Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1302667, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487343

RESUMEN

Introduction: Corticotroph pituitary neuroendocrine tumors (PitNETs) develop from ACTH-producing cells. They commonly cause Cushing's disease (CD), however, some remain clinically silent. Recurrent USP8, USP48, BRAF and TP53 mutations occur in corticotroph PitNETs. The aim of our study was to determine frequency and relevance of these mutations in a possibly large series of corticotroph PitNETs. Methods: Study included 147 patients (100 CD and 47 silent tumors) that were screened for hot-spot mutations in USP8, USP48 and BRAF with Sanger sequencing, while 128 of these patients were screened for TP53 mutations with next generation sequencing and immunohistochemistry. Results: USP8 mutations were found in 41% CD and 8,5% silent tumors, while USP48 mutations were found in 6% CD patients only. Both were more prevalent in women. They were related to higher rate of biochemical remission, non-invasive tumor growth, its smaller size and densely granulated histology, suggesting that these mutation may be favorable clinical features. Multivariate survival analyses did not confirm possible prognostic value of mutation in protein deubiquitinases. No BRAF mutations were found. Four TP53 mutations were identified (2 in CD, 2 in silent tumors) in tumors with size >10mm including 3 invasive ones. They were found in Crooke's cell and sparsely granulated tumors. Tumors with missense TP53 mutations had higher TP53 immunoreactivity score than wild-type tumors. Tumor with frameshift TP53 variant had low protein expression. TP53 mutation was a poor prognostic factor in CD according to uni- and multivariate survival analyses in spite of low mutations frequency. Conclusions: We confirmed high prevalence of USP8 mutations and low incidence of USP48 and TP53 mutations. Changes in protein deubiquitinases genes appear to be favorable prognostic factors in CD. TP53 mutations are rare, occur in both functioning and silent tumors and are related to poor clinical outcome in CD.


Asunto(s)
Adenoma Hipofisario Secretor de ACTH , Adenoma , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Femenino , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Corticotrofos/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Endopeptidasas/genética , Adenoma Hipofisario Secretor de ACTH/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/metabolismo , Mutación , Adenoma/genética , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Front Immunol ; 14: 1284301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035072

RESUMEN

Introduction: A recently discovered facet of paraneoplastic adrenocorticotropic hormone (ACTH) deficiency exists in two forms: a paraneoplastic spontaneous isolated ACTH deficiency (IAD) and an immune checkpoint inhibitor (ICI)-related hypophysitis. Autoantibodies against corticotrophs, such as circulating anti-proopiomelanocortin (POMC) antibodies are considered disease markers. However, the number of identified cases was limited, implying that the characteristics of these autoantibodies are not fully understood. Methods: We investigate circulating autoimmune autoantibodies in detail through a novel case of IAD that developed as a paraneoplastic autoimmune ACTH deficiency. Results: The patient developed IAD after 25 weeks of ICI therapy for metastasis of large-cell neuroendocrine carcinoma at 69 years of age. Ectopic ACTH expression and infiltration of CD3+, CD4+, CD8+, and CD20+ lymphocytes were observed in the tumor tissues and circulating anti-POMC antibodies were detected specifically in the patient's serum. Moreover, detailed analyses of immunofluorescence staining using patient serum revealed that the recognition site of the autoantibody was ACTH25-39, which had not been identified in previous cases of paraneoplastic autoimmune ACTH deficiency. Conclusion: This case involved a combination of paraneoplastic spontaneously acquired IAD and ICI-related hypophysitis occupying the middle ground. Moreover, our study reveals new aspects of anti-POMC antibodies in patients with paraneoplastic ACTH deficiency. This report expands our understanding of the immunological landscape and provides new insights for the identification of antibodies associated with paraneoplastic autoimmune ACTH deficiency.


Asunto(s)
Corticotrofos , Hipofisitis , Inhibidores de Puntos de Control Inmunológico , Humanos , Hormona Adrenocorticotrópica/metabolismo , Autoanticuerpos/metabolismo , Corticotrofos/metabolismo , Corticotrofos/patología , Hipofisitis/diagnóstico , Hipofisitis/etiología , Hipofisitis/metabolismo , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Proopiomelanocortina
3.
J Endocrinol Invest ; 46(12): 2609-2616, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37233978

