diverse functions, from perceiving sounds to producing arm reaches, through the collective activity of populations of many neurons. Determining if and how the features of these exogenous variables (e.g., sound frequency, reach angle) are reflected in population neural activity is important for understanding how the brain operates. Often, high-dimensional neural population activity is confined to low-dimensional latent spaces. However, many current methods fail to extract latent spaces that are clearly structured by exogenous variables. This has contributed to a debate about whether or not brains should be thought of as dynamical systems or representational systems. Here, we developed a new latent process Bayesian regression framework, the orthogonal stochastic linear mixing model (OSLMM) which introduces an orthogonality constraint amongst time-varying mixture coefficients, and provide Markov chain Monte Carlo inference procedures. We demonstrate superior performance of OSLMM on latent trajectory recovery in synthetic experiments and show superior computational efficiency and prediction performance on several real-world benchmark data sets. We primarily focus on demonstrating the utility of OSLMM in two neural data sets: µECoG recordings from rat auditory cortex during presentation of pure tones and multi-single unit recordings form monkey motor cortex during complex arm reaching. We show that OSLMM achieves superior or comparable predictive accuracy of neural data and decoding of external variables (e.g., reach velocity). Most importantly, in both experimental contexts, we demonstrate that OSLMM latent trajectories directly reflect features of the sounds and reaches, demonstrating that neural dynamics are structured by neural representations. Together, these results demonstrate that OSLMM will be useful for the analysis of diverse, large-scale biological time-series datasets.


Asunto(s)
Corteza Auditiva , Teorema de Bayes , Cadenas de Markov , Modelos Neurológicos , Neuronas , Procesos Estocásticos , Animales , Ratas , Corteza Auditiva/fisiología , Neuronas/fisiología , Biología Computacional , Modelos Lineales , Método de Montecarlo , Simulación por Computador
10.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38561224

RESUMEN

Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain. However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in the auditory thalamus-the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced information-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity, suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a fundamental role in sensory processing within the brain.


Asunto(s)
Estimulación Acústica , Cuerpos Geniculados , Neuronas , Ratas Sprague-Dawley , Animales , Femenino , Ratas , Neuronas/fisiología , Cuerpos Geniculados/fisiología , Estimulación Acústica/métodos , Vías Auditivas/fisiología , Potenciales de Acción/fisiología , Corteza Auditiva/fisiología , Corteza Auditiva/citología , Tálamo/fisiología , Tálamo/citología , Potenciales Evocados Auditivos/fisiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-38557630

RESUMEN

There is widespread interest and concern about the evidence and hypothesis that the auditory system is involved in ultrasound neuromodulation. We have addressed this problem by performing acoustic shear wave simulations in mouse skull and behavioral experiments in deaf mice. The simulation results showed that shear waves propagating along the skull did not reach sufficient acoustic pressure in the auditory cortex to modulate neurons. Behavioral experiments were subsequently performed to awaken anesthetized mice with ultrasound targeting the motor cortex or ventral tegmental area (VTA). The experimental results showed that ultrasound stimulation (US) of the target areas significantly increased arousal scores even in deaf mice, whereas the loss of ultrasound gel abolished the effect. Immunofluorescence staining also showed that ultrasound can modulate neurons in the target area, whereas neurons in the auditory cortex required the involvement of the normal auditory system for activation. In summary, the shear waves propagating along the skull cannot reach the auditory cortex and induce neuronal activation. Ultrasound neuromodulation-induced arousal behavior needs direct action on functionally relevant stimulation targets in the absence of auditory system participation.


Asunto(s)
Cráneo , Animales , Ratones , Cráneo/diagnóstico por imagen , Cráneo/fisiología , Corteza Auditiva/fisiología , Corteza Auditiva/diagnóstico por imagen , Ondas Ultrasónicas , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/diagnóstico por imagen , Área Tegmental Ventral/efectos de la radiación , Ratones Endogámicos C57BL , Masculino
12.
Hear Res ; 447: 109009, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670009

