Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Med Genet ; 59(2): 165-169, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33436522

RESUMEN

BACKGROUND: Pathogenic heterozygous SIX1 variants (predominantly missense) occur in branchio-otic syndrome (BOS), but an association with craniosynostosis has not been reported. METHODS: We investigated probands with craniosynostosis of unknown cause using whole exome/genome (n=628) or RNA (n=386) sequencing, and performed targeted resequencing of SIX1 in 615 additional patients. Expression of SIX1 protein in embryonic cranial sutures was examined in the Six1nLacZ/+ reporter mouse. RESULTS: From 1629 unrelated cases with craniosynostosis we identified seven different SIX1 variants (three missense, including two de novo mutations, and four nonsense, one of which was also present in an affected twin). Compared with population data, enrichment of SIX1 loss-of-function variants was highly significant (p=0.00003). All individuals with craniosynostosis had sagittal suture fusion; additionally four had bilambdoid synostosis. Associated BOS features were often attenuated; some carrier relatives appeared non-penetrant. SIX1 is expressed in a layer basal to the calvaria, likely corresponding to the dura mater, and in the mid-sagittal mesenchyme. CONCLUSION: Craniosynostosis is associated with heterozygous SIX1 variants, with possible enrichment of loss-of-function variants compared with classical BOS. We recommend screening of SIX1 in craniosynostosis, particularly when sagittal±lambdoid synostosis and/or any BOS phenotypes are present. These findings highlight the role of SIX1 in cranial suture homeostasis.


Asunto(s)
Craneosinostosis/genética , Proteínas de Homeodominio/genética , Animales , Preescolar , Estudios de Cohortes , Suturas Craneales/embriología , Suturas Craneales/patología , Craneosinostosis/complicaciones , Craneosinostosis/embriología , Análisis Mutacional de ADN , Estudios de Asociación Genética , Proteínas de Homeodominio/fisiología , Humanos , Lactante , Ratones , Linaje , Fenotipo , RNA-Seq , Secuenciación Completa del Genoma
2.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878091

RESUMEN

A major feature of Saethre-Chotzen syndrome is coronal craniosynostosis, the fusion of the frontal and parietal bones at the coronal suture. It is caused by heterozygous loss-of-function mutations in either of the bHLH transcription factors TWIST1 and TCF12. Although compound heterozygous Tcf12; Twist1 mice display severe coronal synostosis, the individual role of Tcf12 had remained unexplored. Here, we show that Tcf12 controls several key processes in calvarial development, including the rate of frontal and parietal bone growth, and the boundary between sutural and osteogenic cells. Genetic analysis supports an embryonic requirement for Tcf12 in suture formation, as combined deletion of Tcf12 in embryonic neural crest and mesoderm, but not in postnatal suture mesenchyme, disrupts the coronal suture. We also detected asymmetric distribution of mesenchymal cells on opposing sides of the wild-type frontal and parietal bones, which prefigures later bone overlap at the sutures. In Tcf12 mutants, reduced asymmetry is associated with bones meeting end-on-end, possibly contributing to synostosis. Our results support embryonic requirements of Tcf12 in proper formation of the overlapping coronal suture.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Craneosinostosis/metabolismo , Osteogénesis , Cráneo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Craneosinostosis/embriología , Craneosinostosis/genética , Células Madre Mesenquimatosas/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Cresta Neural/metabolismo , Cráneo/metabolismo
3.
Int J Dev Biol ; 64(4-5-6): 383-391, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32658997

RESUMEN

Clinical dysmorphology is a medical specialty which requires training to systematically observe aberrations in facial development and to understand patterns in the recognition of underlying genetic syndromes. An understanding of normal facial embryology and structure, genetic mechanisms that contribute to facial development and the influence of age, sex, epigenetic, environmental and teratogen effects that contribute to facial dysmorphology are essential. The role of software programmes and databases in achieving diagnoses in subtler phenotypes is growing. A description of specific dysmorphisms of various parts of the human face and key genetic and mechanistic pathways are discussed in this review. Recognizing facial patterns and genetic syndromes efficiently aids in planning appropriate tests, securing an accurate diagnosis, counselling and predicting outcomes and offering interventions and therapies where available.


Asunto(s)
Anomalías Congénitas/genética , Desarrollo Embrionario/genética , Cara/embriología , Regulación del Desarrollo de la Expresión Génica , Craneosinostosis/embriología , Craneosinostosis/genética , Craneosinostosis/metabolismo , Femenino , Humanos , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Cresta Neural/embriología , Cresta Neural/metabolismo
4.
Pediatr Neurol ; 99: 7-15, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31421914

RESUMEN

Craniosynostosis is a pathologic craniofacial disorder and is defined as the premature fusion of one or more cranial (calvarial) sutures. Cranial sutures are fibrous joints consisting of nonossified mesenchymal cells that play an important role in the development of healthy craniofacial skeletons. Early fusion of these sutures results in incomplete brain development that may lead to complications of several severe medical conditions including seizures, brain damage, mental delay, complex deformities, strabismus, and visual and breathing problems. As a congenital disease, craniosynostosis has a heterogeneous origin that can be affected by genetic and epigenetic alterations, teratogens, and environmental factors and make the syndrome highly complex. To date, approximately 200 syndromes have been linked to craniosynostosis. In addition to being part of a syndrome, craniosynostosis can be nonsyndromic, formed without any additional anomalies. More than 50 nuclear genes that relate to craniosynostosis have been identified. Besides genetic factors, epigenetic factors like microRNAs and mechanical forces also play important roles in suture fusion. As craniosynostosis is a multifactorial disorder, evaluating the craniosynostosis syndrome requires and depends on all the information obtained from clinical findings, genetic analysis, epigenetic or environmental factors, or gene modulators. In this review, we will focus on embryologic and genetic studies, as well as epigenetic and environmental studies. We will discuss published studies and correlate the findings with unknown aspects of craniofacial disorders.


Asunto(s)
Craneosinostosis , Animales , Suturas Craneales/embriología , Craneosinostosis/embriología , Craneosinostosis/epidemiología , Craneosinostosis/genética , Craneosinostosis/cirugía , Modelos Animales de Enfermedad , Enfermedades en Gemelos/genética , Epigénesis Genética , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ratones Transgénicos , MicroARNs/genética , Edad Paterna , Prevalencia , ARN Pequeño no Traducido/genética , Transducción de Señal/fisiología , Cráneo/embriología , Síndrome
5.
Dis Model Mech ; 12(5)2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31064775

RESUMEN

One diagnostic feature of craniosynostosis syndromes is mandibular dysgenesis. Using three mouse models of Apert, Crouzon and Pfeiffer craniosynostosis syndromes, we investigated how embryonic development of the mandible is affected by fibroblast growth factor receptor 2 (Fgfr2) mutations. Quantitative analysis of skeletal form at birth revealed differences in mandibular morphology between mice carrying Fgfr2 mutations and their littermates that do not carry the mutations. Murine embryos with the mutations associated with Apert syndrome in humans (Fgfr2+/S252W and Fgfr2+/P253R ) showed an increase in the size of the osteogenic anlagen and Meckel's cartilage (MC). Changes in the microarchitecture and mineralization of the developing mandible were visualized using histological staining. The mechanism for mandibular dysgenesis in the Apert Fgfr2+/S252W mouse resulting in the most severe phenotypic effects was further analyzed in detail and found to occur to a lesser degree in the other craniosynostosis mouse models. Laser capture microdissection and RNA-seq analysis revealed transcriptomic changes in mandibular bone at embryonic day 16.5 (E16.5), highlighting increased expression of genes related to osteoclast differentiation and dysregulated genes active in bone mineralization. Increased osteoclastic activity was corroborated by TRAP assay and in situ hybridization of Csf1r and Itgb3 Upregulated expression of Enpp1 and Ank was validated in the mandible of Fgfr2+/S252W embryos, and found to result in elevated inorganic pyrophosphate concentration. Increased proliferation of osteoblasts in the mandible and chondrocytes forming MC was identified in Fgfr2+/S252W embryos at E12.5. These findings provide evidence that FGFR2 gain-of-function mutations differentially affect cartilage formation and intramembranous ossification of dermal bone, contributing to mandibular dysmorphogenesis in craniosynostosis syndromes.This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Craneosinostosis/embriología , Craneosinostosis/patología , Embrión de Mamíferos/anomalías , Mandíbula/anomalías , Mandíbula/embriología , Osteogénesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Animales , Proliferación Celular , Condrocitos/patología , Difosfatos/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos/patología , Mandíbula/patología , Ratones , Modelos Biológicos , Osteoblastos/patología
6.
Development ; 145(19)2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30228104

RESUMEN

Midface dysgenesis is a feature of more than 200 genetic conditions in which upper airway anomalies frequently cause respiratory distress, but its etiology is poorly understood. Mouse models of Apert and Crouzon craniosynostosis syndromes exhibit midface dysgenesis similar to the human conditions. They carry activating mutations of Fgfr2, which is expressed in multiple craniofacial tissues during development. Magnetic resonance microscopy of three mouse models of Apert and Crouzon syndromes revealed decreased nasal passage volume in all models at birth. Histological analysis suggested overgrowth of the nasal cartilage in the two Apert syndrome mouse models. We used tissue-specific gene expression and transcriptome analysis to further dissect the structural, cellular and molecular alterations underlying midface and upper airway dysgenesis in Apert Fgfr2+/S252W mutants. Cartilage thickened progressively during embryogenesis because of increased chondrocyte proliferation in the presence of Fgf2 Oral epithelium expression of mutant Fgfr2, which resulted in a distinctive nasal septal fusion defect, and premature facial suture fusion contributed to the overall dysmorphology. Midface dysgenesis in Fgfr2-related craniosynostosis is a complex phenotype arising from the combined effects of aberrant signaling in multiple craniofacial tissues.


Asunto(s)
Ciclo Celular , Craneosinostosis/embriología , Cara/anomalías , Especificidad de Órganos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Anomalías del Sistema Respiratorio/embriología , Anomalías del Sistema Respiratorio/patología , Acrocefalosindactilia/patología , Animales , Cartílago/patología , Proliferación Celular , Condrocitos/patología , Suturas Craneales/patología , Disostosis Craneofacial/embriología , Disostosis Craneofacial/patología , Craneosinostosis/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Cara/embriología , Cara/patología , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Mutantes , Nariz/anomalías , Nariz/embriología , Nariz/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética
7.
Plast Reconstr Surg ; 141(1): 156-168, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29280877

RESUMEN

A number of textbooks, review articles, and case reports highlight the potential comorbidity of choanal atresia in craniosynostosis patients. However, the lack of a precise definition of choanal atresia within the current craniosynostosis literature and widely varying methods of detection and diagnosis have produced uncertainty regarding the true coincidence of these conditions. The authors review the anatomy and embryologic basis of the human choanae, provide an overview of choanal atresia, and analyze the available literature that links choanal atresia and craniosynostosis. Review of over 50 case reports that describe patients diagnosed with both conditions reveals inconsistent descriptions of choanal atresia and limited use of definitive diagnostic methodologies. The authors further present preliminary analysis of three-dimensional medical head computed tomographic scans of children diagnosed with craniosynostosis syndromes (e.g., Apert, Pfeiffer, Muenke, and Crouzon) and typically developing children and, although finding no evidence of choanal atresia, report the potentially reduced nasal airway volumes in children diagnosed with Apert and Pfeiffer syndromes. A recent study of the Fgfr2c Crouzon/Pfeiffer syndrome mouse model similarly found a significant reduction in nasal airway volumes in littermates carrying this FGFR2 mutation relative to unaffected littermates, without detection of choanal atresia. The significant correlation between specific craniosynostosis syndromes and reduced nasal airway volume in mouse models for craniosynostosis and human pediatric patients indicates comorbidity of choanal and nasopharyngeal dysmorphologies and craniosynostosis conditions. Genetic, developmental, and epidemiologic sources of these interactions are areas particularly worthy of further research.


Asunto(s)
Anomalías Múltiples , Atresia de las Coanas , Craneosinostosis , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/embriología , Anomalías Múltiples/genética , Animales , Atresia de las Coanas/diagnóstico , Atresia de las Coanas/embriología , Atresia de las Coanas/genética , Craneosinostosis/diagnóstico , Craneosinostosis/embriología , Craneosinostosis/genética , Marcadores Genéticos , Humanos , Ratones , Mutación , Nasofaringe/anomalías , Nasofaringe/anatomía & histología , Nasofaringe/embriología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Síndrome
8.
BMC Dev Biol ; 16(1): 37, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27756203

RESUMEN

BACKGROUND: Increased apposition of the frontal and parietal bones of the skull during embryogenesis may be a risk factor for the subsequent development of premature skull fusion, or craniosynostosis. Human craniosynostosis is a prevalent, and often serious embryological and neonatal pathology. Other than known mutations in a small number of contributing genes, the aetiology of craniosynostosis is largely unknown. Therefore, the identification of novel genes which contribute to normal skull patterning, morphology and premature suture apposition is imperative, in order to fully understand the genetic regulation of cranial development. RESULTS: Using advanced imaging techniques and quantitative measurement, we show that genetic deletion of the highly-conserved transcription factor Grainyhead-like 3 (Grhl3) in mice (Grhl3 -/- ) leads to decreased skull size, aberrant skull morphology and premature apposition of the coronal sutures during embryogenesis. Furthermore, Grhl3 -/- mice also present with premature collagen deposition and osteoblast alignment at the sutures, and the physical interaction between the developing skull, and outermost covering of the brain (the dura mater), as well as the overlying dermis and subcutaneous tissue, appears compromised in embryos lacking Grhl3. Although Grhl3 -/- mice die at birth, we investigated skull morphology and size in adult animals lacking one Grhl3 allele (heterozygous; Grhl3 +/- ), which are viable and fertile. We found that these adult mice also present with a smaller cranial cavity, suggestive of post-natal haploinsufficiency in the context of cranial development. CONCLUSIONS: Our findings show that our Grhl3 mice present with increased apposition of the frontal and parietal bones, suggesting that Grhl3 may be involved in the developmental pathogenesis of craniosynostosis.


Asunto(s)
Craneosinostosis/genética , Proteínas de Unión al ADN/genética , Hueso Frontal/metabolismo , Hueso Parietal/metabolismo , Factores de Transcripción/genética , Animales , Suturas Craneales/anomalías , Suturas Craneales/metabolismo , Craneosinostosis/embriología , Craneosinostosis/metabolismo , Proteínas de Unión al ADN/deficiencia , Desarrollo Embrionario/genética , Hueso Frontal/anomalías , Hueso Frontal/diagnóstico por imagen , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Ratones Noqueados , Hueso Parietal/anomalías , Hueso Parietal/diagnóstico por imagen , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Factores de Riesgo , Cráneo/anomalías , Cráneo/metabolismo , Factores de Transcripción/deficiencia , Microtomografía por Rayos X
9.
Curr Top Dev Biol ; 115: 131-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26589924

RESUMEN

The skull vault is a complex, exquisitely patterned structure that plays a variety of key roles in vertebrate life, ranging from the acquisition of food to the support of the sense organs for hearing, smell, sight, and taste. During its development, it must meet the dual challenges of protecting the brain and accommodating its growth. The bones and sutures of the skull vault are derived from cranial neural crest and head mesoderm. The frontal and parietal bones develop from osteogenic rudiments in the supraorbital ridge. The coronal suture develops from a group of Shh-responsive cells in the head mesoderm that are collocated, with the osteogenic precursors, in the supraorbital ridge. The osteogenic rudiments and the prospective coronal suture expand apically by cell migration. A number of congenital disorders affect the skull vault. Prominent among these is craniosynostosis, the fusion of the bones at the sutures. Analysis of the pathophysiology underling craniosynostosis has identified a variety of cellular mechanisms, mediated by a range of signaling pathways and effector transcription factors. These cellular mechanisms include loss of boundary integrity, altered sutural cell specification in embryos, and loss of a suture stem cell population in adults. Future work making use of genome-wide transcriptomic approaches will address the deep structure of regulatory interactions and cellular processes that unify these seemingly diverse mechanisms.


Asunto(s)
Suturas Craneales/embriología , Craneosinostosis/embriología , Morfogénesis , Cráneo/embriología , Animales , Suturas Craneales/metabolismo , Craneosinostosis/genética , Craneosinostosis/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Humanos , Mesodermo/embriología , Mesodermo/metabolismo , Cresta Neural/embriología , Cresta Neural/metabolismo , Transducción de Señal/genética , Cráneo/metabolismo
10.
Genes Dev ; 27(21): 2320-31, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24145799

RESUMEN

The stereotyped arrangement of cochlear sensory and supporting cells is critical for auditory function. Our previous studies showed that Muenke syndrome model mice (Fgfr3P244R/+) have hearing loss associated with a supporting cell fate transformation of two Deiters' cells to two pillar cells. We investigated the developmental origins of this transformation and found that two prospective Deiters' cells switch to an outer pillar cell-like fate sequentially between embryonic day 17.5 (E17.5) and postnatal day 3 (P3). Unexpectedly, the Fgfr3P244R/+ hearing loss and supporting cell fate transformation are not rescued by genetically reducing fibroblast growth factor 8 (FGF8), the FGF receptor 3c (FGFR3c) ligand required for pillar cell differentiation. Rather, reducing FGF10, which normally activates FGFR2b or FGFR1b, is sufficient for rescue of cochlear form and function. Accordingly, we found that the P244R mutation changes the specificity of FGFR3b and FGFR3c such that both acquire responsiveness to FGF10. Moreover, Fgf10 heterozygosity does not block the Fgfr3P244R/+ supporting cell fate transformation but instead allows a gradual reversion of fate-switched cells toward the normal phenotype between P5 and at least P14. This study indicates that Deiters' and pillar cells can reversibly switch fates in an FGF-dependent manner over a prolonged period of time. This property might be exploited for the regulation of sensory cell regeneration from support cells.


Asunto(s)
Diferenciación Celular , Cóclea/citología , Cóclea/embriología , Craneosinostosis , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Pérdida Auditiva , Animales , Cóclea/metabolismo , Craneosinostosis/complicaciones , Craneosinostosis/embriología , Craneosinostosis/genética , Modelos Animales de Enfermedad , Dosificación de Gen , Células Ciliadas Auditivas/citología , Pérdida Auditiva/embriología , Pérdida Auditiva/etiología , Pérdida Auditiva/genética , Ratones , Transducción de Señal
11.
J Biol Chem ; 288(44): 31772-83, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24052261

RESUMEN

Osteogenesis is a complex process that is orchestrated by several growth factors, extracellular cues, signaling molecules, and transcriptional factors. Understanding the mechanisms of bone formation is pivotal for clarifying the pathogenesis of bone diseases. Previously, we reported that fad104 (factor for adipocyte differentiation 104), a novel positive regulator of adipocyte differentiation, negatively regulated the differentiation of mouse embryonic fibroblasts into osteocytes. However, the physiological role of fad104 in bone formation has not been elucidated. Here, we clarified the role of fad104 in bone formation in vivo and in vitro. fad104 disruption caused craniosynostosis-like premature ossification of the calvarial bone. Furthermore, analyses using primary calvarial cells revealed that fad104 negatively regulated differentiation and BMP/Smad signaling pathway. FAD104 interacted with Smad1/5/8. The N-terminal region of FAD104, which contains a proline-rich motif, was capable of binding to Smad1/5/8. We demonstrated that down-regulation of Smad1/5/8 phosphorylation by FAD104 is dependent on the N-terminal region of FAD104 and that fad104 functions as a novel negative regulator of BMP/Smad signaling and is required for proper development for calvarial bone. These findings will aid a comprehensive description of the mechanism that controls normal and premature calvarial ossification.


Asunto(s)
Diferenciación Celular/fisiología , Fibronectinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Osteogénesis/fisiología , Transducción de Señal/fisiología , Cráneo/embriología , Adipogénesis/fisiología , Animales , Células Cultivadas , Craneosinostosis/embriología , Craneosinostosis/genética , Craneosinostosis/patología , Regulación hacia Abajo/fisiología , Fibronectinas/genética , Metaloproteinasas de la Matriz Secretadas/genética , Metaloproteinasas de la Matriz Secretadas/metabolismo , Ratones , Ratones Noqueados , Fosforilación/fisiología , Estructura Terciaria de Proteína , Proteínas Smad/genética , Proteínas Smad/metabolismo
12.
Genesis ; 51(10): 677-89, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23897749

RESUMEN

Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. By using an N-ethyl-N-nitrosourea-based screen for recessive mutations affecting craniofacial anatomy, we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. By using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1(DL) gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis.


Asunto(s)
Síndrome del Nevo Basocelular/genética , Huesos/anomalías , Craneosinostosis/genética , Modelos Animales de Enfermedad , Mutación Puntual , Receptores de Superficie Celular/genética , Animales , Síndrome del Nevo Basocelular/embriología , Síndrome del Nevo Basocelular/patología , Huesos/embriología , Craneosinostosis/embriología , Craneosinostosis/patología , Embrión de Mamíferos , Proteínas Hedgehog/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Patched , Receptor Patched-1 , Transducción de Señal/genética , Cráneo/anomalías , Cráneo/embriología
13.
J Bone Miner Res ; 28(6): 1422-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23281127

RESUMEN

Craniosynostosis describes conditions in which one or more sutures of the infant skull are prematurely fused, resulting in facial deformity and delayed brain development. Approximately 20% of human craniosynostoses are thought to result from gene mutations altering growth factor signaling; however, the molecular mechanisms by which these mutations cause craniosynostosis are incompletely characterized, and the causative genes for diverse types of syndromic craniosynostosis have yet to be identified. Here, we show that enhanced bone morphogenetic protein (BMP) signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells, but not in osteoblasts, causes premature suture fusion in mice. In support of a requirement for precisely regulated BMP signaling, this defect was rescued on a Bmpr1a haploinsufficient background, with corresponding normalization of Smad phosphorylation. Moreover, in vivo treatment with LDN-193189, a selective chemical inhibitor of BMP type I receptor kinases, resulted in partial rescue of craniosynostosis. Enhanced signaling of the fibroblast growth factor (FGF) pathway, which has been implicated in craniosynostosis, was observed in both mutant and rescued mice, suggesting that augmentation of FGF signaling is not the sole cause of premature fusion found in this model. The finding that relatively modest augmentation of Smad-dependent BMP signaling leads to premature cranial suture fusion suggests an important contribution of dysregulated BMP signaling to syndromic craniosynostoses and potential strategies for early intervention.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Craneosinostosis/embriología , Cresta Neural/embriología , Transducción de Señal , Proteínas Smad/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/antagonistas & inhibidores , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/genética , Craneosinostosis/genética , Craneosinostosis/metabolismo , Craneosinostosis/patología , Humanos , Ratones , Ratones Transgénicos , Mutación , Cresta Neural/metabolismo , Cresta Neural/patología , Pirazoles/farmacología , Pirimidinas/farmacología , Proteínas Smad/genética
14.
Bone ; 49(4): 673-82, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21807129

RESUMEN

RUNX2 is an essential transcription factor for osteoblast differentiation, because osteoblast differentiation is completely blocked in Runx2-deficient mice. However, it remains to be clarified whether RUNX2 is sufficient for osteoblast differentiation during embryogenesis. To address this issue, Runx2 transgenic mice were generated under the control of the Prrx1 promoter, which directs the transgene expression to mesenchymal cells before the onset of bone development. The transgene expression was detected in the cranium, limb buds, and the region from the mandible to anterior chest wall. The skull became small and the limbs were shortened depending on the levels of the transgene expression. Early onset of Runx2 expression in the cranial mesenchyme induced mineralization on E13.0, when no mineralization was observed in wild-type mice, and resulted in craniosynostosis as shown by the closure of sutures and fontanelles on E18.5. Col1a1 and Spp1 expressions were detected in the mineralized regions on E12.5-13.5. The limb bones were hypoplastic and fused, and ectopic bones were formed in the hands and feet. Col2a1 expression was inhibited but Col1a1 expression was induced in the limb buds on E12.5. In the anterior chest wall, ectopic bones were formed through the process of intramembranous ossification, interrupting the formation of cartilaginous anlagen of sternal manubrium. These findings indicate that RUNX2 is sufficient to direct mesenchymal cells to osteoblasts and lead to intramembranous bone formation during embryogenesis; Runx2 inhibits chondrocyte differentiation at an early stage; and that Runx2 expression at appropriate level, times and spaces during embryogenesis is essential for skeletal development.


Asunto(s)
Coristoma/complicaciones , Coristoma/embriología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Craneosinostosis/complicaciones , Craneosinostosis/embriología , Esbozos de los Miembros/anomalías , Osteogénesis , Animales , Huesos/diagnóstico por imagen , Huesos/embriología , Huesos/metabolismo , Huesos/patología , Cartílago/metabolismo , Cartílago/patología , Diferenciación Celular , Condrocitos/metabolismo , Condrocitos/patología , Coristoma/diagnóstico por imagen , Coristoma/patología , Craneosinostosis/diagnóstico por imagen , Craneosinostosis/patología , Cara , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Esbozos de los Miembros/diagnóstico por imagen , Esbozos de los Miembros/metabolismo , Esbozos de los Miembros/patología , Ratones , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoblastos/patología , Cráneo/diagnóstico por imagen , Cráneo/embriología , Cráneo/patología , Microtomografía por Rayos X
15.
Am J Med Genet A ; 155A(2): 287-94, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21271643

RESUMEN

The interparietal bone, Os Incae, is formed in a persistent mendosal suture. This suture is a normal variant in the human skull, well-known in anatomy and radiology textbooks. We report 11 children with craniosynostosis in the presence of an interparietal bone, five from Children's Hospital at Montefiore and six children from Children's Hospital Boston. The true incidence of an interparietal bone in patients with craniosynostosis or craniofacial anomalies is not known; nor are there recognized sequelae of an interparietal bone (bathrocephaly). Hypotheses regarding mechanisms that may contribute to the formation of an interparietal bone are discussed.


Asunto(s)
Evolución Biológica , Suturas Craneales/embriología , Craneosinostosis/embriología , Morfogénesis , Hueso Occipital/embriología , Suturas Craneales/diagnóstico por imagen , Craneosinostosis/diagnóstico por imagen , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Hueso Occipital/diagnóstico por imagen , Radiografía , Estudios Retrospectivos
16.
Dev Biol ; 347(2): 258-70, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20727876

RESUMEN

The Notch pathway is crucial for a wide variety of developmental processes including the formation of tissue boundaries. That it may function in calvarial suture development and figure in the pathophysiology of craniosynostosis was suggested by the demonstration that heterozygous loss of function of JAGGED1 in humans can cause Alagille syndrome, which has craniosynostosis as a feature. We used conditional gene targeting to examine the role of Jagged1 in the development of the skull vault. We demonstrate that Jagged1 is expressed in a layer of mesoderm-derived sutural cells that lie along the osteogenic-non-osteogenic boundary. We show that inactivation of Jagged1 in the mesodermal compartment of the coronal suture, but not in the neural crest compartment, results in craniosynostosis. Mesodermal inactivation of Jagged1 also results in changes in the identity of sutural cells prior to overt osteogenic differentiation, as well as defects in the boundary between osteogenic and non-osteogenic compartments at the coronal suture. These changes, surprisingly, are associated with increased expression of Notch2 and the Notch effector, Hes1, in the sutural mesenchyme. They are also associated with an increase in nuclear ß-catenin. In Twist1 mutants, Jagged1 expression in the suture is reduced substantially, suggesting an epistatic relationship between Twist1 and Jagged1. Consistent with such a relationship, Twist1-Jagged1 double heterozygotes exhibit a substantial increase in the severity of craniosynostosis over individual heterozygotes. Our results thus suggest that Jagged1 is an effector of Twist1 in coronal suture development.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Suturas Craneales/embriología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas de la Membrana/fisiología , Proteínas Nucleares/fisiología , Proteína 1 Relacionada con Twist/fisiología , Animales , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Craneosinostosis/embriología , Craneosinostosis/genética , Epistasis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Humanos , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Mesodermo/embriología , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Modelos Biológicos , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Osteogénesis/genética , Osteogénesis/fisiología , Penetrancia , Embarazo , Proteínas Serrate-Jagged , Proteína 1 Relacionada con Twist/deficiencia , Proteína 1 Relacionada con Twist/genética
17.
Hum Mol Genet ; 19(17): 3457-67, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20570969

RESUMEN

Gli3 is a zinc-finger transcription factor whose activity is dependent on the level of hedgehog (Hh) ligand. Hh signaling has key roles during endochondral ossification; however, its role in intramembranous ossification is still unclear. In this study, we show that Gli3 performs a dual role in regulating both osteoprogenitor proliferation and osteoblast differentiation during intramembranous ossification. We discovered that Gli3Xt-J/Xt-J mice, which represent a Gli3-null allele, exhibit craniosynostosis of the lambdoid sutures and that this is accompanied by increased osteoprogenitor proliferation and differentiation. These cellular changes are preceded by ectopic expression of the Hh receptor Patched1 and reduced expression of the transcription factor Twist1 in the sutural mesenchyme. Twist1 is known to delay osteogenesis by binding to and inhibiting the transcription factor Runx2. We found that Runx2 expression in the lambdoid suture was altered in a pattern complimentary to that of Twist1. We therefore propose that loss of Gli3 results in a Twist1-, Runx2-dependent expansion of the sutural osteoprogenitor population as well as enhanced osteoblastic differentiation which results in a bony bridge forming between the parietal and interparietal bones. We show that FGF2 will induce Twist1, normalize osteoprogenitor proliferation and differentiation and rescue the lambdoid suture synostosis in Gli3Xt-J/Xt-J mice. Taken together, we define a novel role for Gli3 in osteoblast development; we describe the first mouse model of lambdoid suture craniosynostosis and show how craniosynostosis can be rescued in this model.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Craneosinostosis/fisiopatología , Factores de Transcripción de Tipo Kruppel/genética , Proteínas del Tejido Nervioso/genética , Osteogénesis , Cráneo/anomalías , Células Madre/citología , Animales , Craneosinostosis/embriología , Craneosinostosis/genética , Craneosinostosis/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Cráneo/citología , Cráneo/embriología , Cráneo/metabolismo , Células Madre/metabolismo , Proteína Gli3 con Dedos de Zinc
18.
Plast Reconstr Surg ; 125(5): 1352-1361, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20134361

RESUMEN

BACKGROUND: In utero retinoid exposure results in numerous craniofacial malformations, including craniosynostosis. Although many malformations associated with retinoic acid syndrome are associated with neural crest defects, the specific mechanisms of retinoid-induced craniosynostosis remain unclear. The authors used the culture of mouse cranial suture-derived mesenchymal cells to probe the potential cellular mechanisms of this teratogen to better elucidate mechanisms of retinoid-induced suture fusion. METHODS: Genes associated with retinoid signaling were assayed in fusing (posterofrontal) and patent (sagittal, coronal) sutures by quantitative real-time polymerase chain reaction. Cultures of mouse suture-derived mesenchymal cells from the posterofrontal suture were established from 4-day-old mice. Cells were cultured with all-trans retinoic acid (1 and 5 muM). Proliferation, osteogenic differentiation, and specific gene expression were assessed. RESULTS: Mouse sutures were found to express genes necessary for retinoic acid synthesis, binding, and signal transduction, demonstrated by quantitative real-time polymerase chain reaction (Raldh1, Raldh2, Raldh3, and Rbp4). These genes were not found to be differentially expressed in fusing as compared with patent cranial sutures in vivo. Addition of retinoic acid enhanced the osteogenic differentiation of suture-derived mesenchymal cells in vitro, including up-regulation of alkaline phosphatase activity and Runx2 expression. Contemporaneously, cellular proliferation was repressed, as shown by proliferative cell nuclear antigen expression. The pro-osteogenic effect of retinoic acid was accompanied by increased gene expression of several hedgehog and bone morphogenetic protein ligands. CONCLUSIONS: Retinoic acid represses proliferation and enhances osteogenic differentiation of suture-derived mesenchymal cells. These in vitro data suggest that retinoid exposure may lead to premature cranial suture fusion by means of enhanced osteogenesis and hedgehog and bone morphogenetic protein signaling.


Asunto(s)
Suturas Craneales/citología , Craneosinostosis/embriología , Mesodermo/citología , Osteogénesis/efectos de los fármacos , Retinoides/efectos adversos , Tretinoina/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Animales Recién Nacidos , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Expresión Génica , Ratones , Tretinoina/metabolismo
19.
Dev Biol ; 328(2): 273-84, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19389359

RESUMEN

Activating mutations of FGFRs1-3 cause craniosynostosis (CS), the premature fusion of cranial bones, in man and mouse. The mechanisms by which such mutations lead to CS have been variously ascribed to increased osteoblast proliferation, differentiation, and apoptosis, but it is not always clear how these disturbances relate to the process of suture fusion. We have reassessed coronal suture fusion in an Apert Fgfr2 (S252W) mouse model. We find that the critical event of CS is the early loss of basal sutural mesenchyme as the osteogenic fronts, expressing activated Fgfr2, unite to form a contiguous skeletogenic membrane. A mild increase in osteoprogenitor proliferation precedes but does not accompany this event, and apoptosis is insignificant. On the other hand, the more apical coronal suture initially forms appropriately but then undergoes fusion, albeit at a slower rate, accompanied by a significant decrease in osteoprogenitor proliferation, and increased osteoblast maturation. Apoptosis now accompanies fusion, but is restricted to bone fronts in contact with one another. We correlated these in vivo observations with the intrinsic effects of the activated Fgfr2 S252W mutation in primary osteoblasts in culture, which show an increased capacity for both proliferation and differentiation. Our studies suggest that the major determinant of Fgfr2-induced craniosynostosis is the failure to respond to signals that would halt the recruitment or the advancement of osteoprogenitor cells at the sites where sutures should normally form.


Asunto(s)
Apoptosis/fisiología , Craneosinostosis/embriología , Osteoblastos/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Células Madre/patología , Acrocefalosindactilia/embriología , Acrocefalosindactilia/genética , Acrocefalosindactilia/patología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Craneosinostosis/genética , Craneosinostosis/patología , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Mutantes , Osteoblastos/fisiología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Células Madre/fisiología
20.
Development ; 136(5): 855-64, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19201948

RESUMEN

Heterozygous loss of Twist1 function causes coronal synostosis in both mice and humans. We showed previously that in mice this phenotype is associated with a defect in the neural crest-mesoderm boundary within the coronal suture, as well as with a reduction in the expression of ephrin A2 (Efna2), ephrin A4 (Efna4) and EphA4 in the coronal suture. We also demonstrated that mutations in human EFNA4 are a cause of non-syndromic coronal synostosis. Here we investigate the cellular mechanisms by which Twist1, acting through Eph-ephrin signaling, regulates coronal suture development. We show that EphA4 mutant mice exhibit defects in the coronal suture and neural crest-mesoderm boundary that phenocopy those of Twist1(+/-) mice. Further, we demonstrate that Twist1 and EphA4 interact genetically: EphA4 expression in the coronal suture is reduced in Twist1 mutants, and compound Twist1-EphA4 heterozygotes have suture defects of greater severity than those of individual heterozygotes. Thus, EphA4 is a Twist1 effector in coronal suture development. Finally, by DiI labeling of migratory osteogenic precursor cells that contribute to the frontal and parietal bones, we show that Twist1 and EphA4 are required for the exclusion of such cells from the coronal suture. We suggest that the failure of this process in Twist1 and EphA4 mutants is the cause of craniosynostosis.


Asunto(s)
Craneosinostosis/embriología , Craneosinostosis/metabolismo , Proteínas Nucleares/metabolismo , Osteogénesis/fisiología , Receptor EphA4/metabolismo , Cráneo/embriología , Cráneo/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Movimiento Celular , Suturas Craneales/embriología , Suturas Craneales/metabolismo , Craneosinostosis/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Hueso Frontal/embriología , Hueso Frontal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas Nucleares/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/genética , Hueso Parietal/embriología , Hueso Parietal/metabolismo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor EphA4/genética , Cráneo/citología , Proteína 1 Relacionada con Twist/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...