RESUMEN

PURPOSE: Clinical control of corticotroph tumors is difficult to achieve since they usually persist or relapse after surgery. Pasireotide is approved to treat patients with Cushing's disease for whom surgical therapy is not an option. However, Pasireotide seems to be effective only in a sub-set of patients, highlighting the importance to find a response marker to this approach. Recent studies demonstrated that the delta isoform of protein kinase C (PRKCD) controls viability and cell cycle progression of an in vitro model of ACTH-secreting pituitary tumor, the AtT-20/D16v-F2 cells. This study aims at exploring the possible PRKCD role in mediating Pasireotide effects. METHODS: It was assessed cell viability, POMC expression and ACTH secretion in AtT20/D16v-F2 cells over- or under-expressing PRKCD. RESULTS: We found that Pasireotide significantly reduces AtT20/D16v-F2 cell viability, POMC expression and ACTH secretion. In addition, Pasireotide reduces miR-26a expression. PRKCD silencing decreases AtT20/D16v-F2 cell sensitivity to Pasireotide treatment; on the contrary, PRKCD overexpression increases the inhibitory effects of Pasireotide on cell viability and ACTH secretion. CONCLUSION: Our results provide new insights into potential PRKCD contribution in Pasireotide mechanism of action and suggest that PRKCD might be a possible marker of therapeutic response in ACTH-secreting pituitary tumors.


Asunto(s)
Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Neoplasias Hipofisarias/patología , Corticotrofos/metabolismo , Corticotrofos/patología , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-delta/farmacología , Proteína Quinasa C-delta/uso terapéutico , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proopiomelanocortina/farmacología , Hormona Adrenocorticotrópica/metabolismo , Recurrencia Local de Neoplasia/patología , Línea Celular , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/metabolismo , Línea Celular Tumoral
4.
Front Endocrinol (Lausanne) ; 14: 1124646, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065760

RESUMEN

Objective: Pituitary neuroendocrine corticotroph tumors commonly cause Cushing's disease (CD) that results from increased adrenocorticotropic hormone (ACTH) secretion by the pituitary tumor and consequent increase of cortisol levels in blood. However, in some patients, corticotroph tumors remain clinically non-functioning. Cortisol secretion is regulated by the hypothalamic-pituitary-adrenal axis and includes a negative feedback between cortisol and ACTH secretion. Glucocorticoids reduce ACTH level both by hypothalamic regulation and acting on corticotrophs via glucocorticoid (GR) and mineralocorticoid (MR) receptors. The aim of the study was to determine the role of GR and MR expression at mRNA and protein levels in both functioning and silent corticotroph tumors. Methods: Ninety-five patients were enrolled, including 70 with CD and 25 with silent corticotroph tumors. Gene expression levels of NR3C1 and NR3C2 coding for GR and MR, respectively, were determined with qRT-PCR in the two tumor types. GR and MR protein abundance was assessed with immunohistochemistry. Results: Both GR and MR were expressed in corticotroph tumors. Correlation between NR3C1 and NR3C2 expression levels was observed. NR3C1 expression was higher in silent than in functioning tumors. In CD patients NR3C1 and NR3C2 levels were negatively correlated with morning plasma ACTH levels and tumor size. Higher NR3C2 was confirmed in patients with remission after surgery and in densely granulated tumors. Expression of both genes and GR protein was higher in USP8-mutated tumors. Similar relationship between USP8 mutations and expression levels were observed in analysis of silent tumors that also revealed a negative correlation between GR and tumor size and higher NR3C1 expression in densely granulated tumors. Conclusions: Although the associations between gene/protein expression and patients clinical features are not strong, they consistently show an evident trend in which higher receptor expression corresponds to more favorable clinical characteristics.


Asunto(s)
Adenoma , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Neoplasias Hipofisarias/complicaciones , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Glucocorticoides/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/cirugía , Corticotrofos/metabolismo , Hidrocortisona , Receptores de Mineralocorticoides/genética , Adenoma/complicaciones , Adenoma/genética , Adenoma/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo
5.
Jpn J Radiol ; 41(9): 938-946, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37027094

RESUMEN

PURPOSE: Silent corticotroph pituitary adenomas (SCAs)/pituitary neuroendocrine tumors (PitNETs) are common non-functioning pituitary adenomas (NFAs)/PitNETs with a clinically aggressive course. This study aimed to investigate the ability of time-intensity analysis of dynamic magnetic resonance imaging (MRI) for distinguishing adrenocorticotropic hormone (ACTH)-positive SCAs and ACTH-negative SCAs from other NFAs. MATERIALS AND METHODS: We retrospectively evaluated the dynamic MRI findings of patients with NFAs. The initial slope of the kinetic curve (slopeini) obtained by dynamic MRI for each tumor was analyzed using a modified empirical mathematical model. The maximum slope of the kinetic curve (slopemax) was obtained by geometric calculation. RESULTS: A total of 106 patients with NFAs (11 ACTH-positive SCAs, 5 ACTH-negative SCAs, and 90 other NFAs) were evaluated. The kinetic curves of ACTH-positive SCAs had significantly lesser slopeini and slopemax compared with ACTH-negative SCAs (P = 0.040 and P = 0.001, respectively) and other NFAs (P = 0.018 and P = 0.035, respectively). Conversely, the slopeini and slopemax were significantly greater in ACTH-negative SCAs than in NFAs other than ACTH-negative SCAs (P = 0.033 and P = 0.044, respectively). In receiver operating characteristic analysis of ACTH-positive SCAs and other NFAs, the area under the curve (AUC) values for slopeini and slopemax were 0.762 and 0748, respectively. In predicting ACTH-negative SCAs, the AUC values for slopeini and slopemax were 0.784 and 0.846, respectively. CONCLUSIONS: Dynamic MRI can distinguish ACTH-positive SCAs and ACTH-negative SCAs from other NFAs.


Asunto(s)
Adenoma Hipofisario Secretor de ACTH , Adenoma , Tumores Neuroendocrinos , Enfermedades de la Hipófisis , Neoplasias Hipofisarias , Humanos , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/patología , Adenoma/diagnóstico por imagen , Adenoma/patología , Corticotrofos/metabolismo , Corticotrofos/patología , Estudios Retrospectivos , Tumores Neuroendocrinos/diagnóstico por imagen , Cinética , Adenoma Hipofisario Secretor de ACTH/patología , Hormona Adrenocorticotrópica/metabolismo , Imagen por Resonancia Magnética
6.
Endocr Pract ; 29(6): 471-477, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004872

RESUMEN

OBJECTIVE: To investigate the incidence of corticotroph hyperplasia (CH) or lymphocyte infiltration in the pituitary of patients with obesity. METHODS: The pituitary and adrenal glands from 161 adult autopsies performed between 2010 and 2019 at our institution were reviewed. The clinical history, body mass index (BMI), and cause of death were recorded. Routine hematoxylin and eosin staining, reticulin staining, and immunohistochemical staining for adrenocorticotropic hormone, CD3, and CD20 were performed. The results were analyzed using the Fisher and chi-square statistics. Decedents were separated into 4 groups based on BMI (kg/m2): (1) lean (BMI, <25.0), (2) overweight (BMI, 25.0-29.9), (3) obesity class I (BMI, 30.0-34.9), and (4) obesity classes II to III (BMI, >34.9). RESULTS: CH/neoplasia was identified in 44 of 161 pituitary glands. Four (9.1%) of 53 lean patients had pituitary lesions, whereas 27.3% (12) of overweight, 22.7% (10) of obesity class I, and 40.9% (18) of obesity class II patients had hyperplasia (P < .0001). Small corticotroph tumors were identified in 15 patients; only 1 was a lean patient, and the tumor was associated with the Crooke hyaline change of nontumorous corticotrophs. The presence of CH and neoplasia was associated with adrenal cortical hyperplasia and lipid depletion. Microscopic foci of T and B lymphocytes were identified in the pituitaries of patients in each weight category; no independent association between BMI and lymphocyte inflammation was found. CONCLUSION: Our data indicate an association between CH/neoplasia and obesity. It remains unclear whether obesity is the cause or effect of adrenocorticotropic hormone and cortisol excess.


Asunto(s)
Obesidad Mórbida , Enfermedades de la Hipófisis , Neoplasias Hipofisarias , Adulto , Humanos , Corticotrofos/metabolismo , Corticotrofos/patología , Obesidad Mórbida/patología , Hiperplasia/patología , Sobrepeso/complicaciones , Sobrepeso/epidemiología , Hipófisis/patología , Hormona Adrenocorticotrópica/metabolismo , Enfermedades de la Hipófisis/complicaciones , Enfermedades de la Hipófisis/epidemiología , Neoplasias Hipofisarias/complicaciones , Neoplasias Hipofisarias/epidemiología , Neoplasias Hipofisarias/patología , Obesidad/complicaciones , Obesidad/epidemiología
7.
J Neuroendocrinol ; 35(11): e13229, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36662676

RESUMEN

Corticotrophs are intermediaries in the hypothalamic-pituitary-adrenal (HPA) axis, which plays a crucial role in stress response in vertebrates. The HPA axis displays an intricate mode of negative feedback regulation, whereby the peripheral effector, cortisol inhibits the secretion of its upstream regulator, adrenocorticotropic hormone (ACTH) from proopiomelanocortin (POMC)-expressing cells in the pituitary. While the feedback regulation of the HPA axis is well characterized in the adult organism, the effect of feedback regulation on the development of corticotrophs is poorly understood. Here, we studied the effect of glucocorticoids on the development of POMC-expressing cells in the zebrafish pituitary. The development of POMC cells showed a steady increase in numbers between 2-6 days post fertilization. Inhibition of endogenous glucocorticoid synthesis resulted in an increase in POMC cell number due to reduced developmental feedback inhibition of cortisol on POMC cells. Conversely, addition of exogenous dexamethasone at a critical developmental window led to a decrease in corticotroph cell number, mimicking greater feedback control due to increased cortisol levels. Finally, developmental dysregulation of ACTH levels resulted in impaired anxiety-like and stress-coping behaviours. Hence, we identified a sensitive developmental window for the effect of glucocorticoids on corticotrophs and demonstrate the downstream effect on stress-responsive behaviour.