RESUMEN

We recently reported that the central nucleus of the inferior colliculus (the auditory midbrain) is innervated by glutamatergic pyramidal cells originating not only in auditory cortex (AC), but also in multiple 'non-auditory' regions of the cerebral cortex. Here, in anaesthetised rats, we used optogenetics and electrical stimulation, combined with recording in the inferior colliculus to determine the functional influence of these descending connections. Specifically, we determined the extent of monosynaptic excitation and the influence of these descending connections on spontaneous activity in the inferior colliculus. A retrograde virus encoding both green fluorescent protein (GFP) and channelrhodopsin (ChR2) injected into the central nucleus of the inferior colliculus (ICc) resulted in GFP expression in discrete groups of cells in multiple areas of the cerebral cortex. Light stimulation of AC and primary motor cortex (M1) caused local activation of cortical neurones and increased the firing rate of neurones in ICc indicating a direct excitatory input from AC and M1 to ICc with a restricted distribution. In naïve animals, electrical stimulation at multiple different sites within M1, secondary motor, somatosensory, and prefrontal cortices increased firing rate in ICc. However, it was notable that stimulation at some adjacent sites failed to influence firing at the recording site in ICc. Responses in ICc comprised singular spikes of constant shape and size which occurred with a short, and fixed latency (∼ 5 ms) consistent with monosynaptic excitation of individual ICc units. Increasing the stimulus current decreased the latency of these spikes, suggesting more rapid depolarization of cortical neurones, and increased the number of (usually adjacent) channels on which a monosynaptic spike was seen, suggesting recruitment of increasing numbers of cortical neurons. Electrical stimulation of cortical regions also evoked longer latency, longer duration increases in firing activity, comprising multiple units with spikes occurring with significant temporal jitter, consistent with polysynaptic excitation. Increasing the stimulus current increased the number of spikes in these polysynaptic responses and increased the number of channels on which the responses were observed, although the magnitude of the responses always diminished away from the most activated channels. Together our findings indicate descending connections from motor, somatosensory and executive cortical regions directly activate small numbers of ICc neurones and that this in turn leads to extensive polysynaptic activation of local circuits within the ICc.


Asunto(s)
Corteza Auditiva , Vías Auditivas , Estimulación Eléctrica , Colículos Inferiores , Corteza Motora , Optogenética , Corteza Somatosensorial , Sinapsis , Animales , Colículos Inferiores/fisiología , Corteza Somatosensorial/fisiología , Corteza Auditiva/fisiología , Corteza Motora/fisiología , Vías Auditivas/fisiología , Sinapsis/fisiología , Masculino , Neuronas/fisiología , Ratas Sprague-Dawley , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Femenino , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Ratas
13.
Cortex ; 174: 1-18, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484435

RESUMEN

Hearing-in-noise (HIN) ability is crucial in speech and music communication. Recent evidence suggests that absolute pitch (AP), the ability to identify isolated musical notes, is associated with HIN benefits. A theoretical account postulates a link between AP ability and neural network indices of segregation. However, how AP ability modulates the brain activation and functional connectivity underlying HIN perception remains unclear. Here we used functional magnetic resonance imaging to contrast brain responses among a sample (n = 45) comprising 15 AP musicians, 15 non-AP musicians, and 15 non-musicians in perceiving Mandarin speech and melody targets under varying signal-to-noise ratios (SNRs: No-Noise, 0, -9 dB). Results reveal that AP musicians exhibited increased activation in auditory and superior frontal regions across both HIN domains (music and speech), irrespective of noise levels. Notably, substantially higher sensorimotor activation was found in AP musicians when the target was music compared to speech. Furthermore, we examined AP effects on neural connectivity using psychophysiological interaction analysis with the auditory cortex as the seed region. AP musicians showed decreased functional connectivity with the sensorimotor and middle frontal gyrus compared to non-AP musicians. Crucially, AP differentially affected connectivity with parietal and frontal brain regions depending on the HIN domain being music or speech. These findings suggest that AP plays a critical role in HIN perception, manifested by increased activation and functional independence between auditory and sensorimotor regions for perceiving music and speech streams.


Asunto(s)
Corteza Auditiva , Música , Percepción del Habla , Humanos , Encéfalo/fisiología , Percepción Auditiva/fisiología , Audición , Corteza Auditiva/fisiología , Mapeo Encefálico , Percepción del Habla/fisiología , Percepción de la Altura Tonal/fisiología , Estimulación Acústica
14.
Hear Res ; 445: 108993, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518392

RESUMEN

Tinnitus is known to affect 10-15 % of the population, severely impacting 1-2 % of those afflicted. Canonically, tinnitus is generally a consequence of peripheral auditory damage resulting in maladaptive plastic changes in excitatory/inhibitory homeostasis at multiple levels of the central auditory pathway as well as changes in diverse nonauditory structures. Animal studies of primary auditory cortex (A1) generally find tinnitus-related changes in excitability across A1 layers and differences between inhibitory neuronal subtypes. Changes due to sound-exposure include changes in spontaneous activity, cross-columnar synchrony, bursting and tonotopic organization. Few studies in A1 directly correlate tinnitus-related changes in neural activity to an individual animal's behavioral evidence of tinnitus. The present study used an established condition-suppression sound-exposure model of chronic tinnitus and recorded spontaneous and driven single-unit responses from A1 layers 5 and 6 of awake Long-Evans rats. A1 units recorded from animals with behavioral evidence of tinnitus showed significant increases in spontaneous and sound-evoked activity which directly correlated to the animal's tinnitus score. Significant increases in the number of bursting units, the number of bursts/minute and burst duration were seen for A1 units recorded from animals with behavioral evidence of tinnitus. The present A1 findings support prior unit recording studies in auditory thalamus and recent in vitro findings in this same animal model. The present findings are consistent with sensory cortical studies showing tinnitus- and neuropathic pain-related down-regulation of inhibition and increased excitation based on plastic neurotransmitter and potassium channel changes. Reducing A1 deep-layer tinnitus-related hyperactivity is a potential target for tinnitus pharmacotherapy.


Asunto(s)
Corteza Auditiva , Acúfeno , Ratas , Animales , Corteza Auditiva/fisiología , Acúfeno/metabolismo , Vigilia , Ratas Long-Evans , Vías Auditivas/metabolismo
15.
J Physiol ; 602(8): 1733-1757, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493320

RESUMEN

Differentiating between auditory signals of various emotional significance plays a crucial role in an individual's ability to thrive and excel in social interactions and in survival. Multiple approaches, including anatomical studies, electrophysiological investigations, imaging techniques, optogenetics and chemogenetics, have confirmed that the auditory cortex (AC) impacts fear-related behaviours driven by auditory stimuli by conveying auditory information to the lateral amygdala (LA) through long-range excitatory glutamatergic and GABAergic connections. In addition, the LA provides glutamatergic projections to the AC which are important to fear memory expression and are modified by associative fear learning. Here we test the hypothesis that the LA also sends long-range direct inhibitory inputs to the cortex. To address this fundamental question, we used anatomical and electrophysiological approaches, allowing us to directly assess the nature of GABAergic inputs from the LA to the AC in the mouse. Our findings elucidate the existence of a long-range inhibitory pathway from the LA to the AC (LAC) via parvalbumin-expressing (LAC-Parv) and somatostatin-expressing (LAC-SOM) neurons. This research identifies distinct electrophysiological properties for genetically defined long-range GABAergic neurons involved in the communication between the LA and the cortex (LAC-Parv inhibitory projections → AC neurons; LAC-Som inhibitory projections → AC neurons) within the lateral amygdala cortical network. KEY POINTS: The mouse auditory cortex receives inputs from the lateral amygdala. Retrograde viral tracing techniques allowed us to identify two previously undescribed lateral amygdala to auditory cortex (LAC) GABAergic projecting neurons. Extensive electrophysiological, morphological and anatomical characterization of LAC neurons is provided here, demonstrating key differences in the three populations. This study paves the way for a better understanding of the growing complexity of the cortico-amygdala-cortico circuit.


Asunto(s)
Corteza Auditiva , Ratones , Animales , Corteza Auditiva/fisiología , Amígdala del Cerebelo/fisiología , Neuronas GABAérgicas/fisiología , Parvalbúminas/metabolismo
16.
PLoS Biol ; 22(3): e3002534, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466713

RESUMEN

Selective attention-related top-down modulation plays a significant role in separating relevant speech from irrelevant background speech when vocal attributes separating concurrent speakers are small and continuously evolving. Electrophysiological studies have shown that such top-down modulation enhances neural tracking of attended speech. Yet, the specific cortical regions involved remain unclear due to the limited spatial resolution of most electrophysiological techniques. To overcome such limitations, we collected both electroencephalography (EEG) (high temporal resolution) and functional magnetic resonance imaging (fMRI) (high spatial resolution), while human participants selectively attended to speakers in audiovisual scenes containing overlapping cocktail party speech. To utilise the advantages of the respective techniques, we analysed neural tracking of speech using the EEG data and performed representational dissimilarity-based EEG-fMRI fusion. We observed that attention enhanced neural tracking and modulated EEG correlates throughout the latencies studied. Further, attention-related enhancement of neural tracking fluctuated in predictable temporal profiles. We discuss how such temporal dynamics could arise from a combination of interactions between attention and prediction as well as plastic properties of the auditory cortex. EEG-fMRI fusion revealed attention-related iterative feedforward-feedback loops between hierarchically organised nodes of the ventral auditory object related processing stream. Our findings support models where attention facilitates dynamic neural changes in the auditory cortex, ultimately aiding discrimination of relevant sounds from irrelevant ones while conserving neural resources.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Humanos , Percepción del Habla/fisiología , Habla , Retroalimentación , Electroencefalografía/métodos , Corteza Auditiva/fisiología , Estimulación Acústica/métodos
17.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467426

RESUMEN

Auditory perception can be significantly disrupted by noise. To discriminate sounds from noise, auditory scene analysis (ASA) extracts the functionally relevant sounds from acoustic input. The zebra finch communicates in noisy environments. Neurons in their secondary auditory pallial cortex (caudomedial nidopallium, NCM) can encode song from background chorus, or scenes, and this capacity may aid behavioral ASA. Furthermore, song processing is modulated by the rapid synthesis of neuroestrogens when hearing conspecific song. To examine whether neuroestrogens support neural and behavioral ASA in both sexes, we retrodialyzed fadrozole (aromatase inhibitor, FAD) and recorded in vivo awake extracellular NCM responses to songs and scenes. We found that FAD affected neural encoding of songs by decreasing responsiveness and timing reliability in inhibitory (narrow-spiking), but not in excitatory (broad-spiking) neurons. Congruently, FAD decreased neural encoding of songs in scenes for both cell types, particularly in females. Behaviorally, we trained birds using operant conditioning and tested their ability to detect songs in scenes after administering FAD orally or injected bilaterally into NCM. Oral FAD increased response bias and decreased correct rejections in females, but not in males. FAD in NCM did not affect performance. Thus, FAD in the NCM impaired neuronal ASA but that did not lead to behavioral disruption suggesting the existence of resilience or compensatory responses. Moreover, impaired performance after systemic FAD suggests involvement of other aromatase-rich networks outside the auditory pathway in ASA. This work highlights how transient estrogen synthesis disruption can modulate higher-order processing in an animal model of vocal communication.


Asunto(s)
Corteza Auditiva , Pinzones , Femenino , Animales , Masculino , Pinzones/fisiología , Aromatasa , Reproducibilidad de los Resultados , Vocalización Animal/fisiología , Estimulación Acústica , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Corteza Auditiva/fisiología
18.
Sci Rep ; 14(1): 7078, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528192

RESUMEN

Mouse auditory cortex is composed of six sub-fields: primary auditory field (AI), secondary auditory field (AII), anterior auditory field (AAF), insular auditory field (IAF), ultrasonic field (UF) and dorsoposterior field (DP). Previous studies have examined thalamo-cortical connections in the mice auditory system and learned that AI, AAF, and IAF receive inputs from the ventral division of the medial geniculate body (MGB). However, the functional and thalamo-cortical connections between nonprimary auditory cortex (AII, UF, and DP) is unclear. In this study, we examined the locations of neurons projecting to these three cortical sub-fields in the MGB, and addressed the question whether these cortical sub-fields receive inputs from different subsets of MGB neurons or common. To examine the distributions of projecting neurons in the MGB, retrograde tracers were injected into the AII, UF, DP, after identifying these areas by the method of Optical Imaging. Our results indicated that neuron cells which in ventral part of dorsal MGB (MGd) and that of ventral MGB (MGv) projecting to UF and AII with less overlap. And DP only received neuron projecting from MGd. Interestingly, these three cortical areas received input from distinct part of MGd and MGv in an independent manner. Based on our foundings these three auditory cortical sub-fields in mice may independently process auditory information.


Asunto(s)
Corteza Auditiva , Cuerpos Geniculados , Ratones , Animales , Cuerpos Geniculados/fisiología , Corteza Auditiva/fisiología , Neuronas , Neuritas , Vías Auditivas/fisiología , Tálamo/fisiología
19.
Curr Biol ; 34(8): 1605-1620.e5, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38492568

RESUMEN

Sound elicits rapid movements of muscles in the face, ears, and eyes that protect the body from injury and trigger brain-wide internal state changes. Here, we performed quantitative facial videography from mice resting atop a piezoelectric force plate and observed that broadband sounds elicited rapid and stereotyped facial twitches. Facial motion energy (FME) adjacent to the whisker array was 30 dB more sensitive than the acoustic startle reflex and offered greater inter-trial and inter-animal reliability than sound-evoked pupil dilations or movement of other facial and body regions. FME tracked the low-frequency envelope of broadband sounds, providing a means to study behavioral discrimination of complex auditory stimuli, such as speech phonemes in noise. Approximately 25% of layer 5-6 units in the auditory cortex (ACtx) exhibited firing rate changes during facial movements. However, FME facilitation during ACtx photoinhibition indicated that sound-evoked facial movements were mediated by a midbrain pathway and modulated by descending corticofugal input. FME and auditory brainstem response (ABR) thresholds were closely aligned after noise-induced sensorineural hearing loss, yet FME growth slopes were disproportionately steep at spared frequencies, reflecting a central plasticity that matched commensurate changes in ABR wave 4. Sound-evoked facial movements were also hypersensitive in Ptchd1 knockout mice, highlighting the use of FME for identifying sensory hyper-reactivity phenotypes after adult-onset hyperacusis and inherited deficiencies in autism risk genes. These findings present a sensitive and integrative measure of hearing while also highlighting that even low-intensity broadband sounds can elicit a complex mixture of auditory, motor, and reafferent somatosensory neural activity.


Asunto(s)
Audición , Animales , Ratones , Masculino , Audición/fisiología , Sonido , Estimulación Acústica , Femenino , Corteza Auditiva/fisiología , Ratones Endogámicos C57BL , Movimiento , Potenciales Evocados Auditivos del Tronco Encefálico
20.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38508715

RESUMEN

Previous studies have demonstrated that auditory cortex activity can be influenced by cross-sensory visual inputs. Intracortical laminar recordings in nonhuman primates have suggested a feedforward (FF) type profile for auditory evoked but feedback (FB) type for visual evoked activity in the auditory cortex. To test whether cross-sensory visual evoked activity in the auditory cortex is associated with FB inputs also in humans, we analyzed magnetoencephalography (MEG) responses from eight human subjects (six females) evoked by simple auditory or visual stimuli. In the estimated MEG source waveforms for auditory cortex regions of interest, auditory evoked response showed peaks at 37 and 90 ms and visual evoked response at 125 ms. The inputs to the auditory cortex were modeled through FF- and FB-type connections targeting different cortical layers using the Human Neocortical Neurosolver (HNN), which links cellular- and circuit-level mechanisms to MEG signals. HNN modeling suggested that the experimentally observed auditory response could be explained by an FF input followed by an FB input, whereas the cross-sensory visual response could be adequately explained by just an FB input. Thus, the combined MEG and HNN results support the hypothesis that cross-sensory visual input in the auditory cortex is of FB type. The results also illustrate how the dynamic patterns of the estimated MEG source activity can provide information about the characteristics of the input into a cortical area in terms of the hierarchical organization among areas.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Potenciales Evocados Visuales , Magnetoencefalografía , Estimulación Luminosa , Humanos , Corteza Auditiva/fisiología , Magnetoencefalografía/métodos , Femenino , Masculino , Adulto , Estimulación Luminosa/métodos , Potenciales Evocados Visuales/fisiología , Estimulación Acústica/métodos , Modelos Neurológicos , Adulto Joven , Potenciales Evocados Auditivos/fisiología , Neuronas/fisiología , Mapeo Encefálico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA