Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
PLoS One ; 19(8): e0308337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39116072

RESUMEN

Majority of macrozooplankton have a wider dietary niche breadth and utilize small invertebrates, microzooplankton and mesozooplankton, so effect on primary production might be through trophic cascading effect. To better understand the ecosystem structure of benthic oyster-macroalgae reefs, we analyzed zooplankton community structure before (July 2016) and after (from September 2016 to October 2017) the construction of benthic reefs in the 2 km2 sea ranch area in Xiangyun Cove, Tangshan, China. We identified 57 zooplankton species, including the 12 cnidarian (e.g., Clytia hemisphaerica Linnaeus and Eirene ceylonensis Browne), 1 ctenopharyngodon (Pleurobrachia globosa Moser), 24 crustacean (e.g., Calanus sinicus Brodsky, Paracalanus parvus Claus, Labibocera euchaeta Glesbrecht, Labibocera bipinnata Tanaka, Calanopia thompsoni Scott, and Centropages dorsispinatus Thompson), 1 chaetognath (Sagitta crassa Tokioka), 1 urochordate species (Oikopleura dioica Fol), and 18 species of planktonic polychaete and gastropod larvae. The zooplankton density and biomass values before reef construction were 266.14 ind/m3 and 2.72 mg/m3, respectively, and those after reef construction were 138.06 ind/m3 and 32.91 mg/m3, respectively. The biomass trend was as follow: October 2017 (89.08 mg/m3) > August 2017 (70.97) > September 2016 (3.17) > July 2016 (2.72) > June 2017 (0.86) > May 2017 (0.44). The common dominant organisms were crustaceans and chaetognaths. According to the RDA ranking results, water temperature was positively correlated with the Shannon-Wiener diversity index and Margalef's richness indexes. With the increasement of Margalef's richness index, the value of dissolved oxygen content showed a significant negative correlation with zooplankton abundance. The results of this study are applicable to sustainable development and management strategies of coastal reef ecosystems and provide a basis for further surveys of secondary productivity in the sea ranch area.


Asunto(s)
Crassostrea , Ecosistema , Estuarios , Zooplancton , Animales , China , Crassostrea/crecimiento & desarrollo , Crassostrea/fisiología , Ríos , Biodiversidad , Arrecifes de Coral
2.
Proc Biol Sci ; 291(2027): 20240741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043238

RESUMEN

Anthropogenic noise is rising and may interfere with natural acoustic cues used by organisms to recruit. Newly developed acoustic technology provides enriched settlement cues to boost recruitment of target organisms navigating to restoration sites, but can it boost recruitment in noise-polluted sites? To address this dilemma, we coupled replicated aquarium experiments with field experiments. Under controlled and replicated laboratory conditions, acoustic enrichment boosted recruitment by 2.57 times in the absence of anthropogenic noise, but yielded comparable recruitment in its presence (i.e. no boosting effect). Using the same technique, we then tested the replicability of these responses in real-world settings where independently replicated 'sites' are unfeasible owing to the inherent differences in soundscapes. Again, acoustic enrichment increased recruitment where anthropogenic noise was low (by 3.33 times), but had no effect at a site of noise pollution. Together, these coupled laboratory-to-field outcomes indicate that anthropogenic noise can mask the signal of acoustic enrichment. While noise pollution may reduce the effectiveness of acoustic enrichment, some of our reported observations suggest that anthropogenic noise per se might also provide an attractive cue for oyster larvae to recruit. These findings underscore the complexity of larval behavioural responses to acoustic stimuli during recruitment processes.