Asunto(s)
Glucocorticoides , Animales , Hormona Adrenocorticotrópica/metabolismo , Corticotrofos/metabolismo , Glucocorticoides/farmacología , Hidrocortisona , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Proopiomelanocortina/metabolismo , Pez Cebra , Estrés Fisiológico
8.
Transl Res ; 256: 56-72, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36640905

RESUMEN

Cushing's disease (CD) is a serious endocrine disorder attributed to an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that that subsequently leads to chronic hypercortisolemia. PitNET regression has been reported following treatment with the investigational selective glucocorticoid receptor (GR) modulator relacorilant, but the mechanisms behind that effect remain unknown. Human PitNET organoid models were generated from induced human pluripotent stem cells (iPSCs) or fresh tissue obtained from CD patient PitNETs (hPITOs). Genetically engineered iPSC derived organoids were used to model the development of corticotroph PitNETs expressing USP48 (iPSCUSP48) or USP8 (iPSCUSP8) somatic mutations. Organoids were treated with the GR antagonist mifepristone or the GR modulator relacorilant with or without somatostatin receptor (SSTR) agonists pasireotide or octreotide. In iPSCUSP48 and iPSCUSP8 cultures, mifepristone induced a predominant expression of SSTR2 with a concomitant increase in ACTH secretion and tumor cell proliferation. Relacorilant predominantly induced SSTR5 expression and tumor cell apoptosis with minimal ACTH induction. Hedgehog signaling mediated the induction of SSTR2 and SSTR5 in response to mifepristone and relacorilant. Relacorilant sensitized PitNET organoid responsiveness to pasireotide. Therefore, our study identified the potential therapeutic use of relacorilant in combination with somatostatin analogs and demonstrated the advantages of relacorilant over mifepristone, supporting its further development for use in the treatment of Cushing's disease patients.


Asunto(s)
Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Humanos , Corticotrofos/metabolismo , Corticotrofos/patología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/uso terapéutico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/patología , Mifepristona/farmacología , Mifepristona/metabolismo , Mifepristona/uso terapéutico , Proteínas Hedgehog , Neoplasias Hipofisarias/tratamiento farmacológico , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Hormona Adrenocorticotrópica/farmacología , Hormona Adrenocorticotrópica/metabolismo , Hormona Adrenocorticotrópica/uso terapéutico
9.
Endocrinol Diabetes Nutr (Engl Ed) ; 69(9): 694-701, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36470644

RESUMEN

OBJECTIVE: Our aim was to characterise a cohort of patients with Cushing's disease (CD) who did not present pituitary adenoma in magnetic resonance imaging (MRI), needing a catheterisation of the inferior petrosal sinus (CIPS), and to study the pathological findings of the pituitary gland in these subjects after transsphenoidal surgery in order to establish the aetiology of CD. Furthermore, we evaluated possible differences in the features of the diagnosis between hyperplasia and adenoma. SUBJECTS AND METHODS: We included 16 subjects. 17 CIPS were done. Hormonal parameters were measured using standard methods. A microscopic histochemical study following standard procedures and immunohistochemical analysis was performed. The diagnostic criteria for adenoma and hyperplasia were based on the WHO classification. RESULTS: One patient was excluded for presenting an ACTH-producing bronchial neuroendocrine tumour. The 15 subjects with CD have a positive CIPS test indicating hypophyseal ACTH production. After transsphenoidal surgery, 12 patients showed a microadenoma and three (20%) a corticotroph cell hyperplasia. We found four recurrences after the transsphenoidal surgery (26%), with a mean time for recurrence of 105 months. We found that recurrence was more frequent in subjects with hyperplasia, and in those subjects with lower right/left ACTH ratio. CONCLUSION: Our study, which was focused on patients with CD with no pituitary adenoma detected by MRI and a positive CRH test after CIPS, has found that 20% showed corticotroph cell hyperplasia as the cause of CD. Right/left ACTH ratio after CIPS was useful to differentiate adenoma from hyperplasia. This finding may have important prognostic and treatment implications. More studies are necessary to confirm our result.


Asunto(s)
Adenoma , Síndrome de Cushing , Neoplasias Hipofisarias , Humanos , Síndrome de Cushing/diagnóstico , Síndrome de Cushing/etiología , Hormona Adrenocorticotrópica , Hiperplasia/patología , Corticotrofos/metabolismo , Corticotrofos/patología , Neoplasias Hipofisarias/patología , Adenoma/diagnóstico , Adenoma/diagnóstico por imagen
10.
Eur J Endocrinol ; 187(6): 797-807, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206174

RESUMEN

Objectives: After bilateral adrenalectomy in Cushing's disease, corticotroph tumor progression occurs in one-third to half of patients. However, progression speed is variable, ranging from slow to rapid. The aim was to explore corticotroph progression speed, its consequences and its risk factors. Design: A retrospective single-center observational study. Methods: In total,103 patients with Cushing's disease who underwent bilateral adrenalectomy between 1990 and 2020 were included. Clinical, biological, histological and MRI features were collected. Median duration of follow-up after bilateral adrenalectomy was 9.31 years. Results: In total,44 patients progressed (43%). Corticotroph tumor progression speed ranged from 1 to 40.7 mm per year. Progression speed was not different before and after bilateral adrenalectomy (P = 0.29). In univariate analyses, predictive factors for rapid corticotroph tumor progression included the severity of Cushing's disease before adrenalectomy as the cause of adrenalectomy, high ACTH in the year following adrenalectomy and high Ki67 immunopositivity in the tumor. During follow-up, early morning ACTH absolute variation was associated with corticotroph tumor progression speed (P-value = 0.001). ACTH measurement after dynamic testing did not improve this association. Conclusion: After adrenalectomy, corticotroph progression speed is highly variable and manageable with MRI and ACTH surveillance. Progression speed does not seem related to bilateral adrenalectomy but rather to intrinsic properties of highly proliferative and secreting tumors.


Asunto(s)
Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Humanos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/diagnóstico por imagen , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/cirugía , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/etiología , Corticotrofos/metabolismo , Adrenalectomía/efectos adversos , Estudios Retrospectivos , Hormona Adrenocorticotrópica/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 870172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928898

RESUMEN

Clinically silent corticotroph tumors are usually macroadenomas that comprise 20% of ACTH tumors. They frequently progress to aggressive tumors with high recurrence, invasiveness, and on rare occasions, they may become hormonally active causing Cushing's disease. Trustable biomarkers that can predict their aggressive course, as well as their response to traditional or new therapies, are paramount. Aberrant ß-Catenin expression and localization have been proposed as responsible for several malignancies including pituitary tumors. Nevertheless, the role of ß-Catenin in the aggressive transformation of silent corticotropinomas and their response to Temozolomide salvage treatment have not been explored yet. In this work, we present a case of a silent corticotroph tumor that invaded cavernous sinus and compressed optic chiasm and, after a first total resection and tumor remission it recurred six years later as an aggressive ACTH-secreting tumor. This lesion grew with carotid compromise and caused Cushing's signs. It required multiple medical treatments including Cabergoline, Ketoconazole, TMZ, and radiotherapy. Besides, other two surgeries were needed until it could be controlled. Interestingly, we found α-SMA vascular area reduction and differential ß-Catenin cell localization in the more aggressive tumor stages characterized by high Ki-67 indexes and p53 expression. Our results may indicate a role of angiogenesis and ß-Catenin trigged events in the pituitary tumor progression, which could in turn affect the response to TMZ and/or conventional treatments. These molecular findings in this unusual case could be useful for future management of aggressive pituitary tumors.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , Adenoma/patología , Hormona Adrenocorticotrópica/metabolismo , Corticotrofos/metabolismo , Corticotrofos/patología , Humanos , Neoplasias Hipofisarias/patología , Temozolomida/uso terapéutico , beta Catenina/metabolismo
12.
Peptides ; 155: 170841, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868568

RESUMEN

Growth differentiation factor-15 (GDF15) is a stress-responsive cytokine that plays important roles in regulation of inflammatory responses, cell growth, and cell differentiation. However, the nature of these roles remains unclear. Here, we aimed to examine the regulatory effects of dexamethasone on Gdf15 expression in murine AtT-20 corticotroph cells. Human Gdf15 promoter-driven luciferase reporter constructs were transfected into corticotroph cells to analyze their promoter activity. The effects of time and concentration of dexamethasone on Gdf15 and proopiomelanocortin (Pomc) mRNA levels were assessed using quantitative real-time polymerase chain reaction. Dexamethasone induced Gdf15 transcription and mRNA levels as well as GDF15 production in transfected cells, whereas reduced the Pomc mRNA levels. GDF15 modulated adrenocorticotropic hormone (ACTH) synthesis, and the dexamethasone-mediated reduction in Pomc mRNA levels were partially relieved upon Gdf15 knockdown. We concluded that GDF15 modulated ACTH production in pituitary corticotrophs in an autocrine manner by suppressing Pomc expression and subsequently mediating the negative feedback effect of glucocorticoids, thereby contributing to pituitary stress response and homeostasis.


Asunto(s)
Hormona Adrenocorticotrópica , Corticotrofos , Factor 15 de Diferenciación de Crecimiento , Hormona Adrenocorticotrópica/metabolismo , Animales , Corticotrofos/química , Corticotrofos/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Dexametasona/farmacología , Expresión Génica , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Ratones , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
J Neuroendocrinol ; 34(7): e13165, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35833423

RESUMEN

Glucocorticoids (GC) are prescribed for periods > 3 months to 1%-3% of the UK population; 10%-50% of these patients develop hypothalamus-pituitary-adrenal (HPA) axis suppression, which may last over 6 months and is associated with morbidity and mortality. Recovery of the pituitary and hypothalamus is necessary for recovery of adrenal function. We developed a mouse model of dexamethasone (DEX)-induced HPA axis dysfunction aiming to further explore recovery in the pituitary. Adult male wild-type C57BL6/J or Pomc-eGFP transgenic mice were randomly assigned to receive DEX (approximately 0.4 mg kg-1 bodyweight day-1 ) or vehicle via drinking water for 4 weeks following which treatment was withdrawn and tissues were harvested after another 0, 1, and 4 weeks. Corticotrophs were isolated from Pomc-eGFP pituitaries using fluorescence-activated cell sorting, and RNA extracted for RNA-sequencing. DEX treatment suppressed corticosterone production, which remained partially suppressed at least 1 week following DEX withdrawal. In the adrenal, Hsd3b2, Cyp11a1, and Mc2r mRNA levels were significantly reduced at time 0, with Mc2r and Cyp11a1 remaining reduced 1 week following DEX withdrawal. The corticotroph transcriptome was modified by DEX treatment, with some differences between groups persisting 4 weeks following withdrawal. No genes supressed by DEX exhibited ongoing attenuation 1 and 4 weeks following withdrawal, whereas only two genes were upregulated and remained so following withdrawal. A pattern of rebound at 1 and 4 weeks was observed in 14 genes that increased following suppression, and in six genes that were reduced by DEX and then increased. Chronic GC treatment may induce persistent changes in the pituitary that may influence future response to GC treatment or stress.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Hormona Adrenocorticotrópica/metabolismo , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Corticosterona , Corticotrofos/metabolismo , Dexametasona/farmacología , Glucocorticoides , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Proopiomelanocortina/genética , ARN
14.
Endocr Relat Cancer ; 29(8): 503-511, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686696

RESUMEN

Cushing's disease is a rare but devastating and difficult to manage condition. The somatostatin analogue pasireotide is the only pituitary-targeting pharmaceutical approved for the treatment of Cushing's disease but is accompanied by varying efficacy and potentially severe side effects. Finding means to predict which patients are more likely to benefit from this treatment may improve their management. More than half of corticotroph tumours harbour mutations in the USP8 gene, and there is evidence of higher somatostatin receptor 5 (SSTR5) expression in the USP8-mutant tumours. Pasireotide has a high affinity for SSTR5, indicating that these tumours may be more sensitive to treatment. To test this hypothesis, we examined the inhibitory action of pasireotide on adrenocorticotrophic hormone synthesis in primary cultures of human corticotroph tumour with assessed USP8 mutational status and in immortalized murine corticotroph tumour cells overexpressing human USP8 mutants frequent in Cushing's disease. Our in vitro results demonstrate that pasireotide exerts a higher antisecretory response in USP8-mutant corticotroph tumours. Overexpressing USP8 mutants in a murine corticotroph tumour cell model increased endogenous somatostatin receptor 5 (Sstr5) transcription. The murine Sstr5 promoter has two binding sites for the activating protein 1 (AP-1) and USP8 mutants possibly to mediate their action by stimulating AP-1 transcriptional activity. Our data corroborate the USP8 mutational status as a potential marker of pasireotide response and describe a potential mechanism through which USP8 mutants may regulate SSTR5 gene expression.


Asunto(s)
Neoplasias , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Animales , Corticotrofos/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Humanos , Ratones , Neoplasias/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Somatostatina/análogos & derivados , Somatostatina/farmacología , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/uso terapéutico , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
15.
Front Endocrinol (Lausanne) ; 13: 748152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528014

RESUMEN

Objective: Circulating miRNAs are found in bodily fluids including plasma and can serve as biomarkers for diseases. The aim of this study was to provide the first insight into the landscape of circulating miRNAs in close proximity to the adrenocorticotropic hormone (ACTH) secreting PitNET. To achieve this objective next-generation sequencing of miRNAs in plasma from bilateral inferior petrosal sinus sampling (BIPSS) - a gold standard in diagnosing ACTH-secreting PitNETs was carried out and selected miRNA candidates were further tested by RT-qPCR in independent patient cohorts. Methods: Sinistral (left) and dextral (right) BIPSS blood samples of the patient were collected in three time points: before the administration of corticotropin-releasing hormone, 5 and 15 minutes after stimulation. In differential expression analysis, sinistral plasma was compared with dextral. The selected miRNA candidates were tested in plasma by RT-qPCR in two patient groups: 1) in five ACTH secreting PitNET patients with plasma samples taken before and 24 hours after surgery, 2) in 12 ACTH secreting PitNET patients vs. 9 non-functioning PitNET patients. Results: BIPSS concluded that the highest amount of ACTH was released in the sinistral side at the 5th minute mark indicating a presence of a tumor. The highest amount of differentially expressed miRNAs was observed 5 minutes after stimulation (20 upregulated, 14 downregulated). At the 5th minute mark in sinistral plasma, two miRNAs were identified: hsa-miR-7-5p and hsa-miR-375-3p that were highly upregulated compared to other BIPSS samples and peripheral plasma samples. Further testing by qPCR revealed significant reduction of miR-7-5p in plasma 24 hours after surgery and upregulation in plasma of ACTH secreting PitNET patients compared to non-functioning PitNET patients (P =0.0013). Conclusions: By stimulating the ACTH secreting PitNET with CRH a rapid increase of two miRNAs (hsa-mir-7-5p, hsa-mir-375-3p) and ACTH can be observed in sinistral inferior petrosal (tumor side). A decrease of miR-7-5p in plasma after surgery and upregulation in plasma of ACTH secreting PitNET patients was discovered implying that further studies of this miRNA as diagnostic marker is needed.


Asunto(s)
MicroARNs , Tumores Neuroendocrinos , Enfermedades de la Hipófisis , Neoplasias Hipofisarias , Hormona Adrenocorticotrópica , Corticotrofos/metabolismo , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Humanos , MicroARNs/genética , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/cirugía , Muestreo de Seno Petroso , Neoplasias Hipofisarias/metabolismo
16.
Eur J Endocrinol ; 187(1): 49-64, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35521707

RESUMEN

Objective: Provide insights into the defective POMC processing and invasive behavior in silent pituitary corticotroph tumors. Design and methods: Single-cell RNAseq was used to compare the cellular makeup and transcriptome of silent and active corticotroph tumors. Results: A series of transcripts related to hormone processing peptidases and genes involved in the structural organization of secretory vesicles were reduced in silent compared to active corticotroph tumors. Most relevant to their invasive behavior, silent corticotroph tumors exhibited several features of epithelial-to-mesenchymal transition, with increased expression of mesenchymal genes along with the loss of transcripts that regulate hormonal biogenesis and secretion. Silent corticotroph tumor vascular smooth muscle cell and pericyte stromal cell populations also exhibited plasticity in their mesenchymal features. Conclusions: Our findings provide novel insights into the mechanisms of impaired POMC processing and invasion in silent corticotroph tumors and suggest that a common transcriptional reprogramming mechanism simultaneously impairs POMC processing and activates tumor invasion.


Asunto(s)
Corticotrofos , Neoplasias Hipofisarias , Corticotrofos/metabolismo , Humanos , Neoplasias Hipofisarias/patología , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Análisis de Secuencia de ARN
17.
J Neuroendocrinol ; 34(8): e13147, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35524583

RESUMEN

During development, highly specialized differentiated cells, such as pituitary secretory cells, acquire their identity and properties through a series of specification events exerted by transcription factors to implement a unique gene expression program and epigenomic state. The investigation of these developmental processes informs us on the unique features of a cell lineage, both to explain these features and also to outline where these processes may fail and cause disease. This review summarizes present knowledge on the developmental origin of pituitary corticotroph and melanotroph cells and on the underlying molecular mechanisms. At the onset, comparison of gene expression programs active in pituitary progenitors compared to those active in differentiated corticotrophs or melanotrophs indicated dramatic differences in the control of, for example, the cell cycle. Tpit is the transcription factor that determines terminal differentiation of pro-opiomelanocortin (POMC) lineages, both corticotrophs and melanotrophs, and its action involves this switch in cell cycle control in parallel with activation of cell-specific gene expression. There is thus far more to making a corticotroph cell than just activating transcription of the POMC gene. Indeed, Tpit also controls implementation of mechanisms for enhanced protein translation capacity and development of extensive secretory organelles. The corticotroph cell identity also includes mechanisms responsible for homotypic cell-cell interactions between corticotrophs and for privileged heterotypic cell interactions with pituitary cells of other lineages. The review also summarizes current knowledge on how a pioneer transcription factor, Pax7, remodels the epigenome such that the same determination transcription factor, Tpit, will implement the melanotroph program of gene expression. Finally, this canvas of regulatory mechanisms implementing POMC lineage identities constitutes the background to understand alterations that characterize corticotroph adenomas of Cushing's disease patients. The integration of all these data into a unified scheme will likely yield a scheme to globally understand pathogenic mechanisms in Cushing's disease.


Asunto(s)
Adenoma , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Adenoma/genética , Carcinogénesis , Corticotrofos/metabolismo , Proteínas de Homeodominio/genética , Humanos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Proopiomelanocortina/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
18.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35270010

RESUMEN

Corticotroph pituitary adenomas commonly cause Cushing's disease (CD), but some of them are clinically silent. The reason why they do not cause endocrinological symptoms remains unclear. We used data from small RNA sequencing in adenomas causing CD (n = 28) and silent ones (n = 20) to explore the role of miRNA in hormone secretion and clinical status of the tumors. By comparing miRNA profiles, we identified 19 miRNAs differentially expressed in clinically functioning and silent corticotroph adenomas. The analysis of their putative target genes indicates a role of miRNAs in regulation of the corticosteroid receptors expression. Adenomas causing CD have higher expression of hsa-miR-124-3p and hsa-miR-135-5p and lower expression of their target genes NR3C1 and NR3C2. The role of hsa-miR-124-3p in the regulation of NR3C1 was further validated in vitro using AtT-20/D16v-F2 cells. The cells transfected with miR-124-3p mimics showed lower levels of glucocorticoid receptor expression than control cells while the interaction between miR-124-3p and NR3C1 3' UTR was confirmed using luciferase reporter assay. The results indicate a relatively small difference in miRNA expression between clinically functioning and silent corticotroph pituitary adenomas. High expression of hsa-miR-124-3p in adenomas causing CD plays a role in the regulation of glucocorticoid receptor level and probably in reducing the effect of negative feedback mediated by corticosteroids.


Asunto(s)
Adenoma Hipofisario Secretor de ACTH , Adenoma , MicroARNs , Neoplasias Hipofisarias , Adenoma Hipofisario Secretor de ACTH/genética , Adenoma/metabolismo , Corticotrofos/metabolismo , Humanos , MicroARNs/genética , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Receptores de Glucocorticoides/metabolismo
19.
J Endocrinol Invest ; 45(5): 999-1009, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34988938

RESUMEN

PURPOSE: Cushing's disease is associated with significant morbidity; thus, additional tumor-directed drugs with the potential to exert antineoplastic effects on corticotroph adenoma cells are desired. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway, which plays regulatory role in cell survival and proliferation, is activated in pituitary adenomas. The present study evaluated the effects of BKM120 (Buparlisib), an oral PI3K inhibitor, on cell viability, apoptosis, cell cycle phase distribution, and ACTH production in mouse corticotroph tumor cells. METHODS: AtT-20/D16v-F2 mouse pituitary corticotroph tumor cells were treated with increasing concentrations of BKM120 or vehicle. Cell viability was measured using an MTS-based assay. Apoptosis was evaluated by Annexin V staining. Cell cycle analysis was performed by propidium iodide DNA staining and flow cytometry. Gene expression of cell cycle regulators (Cdkn1b, Ccnd1, Ccne1, Cdk2, Cdk4, Myc, and Rb1) was assessed by qPCR. Protein expression of p27, total and phosphorylated Akt was assessed by Western blot. ACTH levels were measured in the culture supernatants by chemiluminescent immunometric assay. RESULTS: Treatment with BKM120 decreased AtT-20/D16v-F2 cell viability, induced a G0/G1 cell cycle arrest, reduced the phosphorylation of Akt at Serine 473, and increased p27 expression. Furthermore, BKM120 treatment diminished ACTH levels in the cell culture supernatants. CONCLUSION: In vitro inhibition of PI3K/AKT pathway by BKM120 resulted in anti-proliferative effects on corticotroph tumor cells, decreasing cell viability and ACTH production. These encouraging findings shape the path for further experiments with the inhibition of PI3K/AKT pathway in Cushing's disease.


Asunto(s)
Adenoma , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Neoplasias Hipofisarias , Adenoma/patología , Hormona Adrenocorticotrópica/metabolismo , Aminopiridinas , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Corticotrofos/metabolismo , Corticotrofos/patología , Humanos , Ratones , Morfolinas , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/metabolismo , Neoplasias Hipofisarias/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
Neuropathol Appl Neurobiol ; 48(2): e12754, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34296770

RESUMEN

We describe a rare TPIT-positive corticotroph PitNET that is admixed with SF1-positive adrenocortical cells. This dimorphous population of cells showed no colocalisation between TPIT and SF1 by immunofluorescence, and an adrenocortical choristoma was favoured. Methylation array analysis revealed a novel methylation profile in relation to other pituitary neoplasms.


Asunto(s)
Adenoma Hipofisario Secretor de ACTH/patología , Corticotrofos/patología , Metilación de ADN , Hipófisis/patología , Neoplasias Hipofisarias/patología , Adenoma Hipofisario Secretor de ACTH/genética , Adenoma Hipofisario Secretor de ACTH/metabolismo , Adulto , Corticotrofos/metabolismo , Humanos , Masculino , Hipófisis/metabolismo , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA