Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.068
Filtrar
1.
PLoS Biol ; 22(8): e3002751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137170

RESUMEN

ADP ribosylation factor-like GTPase 2 (Arl2) is crucial for controlling mitochondrial fusion and microtubule assembly in various organisms. Arl2 regulates the asymmetric division of neural stem cells in Drosophila via microtubule growth. However, the function of mammalian Arl2 during cortical development was unknown. Here, we demonstrate that mouse Arl2 plays a new role in corticogenesis via regulating microtubule growth, but not mitochondria functions. Arl2 knockdown (KD) leads to impaired proliferation of neural progenitor cells (NPCs) and neuronal migration. Arl2 KD in mouse NPCs significantly diminishes centrosomal microtubule growth and delocalization of centrosomal proteins Cdk5rap2 and γ-tubulin. Moreover, Arl2 physically associates with Cdk5rap2 by in silico prediction using AlphaFold multimer, which was validated by co-immunoprecipitation and proximity ligation assay. Remarkably, Cdk5rap2 overexpression significantly rescues the neurogenesis defects caused by Arl2 KD. Therefore, Arl2 plays an important role in mouse cortical development through microtubule growth via the centrosomal protein Cdk5rap2.


Asunto(s)
Proteínas de Ciclo Celular , Centrosoma , Microtúbulos , Proteínas del Tejido Nervioso , Células-Madre Neurales , Neurogénesis , Animales , Microtúbulos/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Neurogénesis/genética , Células-Madre Neurales/metabolismo , Centrosoma/metabolismo , Proliferación Celular , Movimiento Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Tubulina (Proteína)/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética
2.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960704

RESUMEN

The Polycomb Repressive Complex 2 (PRC2) regulates corticogenesis, yet the consequences of mutations to this epigenetic modifier in the mature brain are poorly defined. Importantly, PRC2 core genes are haploinsufficient and causative of several human neurodevelopmental disorders. To address the role of PRC2 in mature cortical structure and function, we conditionally deleted the PRC2 gene Eed from the developing mouse dorsal telencephalon. Adult homozygotes displayed smaller forebrain structures. Single-nucleus transcriptomics revealed that glutamatergic neurons were particularly affected, exhibiting dysregulated gene expression profiles, accompanied by aberrations in neuronal morphology and connectivity. Remarkably, homozygous mice performed well on challenging cognitive tasks. In contrast, while heterozygous mice did not exhibit clear anatomical or behavioral differences, they displayed dysregulation of neuronal genes and altered neuronal morphology that was strikingly different from homozygous phenotypes. Collectively, these data reveal how alterations to PRC2 function shape the mature brain and reveal a dose-specific role for PRC2 in determining glutamatergic neuron identity.


Asunto(s)
Ácido Glutámico , Neurogénesis , Neuronas , Complejo Represivo Polycomb 2 , Animales , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Neurogénesis/fisiología , Ácido Glutámico/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Masculino , Ratones Endogámicos C57BL , Femenino , Ratones Transgénicos
3.
Dev Cogn Neurosci ; 68: 101407, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870602

RESUMEN

The human brain undergoes structural development from childhood to adolescence, with specific regions in the sensorimotor, social, and affective networks continuing to grow into adulthood. While genetic and environmental factors contribute to individual differences in these brain trajectories, the extent remains understudied. Our longitudinal study, utilizing up to three biennial MRI scans (n=485), aimed to assess the genetic and environmental effects on brain structure (age 7) and development (ages 7-14) in these regions. Heritability estimates varied across brain regions, with all regions showing genetic influence (ranging from 18 % to 59 %) with additional shared environmental factors affecting the primary motor cortex (30 %), somatosensory cortex (35 %), DLPFC (5 %), TPJ (17 %), STS (17 %), precuneus (10 %), hippocampus (22 %), amygdala (5 %), and nucleus accumbens (10 %). Surface area was more genetically driven (38 %) than cortical thickness (14 %). Longitudinal brain changes were primarily driven by genetics (ranging from 1 % to 29 %), though shared environment factors (additionally) influenced the somatosensory cortex (11 %), DLPFC (7 %), cerebellum (28 %), TPJ (16 %), STS (20 %), and hippocampus (17 %). These findings highlight the importance of further investigating brain-behavior associations and the influence of enriched and deprived environments from childhood to adolescence. Ultimately, our study can provide insights for interventions aimed at supporting children's development.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Adolescente , Niño , Estudios Longitudinales , Masculino , Femenino , Interacción Gen-Ambiente , Encéfalo/crecimiento & desarrollo , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/anatomía & histología
4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38850213

RESUMEN

The relative contributions of genetic variation and experience in shaping the morphology of the adolescent brain are not fully understood. Using longitudinal data from 11,665 subjects in the ABCD Study, we fit vertex-wise variance components including family effects, genetic effects, and subject-level effects using a computationally efficient framework. Variance in cortical thickness and surface area is largely attributable to genetic influence, whereas sulcal depth is primarily explained by subject-level effects. Our results identify areas with heterogeneous distributions of heritability estimates that have not been seen in previous work using data from cortical regions. We discuss the biological importance of subject-specific variance and its implications for environmental influences on cortical development and maturation.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Humanos , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Masculino , Femenino , Adolescente , Estudios Longitudinales , Interacción Gen-Ambiente , Niño , Ambiente
5.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38836834

RESUMEN

Congenital heart disease affects 1% of infants and is associated with impaired neurodevelopment. Right- or left-sided sulcal features correlate with executive function among people with Tetralogy of Fallot or single ventricle congenital heart disease. Studies of multiple congenital heart disease types are needed to understand regional differences. Further, sulcal pattern has not been studied in people with d-transposition of the great arteries. Therefore, we assessed the relationship between sulcal pattern and executive function, general memory, and processing speed in a meta-regression of 247 participants with three congenital heart disease types (114 single ventricle, 92 d-transposition of the great arteries, and 41 Tetralogy of Fallot) and 94 participants without congenital heart disease. Higher right hemisphere sulcal pattern similarity was associated with improved executive function (Pearson r = 0.19, false discovery rate-adjusted P = 0.005), general memory (r = 0.15, false discovery rate P = 0.02), and processing speed (r = 0.17, false discovery rate P = 0.01) scores. These positive associations remained significant in for the d-transposition of the great arteries and Tetralogy of Fallot cohorts only in multivariable linear regression (estimated change ß = 0.7, false discovery rate P = 0.004; ß = 4.1, false discovery rate P = 0.03; and ß = 5.4, false discovery rate P = 0.003, respectively). Duration of deep hypothermic circulatory arrest was also associated with outcomes in the multivariate model and regression tree analysis. This suggests that sulcal pattern may provide an early biomarker for prediction of later neurocognitive challenges among people with congenital heart disease.


Asunto(s)
Cardiopatías Congénitas , Niño , Femenino , Humanos , Masculino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/crecimiento & desarrollo , Función Ejecutiva/fisiología , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/patología , Imagen por Resonancia Magnética , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/patología , Adolescente , Adulto Joven
6.
Nat Commun ; 15(1): 5421, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926335

RESUMEN

During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies in mice. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this process impacts the development of normal exploratory behaviors of adult mice.


Asunto(s)
Interneuronas , Somatostatina , Tálamo , Animales , Interneuronas/metabolismo , Somatostatina/metabolismo , Somatostatina/genética , Ratones , Tálamo/metabolismo , Optogenética , Transducción de Señal , Masculino , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
Nat Rev Neurosci ; 25(8): 535-552, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38783147

RESUMEN

Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.


Asunto(s)
Corteza Cerebral , Red Nerviosa , Animales , Red Nerviosa/fisiología , Red Nerviosa/crecimiento & desarrollo , Humanos , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo , Neocórtex/crecimiento & desarrollo , Neocórtex/fisiología , Neuronas/fisiología , Modelos Neurológicos
8.
Neuron ; 112(13): 2091-2111, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38754415

RESUMEN

Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.


Asunto(s)
Corteza Cerebral , Neuronas , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo , Animales , Neuronas/fisiología , Neuronas/citología , Humanos , Neurogénesis/fisiología
9.
Eur J Neurosci ; 60(2): 3995-4003, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733283

RESUMEN

Previous studies have reported sex differences in cortical gyrification. Since most cortical folding is principally defined in utero, sex chromosomes as well as gonadal hormones are likely to influence sex-specific aspects of local gyrification. Classic congenital adrenal hyperplasia (CAH) causes high levels of androgens during gestation in females, whereas levels in males are largely within the typical male range. Therefore, CAH provides an opportunity to study the possible effects of prenatal androgens on cortical gyrification. Here, we examined the vertex-wise absolute mean curvature-a common estimate for cortical gyrification-in individuals with CAH (33 women and 20 men) and pair-wise matched controls (33 women and 20 men). There was no significant main effect of CAH and no significant CAH-by-sex interaction. However, there was a significant main effect of sex in five cortical regions, where gyrification was increased in women compared to men. These regions were located on the lateral surface of the brain, specifically left middle frontal (rostral and caudal), right inferior frontal, left inferior parietal, and right occipital. There was no cortical region where gyrification was increased in men compared to women. Our findings do not only confirm prior reports of increased cortical gyrification in female brains but also suggest that cortical gyrification is not significantly affected by prenatal androgen exposure. Instead, cortical gyrification might be determined by sex chromosomes either directly or indirectly-the latter potentially by affecting the underlying architecture of the cortex or the size of the intracranial cavity, which is smaller in women.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Andrógenos , Corteza Cerebral , Caracteres Sexuales , Humanos , Femenino , Masculino , Andrógenos/farmacología , Adulto , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/diagnóstico por imagen , Hiperplasia Suprarrenal Congénita/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Adulto Joven , Imagen por Resonancia Magnética , Adolescente
10.
J Neurosci ; 44(26)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38769006

RESUMEN

The third trimester is a critical period for the development of functional networks that support the lifelong neurocognitive performance, yet the emergence of neuronal coupling in these networks is poorly understood. Here, we used longitudinal high-density electroencephalographic recordings from preterm infants during the period from 33 to 45 weeks of conceptional age (CA) to characterize early spatiotemporal patterns in the development of local cortical function and the intrinsic coupling modes [ICMs; phase-phase (PPCs), amplitude-amplitude (AACs), and phase-amplitude correlations (PACs)]. Absolute local power showed a robust increase with CA across the full frequency spectrum, while local PACs showed sleep state-specific, biphasic development that peaked a few weeks before normal birth. AACs and distant PACs decreased globally at nearly all frequencies. In contrast, the PPCs showed frequency- and region-selective development, with an increase of coupling strength with CA between frontal, central, and occipital regions at low-delta and alpha frequencies together with a wider-spread decrease at other frequencies. Our findings together present the spectrally and spatially differential development of the distinct ICMs during the neonatal period and provide their developmental templates for future basic and clinical research.


Asunto(s)
Corteza Cerebral , Electroencefalografía , Red Nerviosa , Humanos , Recién Nacido , Electroencefalografía/métodos , Femenino , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo , Masculino , Red Nerviosa/fisiología , Red Nerviosa/crecimiento & desarrollo , Recien Nacido Prematuro/fisiología , Neuronas/fisiología
11.
J Comp Neurol ; 532(6): e25631, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38813760

RESUMEN

The plains vizcacha, Lagostomus maximus, is a precocial hystricomorph rodent with a gyrencephalic brain. This work aimed to perform a time-lapse analysis of the embryonic brain cortical development in the plains vizcacha to establish a species-specific temporal window for corticogenesis and the gyrencephaly onset. Additionally, a comparative examination with evolutionarily related rodents was conducted. Embryos from 40 embryonic days (ED) until the end of pregnancy ( ∼ $\sim $ 154 ED) were evaluated. The neuroanatomical examination determined transverse sulci at 80 ED and rostral lateral and caudal intraparietal sulci around 95 ED. Histological examination of corticogenesis showed emergence of the subplate at 43 ED and expansion of the subventricular zone (SVZ) and its division into inner and outer SVZs around 54 ED. The neocortical layers formation followed an inside-to-outside spatiotemporal gradient beginning with the emergence of layers VI and V at 68 ED and establishing the final six neocortical layers around 100 ED. A progressive increment of gyrencephalization index (GI) from 1.005 ± 0.003 around 70 ED, which reflects a smooth cortex, up to 1.07 ± 0.009 at the end of gestation, reflecting a gyrencephalic neuroanatomy, was determined. Contrarily, the minimum cortical thickness (MCT) progressively decreased from 61 ED up to the end of gestation. These results show that the decrease in the cortical thickness, which enables the onset of neocortical invaginations, occurs together with the expansion and subdivision of the SVZ. The temporal comparison of corticogenesis in plains vizcacha with that in relative species reflects a prenatal long process compared with other rodents that may give an evolutionary advantage to L. maximus as a precocial species.


Asunto(s)
Corteza Cerebral , Roedores , Animales , Corteza Cerebral/crecimiento & desarrollo , Roedores/anatomía & histología , Femenino , Embarazo , Neurogénesis/fisiología , Neocórtex/crecimiento & desarrollo
12.
Curr Biol ; 34(12): 2570-2579.e5, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38772363

RESUMEN

In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of the cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from the PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep, we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12 but not at P10. PZ delta was also phase locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in the PZ across these ages, supporting a role for local GABAergic inhibition in the PZ's rhythmicity. The unexpected discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-provides a new perspective on the brainstem's role in regulating sleep and promoting long-range functional connectivity in early development.


Asunto(s)
Corteza Cerebral , Ritmo Delta , Bulbo Raquídeo , Sueño , Animales , Sueño/fisiología , Ratas , Ritmo Delta/fisiología , Bulbo Raquídeo/fisiología , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo , Masculino , Ratas Sprague-Dawley
13.
Neuroimage ; 295: 120660, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815676

RESUMEN

The topological organization of the macroscopic cortical networks important for the development of complex brain functions. However, how the cortical morphometric organization develops during the third trimester and whether it demonstrates sexual and individual differences at this particular stage remain unclear. Here, we constructed the morphometric similarity network (MSN) based on morphological and microstructural features derived from multimodal MRI of two independent cohorts (cross-sectional and longitudinal) scanned at 30-44 postmenstrual weeks (PMW). Sex difference and inter-individual variations of the MSN were also examined on these cohorts. The cross-sectional analysis revealed that both network integration and segregation changed in a nonlinear biphasic trajectory, which was supported by the results obtained from longitudinal analysis. The community structure showed remarkable consistency between bilateral hemispheres and maintained stability across PMWs. Connectivity within the primary cortex strengthened faster than that within high-order communities. Compared to females, male neonates showed a significant reduction in the participation coefficient within prefrontal and parietal cortices, while their overall network organization and community architecture remained comparable. Furthermore, by using the morphometric similarity as features, we achieved over 65 % accuracy in identifying an individual at term-equivalent age from images acquired after birth, and vice versa. These findings provide comprehensive insights into the development of morphometric similarity throughout the perinatal cortex, enhancing our understanding of the establishment of neuroanatomical organization during early life.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Caracteres Sexuales , Humanos , Femenino , Masculino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/anatomía & histología , Recién Nacido , Estudios Transversales , Estudios Longitudinales , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/anatomía & histología , Embarazo
14.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814872

RESUMEN

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Asunto(s)
Corteza Cerebral , Cognición , Imagen por Resonancia Magnética , Humanos , Cognición/fisiología , Cognición/efectos de los fármacos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Adolescente , Niño , Conectoma/métodos , Alprazolam/farmacología , Receptores de GABA-A/metabolismo , Adulto Joven
15.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664387

RESUMEN

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Corteza Sensoriomotora , Humanos , Adolescente , Femenino , Masculino , Adulto Joven , Niño , Corteza Sensoriomotora/fisiología , Corteza Sensoriomotora/diagnóstico por imagen , Preescolar , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo
16.
Math Biosci ; 372: 109185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561099

RESUMEN

We have designed a stochastic model of embryonic neurogenesis in the mouse cerebral cortex, using the formalism of compound Poisson processes. The model accounts for the dynamics of different progenitor cell types and neurons. The expectation and variance of the cell number of each type are derived analytically and illustrated through numerical simulations. The effects of stochastic transition rates between cell types, and stochastic duration of the cell division cycle have been investigated sequentially. The model does not only predict the number of neurons, but also their spatial distribution into deeper and upper cortical layers. The model outputs are consistent with experimental data providing the number of neurons and intermediate progenitors according to embryonic age in control and mutant situations.


Asunto(s)
Corteza Cerebral , Células-Madre Neurales , Neurogénesis , Procesos Estocásticos , Animales , Ratones , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Neurogénesis/fisiología , Células-Madre Neurales/fisiología , Células-Madre Neurales/citología , Modelos Neurológicos , Neuronas/fisiología , Neuronas/citología
17.
Nat Neurosci ; 27(6): 1075-1086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649755

RESUMEN

Human brain organization involves the coordinated expression of thousands of genes. For example, the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to association regions. In this study, optimized processing of the Allen Human Brain Atlas revealed two new components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for neuronal, metabolic and immune processes, specific cell types and cytoarchitectonics, and genetic variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas and BrainSpan), we found that C1-C3 represent generalizable transcriptional programs that are coordinated within cells and differentially phased during fetal and postnatal development. Autism spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, across neuroimaging, differential expression and genome-wide association studies. Evidence converged especially in support of C3 as a normative transcriptional program for adolescent brain development, which can lead to atypical supragranular cortical connectivity in people at high genetic risk for schizophrenia.


Asunto(s)
Corteza Cerebral , Esquizofrenia , Transcriptoma , Humanos , Esquizofrenia/genética , Esquizofrenia/patología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Corteza Cerebral/metabolismo , Femenino , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Adolescente , Trastorno Autístico/genética , Trastorno Autístico/patología , Estudio de Asociación del Genoma Completo , Niño , Adulto , Neuroimagen/métodos
18.
Neuron ; 112(12): 2015-2030.e5, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38599213

RESUMEN

Synchronous neuronal activity is a hallmark of the developing brain. In the mouse cerebral cortex, activity decorrelates during the second week of postnatal development, progressively acquiring the characteristic sparse pattern underlying the integration of sensory information. The maturation of inhibition seems critical for this process, but the interneurons involved in this crucial transition of network activity in the developing cortex remain unknown. Using in vivo longitudinal two-photon calcium imaging during the period that precedes the change from highly synchronous to decorrelated activity, we identify somatostatin-expressing (SST+) interneurons as critical modulators of this switch in mice. Modulation of the activity of SST+ cells accelerates or delays the decorrelation of cortical network activity, a process that involves regulating the maturation of parvalbumin-expressing (PV+) interneurons. SST+ cells critically link sensory inputs with local circuits, controlling the neural dynamics in the developing cortex while modulating the integration of other interneurons into nascent cortical circuits.


Asunto(s)
Corteza Cerebral , Interneuronas , Red Nerviosa , Somatostatina , Animales , Interneuronas/fisiología , Interneuronas/metabolismo , Somatostatina/metabolismo , Ratones , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Corteza Cerebral/citología , Red Nerviosa/fisiología , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Parvalbúminas/metabolismo , Ratones Transgénicos
19.
Glia ; 72(7): 1290-1303, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38506330

RESUMEN

Astrocytes represent a diverse and morphologically complex group of glial cells critical for shaping and maintaining nervous system homeostasis, as well as responding to injuries. Understanding the origins of astroglial heterogeneity, originated from a limited number of progenitors, has been the focus of many studies. Most of these investigations have centered on protoplasmic and pial astrocytes, while the clonal relationship of fibrous astrocytes or juxtavascular astrocytes has remained relatively unexplored. In this study, we sought to elucidate the morphological diversity and clonal distribution of astrocytes across adult cortical layers, with particular emphasis on their ontogenetic origins. Using the StarTrack lineage tracing tool, we explored the characteristics of adult astroglial clones derived from single and specific progenitors at various embryonic stages. Our results revealed a heterogeneous spatial distribution of astroglial clones, characterized by variations in location, clonal size, and rostro-caudal dispersion. While a considerable proportion of clones were confined within specific cortical layers, others displayed sibling cells crossing layer boundaries. Notably, we observed a correlation between clone location and developmental stage at earlier embryonic stages, although this relationship diminished in later stages. Fibrous astrocyte clones were exclusively confined to the corpus callosum. In contrast, protoplasmic or juxtavascular clones were located in either the upper or lower cortical layers, with certain clones displayed sibling cells distributed across both regions. Our findings underscore the developmental origins and spatial distribution of astroglial clones within cortical layers, providing new insights into the interplay between their morphology, clonal sizes, and progenitor heterogeneity.


Asunto(s)
Astrocitos , Astrocitos/citología , Astrocitos/fisiología , Animales , Células Clonales , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/embriología , Ratones Transgénicos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología
20.
Nucleic Acids Res ; 52(8): 4167-4184, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38324473

RESUMEN

Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.


Asunto(s)
Corteza Cerebral , Empalme del ARN , Proteínas de Unión al ARN , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Exones/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Noqueados , Neurogénesis/genética , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...