Asunto(s)
Señales (Psicología) , Ruido , Animales , Larva/fisiología , Larva/crecimiento & desarrollo , Acústica , Crassostrea/fisiología , Conducta Animal
3.
Sci Rep ; 14(1): 12580, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822088

RESUMEN

Settlement is a critical period in the life cycle of marine invertebrates with a planktonic larval stage. For reef-building invertebrates such as oysters and corals, settlement rates are predictive for long-term reef survival. Increasing evidence suggests that marine invertebrates use information from ocean soundscapes to inform settlement decisions. Sessile marine invertebrates with a planktonic stage are particularly reliant on environmental cues to direct them to ideal habitats. As gregarious settlers, oysters prefer to settle amongst members of the same species. It has been hypothesized that oyster larvae from species Crassostrea virginica and Ostrea angasi use distinct conspecific oyster reef sounds to navigate to ideal habitats. In controlled laboratory experiments we exposed Pacific Oyster Magallana gigas larvae to anthropogenic sounds from conspecific oyster reefs, vessels, combined reef-vessel sounds as well as off-reef and no speaker controls. Our findings show that sounds recorded at conspecific reefs induced higher percentages of settlement by about 1.44 and 1.64 times compared to off-reef and no speaker controls, respectively. In contrast, the settlement increase compared to the no speaker control was non-significant for vessel sounds (1.21 fold), combined reef-vessel sounds (1.30 fold), and off-reef sounds (1.18 fold). This study serves as a foundational stepping stone for exploring larval sound feature preferences within this species.


Asunto(s)
Arrecifes de Coral , Larva , Sonido , Animales , Larva/fisiología , Ecosistema , Ostreidae/fisiología , Ostreidae/crecimiento & desarrollo , Crassostrea/fisiología , Crassostrea/crecimiento & desarrollo
4.
Sci Total Environ ; 937: 173569, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38810751

RESUMEN

Pesticides threat marine organisms worldwide. Among them, the Pacific oyster is a bivalve mollusc model in marine ecotoxicology. A large body of literature already stated on the multiple-scale effects pesticides can trigger in the Pacific oyster, throughout its life cycle and in a delayed manner. In particular, reproductive toxicity is of major concern because of its influence on population dynamics. However, past studies mostly investigated pesticide reprotoxicity as a direct effect of exposure during gametogenesis or directly on gametes and little is known about the influence of an early embryo exposure on the breed capacity. Therefore, we studied delayed and multigenerational consequences through gametogenesis features (i.e. sex ratio, glycogen content, gene expression) and reproductive success in two consecutive oyster generations (F0 and F1) exposed to an environmentally-relevant pesticide mixture (sum nominal concentration: 2.85 µg.L-1) during embryo-larval development (0-48 h post fertilization, hpf). In the first generation, glycogen content increased in exposed individuals and the expression of some gametogenesis target genes was modified. The reproductive success measured 48 hpf was higher in exposed individuals. A multigenerational influence was observed in the second generation, with feminisation, acceleration of gametogenesis processes and the sex-specific modification of glycogen metabolism in individuals from exposed parents. This study is the first to highlight the delayed effects on reproduction induced by an early exposure to pesticides, and its multigenerational implications in the Pacific oyster. It suggests that environmental pesticide contamination can have impacts on the recruitment and the dynamics of natural oyster populations exposed during their embryo-larval phase.


Asunto(s)
Plaguicidas , Reproducción , Contaminantes Químicos del Agua , Animales , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Plaguicidas/toxicidad , Crassostrea/efectos de los fármacos , Crassostrea/fisiología , Gametogénesis/efectos de los fármacos , Femenino , Masculino , Glucógeno/metabolismo
5.
Mar Environ Res ; 198: 106503, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640692

RESUMEN

Oyster culture is a sustainable solution to food production. However, this activity can be severely impacted by the presence and proliferation of harmful microalgae such as the benthic dinoflagellates Prorocentrum hoffmannianum and Ostreopsis cf. ovata. This study aimed to evaluate the in vitro effects of P. hoffmannianum and O. cf. ovata on immune system cells (hemocytes) of the native cultured oyster Crassostrea gasar. The direct toxicity of both dinoflagellates was first evaluated assessing hemocyte viability exposed to eight concentrations of each HAB species. No reduction in hemocyte viability was found with the exposure to cell culture or the crude extract of P. hoffmannianum, but O. cf. ovata culture induced hemocyte death in a concentration-dependent manner. Ostreopsis cf. ovata concentration that promoted half of maximal reduction in hemocyte viability (EC50) was 779 cells mL-1. Posteriorly, hemocytes were exposed to both dinoflagellate cells and crude extracts to investigate their effects on hemocyte functional parameters. Despite no direct toxicity of the dinoflagellate cells, P. hoffmannianum extract caused a threefold increase in ROS production and decreased the phagocytosis rate by less than half. Ostreopsis cf. ovata cells and crude extracts also triggered an increase in ROS production (two-fold), but the phagocytosis rate was reduced (by half) only in response to the two lower cell concentrations. These results indicate a harmful potential of both dinoflagellates through a direct toxicity (only for O. cf. ovata) and functional impairment of hemocytes (both species) which could expose C. gasar oyster to opportunistic infections.


Asunto(s)
Crassostrea , Dinoflagelados , Hemocitos , Animales , Dinoflagelados/fisiología , Crassostrea/inmunología , Crassostrea/efectos de los fármacos , Crassostrea/fisiología , Hemocitos/efectos de los fármacos , Hemocitos/inmunología , Acuicultura , Fagocitosis/efectos de los fármacos
6.
Mar Environ Res ; 196: 106409, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461608

RESUMEN

Abrupt drops in salinity that occur in tropical estuaries during the equatorial rainy season led to hyposaline conditions which may reduce the populational density of oysters. To assess the effect of saline stress on physiological and metabolic responses of the Manabi oyster (Crassostrea cf. corteziensis) was exposed to 35, 30, 20,10 and 5‰ concentrations during 96 h. Inorganic osmolytes, pH, salinity, haemocyanin and protein concentration in the plasma as well as the number of oysters with closed valves were recorded. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and catalase (CAT) activity were analysed. Inorganic osmolytes and internal salinity were elevated in oysters exposed to 35, 10 and 5‰. A significant number of oysters with valve closure was observed in 10 and 5‰, which coincided with a decline in physiological pH and changes in haemocyanin concentrations. AST activity and AST/ALT ratio were reduced under 35, 10 and 5‰, and CAT increased in oysters exposed to 35‰; but protein concentration, LDH and ALP did not show significant variations. Metabolic adjustment and behavior of the Manabi oyster could explain tolerance and survival (at least for a short term) to hyposaline stress in tropical estuarine ecosystems.


Asunto(s)
Crassostrea , Animales , Crassostrea/fisiología , Ecosistema , Antioxidantes , Estrés Oxidativo , Biomarcadores/metabolismo
7.
J Hazard Mater ; 469: 133952, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447367

RESUMEN

This study successionally monitored how nano- and micro-sized polystyrene beads (MNPs) influence larval mortality, growth, and attachment behavior of the Pacific oyster Crassostrea gigas related to MNP diameter and concentration. D-shaped larvae were sequentially exposed to three-diameter MNPs (0.55, 3.00, 6.00 µm) at five concentrations (0, 0.1, 1.0, 10, 20 µg/mL), and their mortality, growth stages and attachment were observed daily until they die. In addition, MNP intake and accumulation in larvae at each growth stage were determined using fluorescent beads. Deterioration in larval growth and survival was observed under all the exposure conditions, while significant negative effects on the growth parameters were defined with smaller MNPs at lower concentrations. Fluorescent signals were detected in larval digestive tracts at all except D-shaped larval stage, and on the mantle and foot in pediveligers. Therefore, MNP intake adversely affects larval physiological conditions by the synchronal effects of MNP size and concentration. Our findings highlight the implications of MNP characteristics on Pacific oyster larvae, emphasizing the interplay between size, concentration, and physiological responses, crucial for mitigating nanoparticle pollution in marine ecosystems.


Asunto(s)
Crassostrea , Poliestirenos , Animales , Larva , Poliestirenos/toxicidad , Crassostrea/fisiología , Ecosistema , Contaminación Ambiental , Colorantes
8.
Sci Total Environ ; 925: 171679, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494031

RESUMEN

Coastal environments, such as those in the Santa Catarina State (SC, Brazil), are considered the primary receptors of anthropogenic pollutants. In this study, our objective was to evaluate the levels of emerging contaminants (ECs) and persistent organic pollutants (POPs) in indigenous Crassostrea gasar oysters from different regions of SC coast in the summer season (March 2022). Field collections were conducted in the São Francisco do Sul, Itajaí, Florianópolis and Laguna coastal zones. We analyzed the bioaccumulation levels of 75 compounds, including antibiotics (AB), endocrine disruptors (ED), non-steroidal anti-inflammatory drugs (NSAIDs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Furthermore, we assessed biomarker responses related to biotransformation, antioxidant defense, heat shock protection and oxidative damage in oysters' gills. Prevalence of ECs was observed in the central and southern regions, while the highest concentrations of POPs were detected in the central-northern regions of SC. Oysters exhibited an induction in biotransformation systems (cyp2au1 and cyp356a1, sult and GST activity) and antioxidant enzymes activities (SOD, CAT and GPx). Higher susceptibility to lipid peroxidation was observed in the animals from Florianópolis compared to other regions. Correlation analyses indicated possible associations between contaminants and environmental variables in the biomarker responses, serving as a warning related to climate change. Our results highlight the influence of anthropogenic activities on SC, serving as baseline of ECs and POPs levels in the coastal areas of Santa Catarina, indicating more critical zones for extensive monitoring, aiming to conserve coastal regions.


Asunto(s)
Crassostrea , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Crassostrea/fisiología , Brasil , Antioxidantes/análisis , Biomarcadores/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
9.
Mar Environ Res ; 195: 106367, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277815

RESUMEN

Microplastics (MPs) aging in natural ecosystems are caused by solar irradiation. Photo-aged MPs in aquatic systems are a major threat to molluscs. In this study, polystyrene (PS) photo-aging was simulated using a sunlight simulator. After exposure of Crassostrea gigas to photo-aged PS, a decreased gonadosomatic index, coupled with histological alterations, suggested an inhibitory effect on the gonadal development of bivalves. As the concentration of aged PS increased, the inhibitory effects on gonadal development became more severe. The sex hormone (testosterone and estradiol) and energy metabolism (glycogen, lipid, and protein content) differences between C. gigas males and females suggested a disruption of sex hormonal homeostasis and a shift in energy allocation strategy, which may have affected reproduction, especially female oysters. In addition, the substantial downregulation of SOX-8, SOX-E, Piwi1, and TGF-ß genes may be contributing factors causing the inhibitory effect of aged PS on the gonadal development of C. gigas. This study provides an essential reference for evaluating the reproductive health risks posed by aged MPs and offers novel insights and perspectives for exploring the impact of MPs under natural conditions.


Asunto(s)
Crassostrea , Contaminantes Químicos del Agua , Animales , Masculino , Femenino , Microplásticos , Poliestirenos , Plásticos , Ecosistema , Crassostrea/fisiología , Luz Solar , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
10.
J Exp Biol ; 226(23)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942639

RESUMEN

Ocean acidification (OA), a consequence of the increase in anthropogenic emissions of carbon dioxide, causes major changes in the chemistry of carbonates in the ocean with deleterious effects on calcifying organisms. The pH/PCO2 range to which species are exposed in nature is important to consider when interpreting the response of coastal organisms to OA. In this context, emerging approaches, which assess the reaction norms of organisms to a wide pH gradient, are improving our understanding of tolerance thresholds and acclimation potential to OA. In this study, we deciphered the reaction norms of two oyster species living in contrasting habitats: the intertidal oyster Crassostrea gigas and the subtidal flat oyster Ostrea edulis, which are two economically and ecologically valuable species in temperate ecosystems. Six-month-old oysters of each species were exposed in common garden tanks for 48 days to a pH gradient ranging from 7.7 to 6.4 (total scale). Both species were tolerant down to a pH of 6.6 with high plasticity in fitness-related traits such as survival and growth. However, oysters underwent remodelling of membrane fatty acids to cope with decreasing pH along with shell bleaching impairing shell integrity and consequently animal fitness. Finally, our work revealed species-specific physiological responses and highlights that intertidal C. gigas seem to have a better acclimation potential to rapid and extreme OA changes than O. edulis. Overall, our study provides important data about the phenotypic plasticity and its limits in two oyster species, which is essential for assessing the challenges posed to marine organisms by OA.


Asunto(s)
Crassostrea , Agua de Mar , Animales , Agua de Mar/química , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Crassostrea/fisiología , Dióxido de Carbono
11.
Mar Environ Res ; 192: 106231, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37862760

RESUMEN

Life on tidal coasts presents physiological major challenges for sessile species. Fluctuations in oxygen and temperature can affect bioenergetics and modulate metabolism and redox balance, but their combined effects are not well understood. We investigated the effects of intermittent hypoxia (12h/12h) in combination with different temperature regimes (normal (15 °C), elevated (30 °C) and fluctuating (15 °C water/30 °C air)) on the Pacific oyster Crassostrea (Magallana) gigas. Fluctuating temperature led to energetic costly metabolic rearrangements and accumulation of proteins in oyster tissues. Elevated temperature led to high (60%) mortality and oxidative damage in survivors. Normal temperature had no major negative effects but caused metabolic shifts. Our study shows high plasticity of oyster metabolism in response to oxygen and temperature fluctuations and indicates that metabolic adjustments to oxygen deficiency are strongly modulated by the ambient temperature. Co-exposure to constant elevated temperature and intermittent hypoxia demonstrates the limits of this adaptive metabolic plasticity.


Asunto(s)
Crassostrea , Animales , Temperatura , Crassostrea/fisiología , Inmersión , Metabolismo Energético , Oxígeno/metabolismo , Hipoxia/metabolismo
12.
Sci Total Environ ; 904: 166277, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586505

RESUMEN

Zinc Oxide nanoparticles (ZnO NPs), due to their ubiquitous use in industrial and consumer applications, present potential risks to marine ecosystems and biota, especially oysters. The physiological and immunological health of marine species is highly dependent on salinity levels. However, the combined impact of lowered salinity and exposure to ZnO NPs, particularly on key marine species like oysters, is an area that requires more research. Our study aimed to examine these concurrent stressors' impacts on phenotypic markers, gill and hepatopancreas physiological indices, and hemocyte immune parameters of Crassostrea hongkongensis. We subjected six oyster cohorts to varied ZnO NPs concentrations and salinity levels over 21 days. Our findings reveal that individual exposure to ZnO NPs or diminished salinity disrupts oyster physiology, impacting metabolism, antioxidant capacity, immune response, and energy distribution through distinct mechanisms. Remarkably, low salinity constituted a more significant threat than isolated ZnO NPs. However, when confronted with combined stressors, oysters exhibited a compensatory response, attenuating individual stressors' detrimental effects. This adaptation was characterised by reduced apoptosis rates, increased calcium ion concentration in mature hemocytes, and a restoration of conditioned indices, hepatopancreas alkaline phosphatase, and gill catalase activity to baseline levels. Principal Component Analysis and Integrated Biomarker Responses validated this compensatory phenomenon. Partial Least Squares Pathway Model analysis underscored these stressors' profound implications on oyster health, primarily driven by stressor exposure rather than mere zinc concentrations, despite acknowledging zinc's immunosuppressive impact on oyster immunity. Our research emphasises the importance of assessing multiple stressors' cumulative effects on aquatic species' ecological resilience, accentuating the need for comprehensive analyses incorporating functional specificity among diverse organs and immune components, including gill, hepatopancreas, and the critical hemocytes.


Asunto(s)
Crassostrea , Nanopartículas , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Óxido de Zinc/metabolismo , Hong Kong , Salinidad , Ecosistema , Crassostrea/fisiología , Antioxidantes/metabolismo , Zinc/metabolismo , Hemocitos
13.
J Exp Biol ; 226(14)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37350275

RESUMEN

Eastern oysters, Crassostrea virginica, are facing rapid environmental changes in the northern Gulf of Mexico and can respond to these changes via plasticity or evolution. Plastic responses can immediately buffer against environmental changes, although this buffering may impact the organism's ability to evolve in subsequent generations. While plasticity and evolution are not mutually exclusive, the relative contribution and interaction between them remains unclear. In this study, we investigated the roles of plastic and evolved responses of C. virginica acclimated to low salinity using a common garden experiment with four populations exposed to two salinities. We used three transcriptomic analyses (edgeR, PERMANOVA and WGCNA) combined with physiology data to identify the effect of genotype (population), environment (salinity) and the genotype-environment interaction on both whole-organism and molecular phenotypes. We demonstrate that variation in gene expression is mainly driven by population, with relatively small changes in response to salinity. In contrast, the morphology and physiology data reveal that salinity has a larger influence on oyster performance than the population of origin. All analyses lacked signatures of the genotype×environment interaction and, in contrast to previous studies, we found no evidence for population-specific responses to low salinity. However, individuals from the highest salinity estuary displayed highly divergent gene expression from that of other populations, which could potentially drive population-specific responses to other stressors. Our findings suggest that C. virginica largely rely on plasticity in physiology to buffer the effects of low salinity, but that these changes in physiology do not rely on large persistent changes in gene expression.


Asunto(s)
Crassostrea , Animales , Crassostrea/fisiología , Salinidad , Golfo de México , Perfilación de la Expresión Génica , Aclimatación
14.
Food Chem ; 422: 136162, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126955

RESUMEN

This study aimed to evaluate the effects of different liquid nitrogen freezing (LNF) temperatures (-20, -40, -60, -80, and -100 °C) on the water holding capacity, texture, microstructure, and flavor of Crassostrea gigas (C. gigas). The results showed that -40 °C LNF, -60 °C LNF, and -80 °C LNF improved the water holding capacity of C. gigas (P < 0.05); -60 °C LNF and -80 °C LNF could effectively maintain the hardness of the body trunk and adductor muscles. Compared with -20 °C refrigerator freezing (RF), the LNF group could form smaller ice crystals and thus reduce the damage to the muscle cell structure damage, especially LNF at -80 °C. Gas chromatography-ion mobility spectrometry (GC-IMS) and e-nose results indicated that -80 °C LNF maintained the flavor profile of few aldehydes and alcohols compared to other freezing groups. Therefore, -80 °C LNF effectively improved the quality and maintain the flavor characteristics of frozen C. gigas.


Asunto(s)
Crassostrea , Animales , Crassostrea/fisiología , Congelación , Temperatura , Cromatografía de Gases y Espectrometría de Masas , Agua
15.
J Environ Manage ; 338: 117808, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003225

RESUMEN

Many prey species can adjust morphology to reduce predation risk in response to predator cues. Enhancing prey defenses using predator cues may improve survival of cultivated species and enhance species restoration efforts, but assessment of such benefits at industrially relevant scales is needed. We examined how raising a model foundation species, oysters (Crassostrea virginica), under commercial hatchery conditions with cues from two common predator species can improve survival across a variety of predator regimes and environmental conditions. Oysters responded to predators by growing stronger shells than controls, but had subtle variations in shell characteristics depending on the predator species. Predator-induced changes significantly increased oyster survival up to 600% and survivorship was maximized when cue source was matched with local predator regime. Overall, our findings demonstrate the utility of using predator cues to enhance the survival of target species across landscapes and highlight the opportunity to employ nontoxic methods to control pest-based mortality.


Asunto(s)
Crassostrea , Humanos , Animales , Crassostrea/fisiología , Conducta Predatoria/fisiología , Cadena Alimentaria
16.
Mar Environ Res ; 186: 105938, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36870161

RESUMEN

Progestins in aquatic environments are of increasing concern, as shown by the results of toxicological studies on adult invertebrates with external fertilization. However, their potential effects on the gametes and reproductive success of such animals remain largely unknown. Thus, the current study assessed the effect of in vitro exposure of environmentally relevant concentrations (10 ng/L and 1000 ng/L) of norgestrel (NGT) on the sperm of Pacific oyster Crassostrea gigas, analyzing sperm motility, ultrastructure, mitochondrial function, ATP status, characteristic enzyme activities, and DNA integrity underlying fertilization and hatching success. The results showed that NGT increased the percentage of motile sperm by elevating intracellular Ca2+ levels, Ca2+-ATPase activity, creatine kinase activity, and ATP content. Although superoxide dismutase activity was enhanced to eliminate reactive oxygen species generated by NGT, oxidative stress occurred, as indicated by the increase in malonaldehyde content and damage to plasma membranes and DNA. As a consequence, fertilization rates decreased. However, hatching rates did not alter significantly, possibly as a result of DNA repair processes. This study demonstrates oyster sperm as a useful, sensitive tool for toxicological research of progestins and provides ecologically relevant information on reproductive disturbance in oysters resulting from exposure to NGT.


Asunto(s)
Crassostrea , Animales , Masculino , Crassostrea/fisiología , Norgestrel/metabolismo , Norgestrel/farmacología , Progestinas/metabolismo , Progestinas/farmacología , Motilidad Espermática/fisiología , Semen , Espermatozoides/fisiología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología
17.
Environ Pollut ; 326: 121472, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965683

RESUMEN

Early life stages are crucial for organism development, especially for those displaying external fertilization, whose gametes and early stages face environmental stressors such as xenobiotics. The pacific oyster, Crassostrea gigas, is considered a model species in ecotoxicology because of its ecological characteristics (benthic, sessile, filter feeding). So far studies have investigated the impact of xenobiotics at embryotoxic, genotoxic and physiological endpoints, sometimes at the multigenerational scale, highlighting the role of epigenetic mechanisms in transmitting alterations induced by exposure to single xenobiotics. However, to date, little is known about the impact of environmentally-mimicking contaminants cocktails. Thus, we examined the impact of an early exposure to environmentally relevant mixture on the Pacific oyster life history. We studied transcriptomic, epigenetic and physiological alterations induced in oysters exposed to 18 pesticides and metals at environmental concentration (nominal sum concentration: 2.85 µg.L-1, measured sum concentration: 3.74 ± 0.013 µg.L-1) during embryo-larval stage (0-48 h post fertilization, hpf). No significant differences in embryo-larval abnormalities at 24 hpf were observed during larval and spat rearing; the swimming behaviour of exposed individuals was disturbed, while they were longer and heavier at specific time points, and exhibited a lower epinephrine-induced metamorphosis rate as well as a higher survival rate in the field. In addition, RNA-seq analyses of gastrula embryos revealed the differential expression of development-related genes (e.g. Hox orthologues and cell cycle regulators) between control and exposed oysters. Whole-genome DNA methylation analyses demonstrated a significant modification of DNA methylation in exposed larvae marked by a demethylation trend. Those findings suggest that early exposure to an environmentally relevant pesticide mixture induces multi-scale latent effects possibly affecting life history traits in the Pacific oyster.


Asunto(s)
Crassostrea , Plaguicidas , Contaminantes Químicos del Agua , Animales , Humanos , Crassostrea/fisiología , Metilación de ADN , Epigénesis Genética , Células Germinativas , Plaguicidas/metabolismo , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
18.
Chemosphere ; 320: 138064, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36754301

RESUMEN

Organochlorine pesticides (OCPs) have been intensively used without proper regulation and control in Latin America due to the prevalence of diseases and pests, thus posing potential risks to nontarget organisms. Initiatives for ecosystem preservation, such as to designate protected areas, may not be enough to avoid contamination by OCPs, considering that protected areas tend to be permeable to diffuse sources. Here, we investigate multi-level responses of the oyster Crassostrea virginica to OCPs in Laguna de Términos, a RAMSAR coastal lagoon in the southern Gulf of Mexico. For this aim, OCPs occurrence and concentrations in the water, sediment, and in oysters from 3 settlement banks were assessed. Enzymatic and non-enzymatic biochemical biomarkers were quantified in the oysters' mantle and digestive gland, and the human health risk due to oyster consumption was also evaluated. OCPs in water were below detection limits. Fourteen OCPs were detected in sediments (∑OCPs mean of 49 ngg-1) and 7 in oyster tissues (∑OCPs mean of 121 ngg-1). The occurrence of OCPs was related to the land uses along the watersheds of the rivers that drain into the lagoon. Biochemical responses were correlated with OCPs (∑HCH, ∑DDT, heptachlor and endosulfan) in sediment, and oyster tissues. OCPs in oyster tissues showed a strong association with pro-oxidant forces and oxidative stress responses (Superoxide dismutase, Catalase, Glutathione Peroxidase, and lipid peroxidation), and neurotoxicity (Acetylcholinesterase), suggesting that the current OCPs contamination exerts significant stress. Our study also shows that the consumption of oysters from the lagoon increases the potential human health risk. Considering that Laguna de Términos is a protected Ramsar site, we suggest that environmental protection measures should be increased and that a monitoring program for OCPs exposure is necessary to assess the effects on this ecosystem.


Asunto(s)
Crassostrea , Hidrocarburos Clorados , Plaguicidas , Contaminantes Químicos del Agua , Animales , Humanos , Ecosistema , Crassostrea/fisiología , Acetilcolinesterasa , México , Plaguicidas/análisis , Hidrocarburos Clorados/análisis , Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
19.
Glob Chang Biol ; 29(5): 1328-1339, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36541067

RESUMEN

Climate change is having substantial impacts on organism fitness and ability to deliver critical ecosystem services, but these effects are often examined only in response to current environments. Past exposure to stress can also affect individuals via carryover effects, and whether these effects scale from individuals to influence ecosystem function and services is unknown. We explored within-generation carryover effects of two coastal climate change stressors-hypoxia and warming-on oyster (Crassostrea virginica) growth and nitrogen bioassimilation, an important ecosystem service. Oysters were exposed to a factorial combination of two temperature and two diel-cycling dissolved oxygen treatments at 3-months-old and again 1 year later. Carryover effects of hypoxia and warming influenced oyster growth and nitrogen storage in complex and context-dependent ways. When operating, carryover effects of single stressors generally reduced oyster nitrogen bioassimilation and relative investment in tissue versus shell growth, particularly in warm environments, while early life exposure to multiple stressors generally allowed oysters to perform as well as control oysters. When extrapolated to the reef scale, carryover effects decreased nitrogen stored by modeled oyster reefs in most conditions, with reductions as large as 41%, a substantial decline in a critical ecosystem service. In some scenarios, however, carryover effects increased nitrogen storage by modeled oyster reefs, again highlighting the complexity of these effects. Hence, even brief exposure to climate change stressors early in life may have persistent effects on an ecosystem service 1 year later. Our results show for the first time that within-generation carryover effects on individual phenotypes can impact processes at the ecosystem scale and may therefore be an overlooked factor determining ecosystem service delivery in response to anthropogenic change.


Asunto(s)
Crassostrea , Ecosistema , Animales , Crassostrea/fisiología , Hipoxia , Temperatura , Nitrógeno
20.
Sci Total Environ ; 862: 160729, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496017

RESUMEN

The increasing and intensifying ultraviolet B (UVB) radiation in sunlight is an environmental threat to aquatic ecosystems, potentially affecting the entire life cycle of wild or aquacultural Pacific oyster Crassostrea gigas with photoreception. Due to its complex composition, plasma is an important biological specimen for investigating the degree of disturbance from its steady state caused by the external environment in the open-pipe-type hemolymph of mollusks. We performed a multi-omic analysis of C. gigas plasma exposed to daylight UVB radiation. Hub differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified using the functional classification of Clusters of Orthologous Groups of proteins (COGs) through the protein-protein interaction (PPI)-based maximal clique centrality (MCC) algorithm. Our results summarize three types of UVB influences (disruption of the cell membrane, promotion of nucleotide metabolism, and inhibition of energy metabolism) on C. gigas based on transcriptomic, proteomic, and metabolomic analyses. The associated hub DEGs, DEPs (e.g., nucleoside diphosphate kinase, malate dehydrogenase, and hydroxyacyl-coenzyme A dehydrogenase), and metabolites (e.g., uridine, adenine, deoxyguanosine, guanosine, and xylitol) in the plasma were identified as biomarkers of mollusk response to UVB radiation, and could be used to evaluate the influence of environmental UVB on mollusks in future studies.


Asunto(s)
Membrana Celular , Crassostrea , Animales , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Crassostrea/fisiología , Ecosistema , Metabolismo Energético , Nucleótidos/metabolismo , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...