Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
1.
Food Res Int ; 186: 114356, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729722

RESUMEN

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Asunto(s)
Crassostrea , Plasmalógenos , Temperatura , Animales , Plasmalógenos/metabolismo , Plasmalógenos/análisis , Crassostrea/genética , Crassostrea/metabolismo , Mariscos/análisis , Proteómica/métodos , Antioxidantes/metabolismo , Antioxidantes/análisis , Fosfatasa Alcalina/metabolismo , Calidad de los Alimentos
2.
Genes (Basel) ; 15(5)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38790273

RESUMEN

Crassostrea ariakensis (Fujita, 1913) is one of the most important economic and ecological oysters that is naturally distributed along the coast of Asia, separated by the Yangtze River estuary. They are usually compared as different populations, while there is no consensus on whether C. ariakensis in northern and southern areas should be considered as two species or subspecies. Here, we analyzed morphological characteristics, COI, 16s rRNA, mitogenome sequences, and species delimitation analysis (ASAP and PTP) to resolve the intraspecific taxonomic status of the C. ariakensis. Phylogenetic and ASAP analysis highlight that C. ariakensis was divided into N-type and S-type. PTP was unable to differentiate between the two types of C. ariakensis. The divergence time of N-type and S-type C. ariakinsis is estimated to be 1.6 Mya, using the relaxed uncorrelated lognormal clock method. Additionally, significant morphological differences exist between the two groups in terms of the adductor muscle scar color. Despite these differences, the COI (0.6%) and 16S rRNA (0.6%) genetic distance differences between N-type and S-type C. ariakensis has not yet reached the interspecific level. These results suggest that N-type and S-type C. ariakensis should be treated as different subspecies and renamed as C. ariakensis ariakensis subsp. nov and C. ariakensis meridioyangtzensis subsp. nov.


Asunto(s)
Crassostrea , Filogenia , ARN Ribosómico 16S , Animales , Crassostrea/genética , Crassostrea/clasificación , ARN Ribosómico 16S/genética , Asia , Genoma Mitocondrial , Complejo IV de Transporte de Electrones/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38768804

RESUMEN

The Pacific oyster Crassostrea gigas is renowned for its high zinc content, but the significant variation among individuals diminishes its value as a reliable source of zinc supplementation. The Zrt/Irt-like protein 1 (ZIP1), a pivotal zinc transporter that facilitates zinc uptake in various organisms, plays crucial roles in regulating zinc content. In the present study, polymorphisms of a ZIP1 gene in C. gigas (CgZIP1-II) were investigated, and their association with zinc content was evaluated through preliminary association analysis in 41 oysters and verification analysis in another 200 oysters. A total of 17 single nucleotide polymorphisms (SNPs) were identified in the exonic region of CgZIP1-II gene, with c.503A>G significantly associated with zinc content. Protein sequence and structure prediction showed that c.503A>G caused a p.Met110Val nonsynonymous mutation located in the metal-binding region of CgZIP1-II, which could influence its affinity for zinc ions, thereby modulating its zinc transport functionality. These results indicate the potential influence of CgZIP1-II polymorphisms on zinc content and provide candidate markers for selecting C. gigas with high zinc content.


Asunto(s)
Proteínas de Transporte de Catión , Crassostrea , Polimorfismo de Nucleótido Simple , Zinc , Animales , Zinc/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/química
4.
Fish Shellfish Immunol ; 149: 109612, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705548

RESUMEN

SH2 domain containing inositol polyphosphate5-phosphatase-2 (SHIP2) is a member of the 5-phosphatase family, acting as a vital negative regulator of immune response in vertebrates. In the present study, a SHIP2 homologue (designed as CgSHIP2) was identified from Pacific oyster, Crassostrea gigas. There was a SH2 domain, an IPPc domain and a SAM domain in CgSHIP2. The mRNA transcripts of CgSHIP2 were widely expressed in all the tested tissues with the highest expression in haemolymph. The mRNA expressions of CgSHIP2 in haemocytes increased significantly at 6, 12, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgSHIP2 protein were mainly located in cytoplasm of haemocytes. After the expression of CgSHIP2 was inhibited by RNA interference, the mRNA transcripts of interleukin 17s (CgIL-17-1, CgIL-17-2, CgIL-17-3 and CgIL-17-6) in the haemocytes increased significantly at 24 h after V. splendidus stimulation, which were 8.15-fold (p < 0.001), 3.44-fold (p < 0.05), 2.15-fold (p < 0.01) and 4.63-fold (p < 0.05) compared with that in NC-RNAi group, respectively. Obvious branchial swelling and cilium shedding in gills were observed in CgSHIP2-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgSHIP2 played an important role in controlling inflammatory response induced by bacteria in oysters.


Asunto(s)
Crassostrea , Regulación de la Expresión Génica , ARN Mensajero , Vibrio , Animales , Crassostrea/inmunología , Crassostrea/genética , Vibrio/fisiología , Regulación de la Expresión Génica/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inmunidad Innata/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Filogenia , Secuencia de Aminoácidos , Perfilación de la Expresión Génica/veterinaria , Alineación de Secuencia/veterinaria , Hemocitos/inmunología
5.
An Acad Bras Cienc ; 96(3): e20230474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655921

RESUMEN

The Pacific Oyster was introduced on Santa Catarina Island in 1987, experiencing processes of selection and genetic breeding since then. Such procedures may have led to the establishment of specific strains, given the saltier and warmer conditions of the Atlantic Ocean. This study employed microsatellite markers to compare allelic patterns of oysters cultivated in Santa Catarina, the USA, and Asia. Specific allelic patterns were revealed in the Santa Catarina samples, reflecting the time of selection/breeding of the oyster in this region. This result supports the effectiveness of the selection/breeding procedures and the demand for protection of this commercially important genetic resource.


Asunto(s)
Crassostrea , Variación Genética , Repeticiones de Microsatélite , Repeticiones de Microsatélite/genética , Animales , Crassostrea/genética , Crassostrea/clasificación , Brasil , Variación Genética/genética , Cruzamiento , Alelos
6.
Mar Genomics ; 75: 101109, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38603950

RESUMEN

In an era of unprecedented industrial and agricultural growth, metal contamination in marine environments is a pressing concern. Sentinel organisms such as the mangrove oyster Crassostrea gasar provide valuable insights into these environments' health. However, a comprehensive understanding of the molecular mechanisms underlying their response to metal exposure remains elusive. To address this gap, we reanalyzed the 454-sequencing data of C. gasar, utilizing an array of bioinformatics workflow of CDTA (Combined De Novo Transcriptome Assembly) to generate a more representative assembly. In parallel, C. gasar individuals were exposed to two concentrations of zinc (850 and 4500 µg L-1 Zn) for 48 h to understand their molecular responses. We utilized Trinotate workflow for the 11,684-CDTA unigenes annotation, with most transcripts aligning with the genus Crassostrea. Our analysis indicated that 67.3% of transcript sequences showed homology with Pfam, while 51.4% and 54.5%, respectively had GO and KO terms annotated. We identified potential metal pollution biomarkers, focusing on metal-related genes, such as those related to the GSH biosynthesis (CHAC1 and GCLC-like), to zinc transporters (ZNT2-like), and metallothionein (MT-like). The evolutionary conservation of these genes within the Crassostrea genus was assessed through phylogenetic analysis. Further, these genes were evaluated by qPCR in the laboratory exposed oysters. All target genes exhibited significant upregulation upon exposure to Zn at both 850 and 4500 µg L-1, except for GCLC-like, which showed upregulation only at the higher concentration of 4500 µg L-1. This result suggests distinct activation thresholds and complex interactions among these genes in response to varying Zn concentrations. Our study provides insights into the molecular responses of C. gasar to Zn, adding valuable tools for monitoring metal pollution in marine ecosystems using the mangrove oyster as a sentinel organism.


Asunto(s)
Crassostrea , Transcriptoma , Contaminantes Químicos del Agua , Zinc , Animales , Crassostrea/genética , Crassostrea/metabolismo , Zinc/metabolismo , Contaminantes Químicos del Agua/toxicidad , Biomarcadores/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38641164

RESUMEN

The Notch signaling pathway plays a pivotal role in governing cell fate determinations within the gonadal niche. This study provides an extensive elucidation of the male and female gonadal niches within Crassostrea gigas. Examination via transmission electron microscopy revealed the presence of desmosome-like connection not only between germ cells and niche cells but also among adjacent niche cells within the oyster gonad. Transcriptomic analysis identified several putative Notch pathway components, including CgJAG1, CgNOTCH1, CgSuh, and CgHey1. Phylogenetic analysis indicated a close evolutionary relationship between CgJAG1, CgNOTCH1, and CgHey1 and Notch members present in Drosophila. Expression profiling results indicated a notable abundance of CgHey1 in the gonads, while CgJAG1 and CgNOTCH1 displayed distinct expression patterns associated with sexual dimorphism. In situ hybridization findings corroborated the predominant expression of CgJAG1 in male niche cells, while CgNOTCH1 was expressed in both male and female germ cells, as well as female niche cells. These findings demonstrate the important role of the Notch signaling pathway in the gonadal niche of oysters.


Asunto(s)
Comunicación Celular , Crassostrea , Gónadas , Filogenia , Receptores Notch , Transducción de Señal , Animales , Crassostrea/genética , Crassostrea/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Masculino , Femenino , Gónadas/metabolismo , Células Germinativas/metabolismo
8.
Fish Shellfish Immunol ; 149: 109560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615702

RESUMEN

The JAK (Janus kinase)-STAT (Signal transducer and activator of transcription) is a well-known functional signaling pathway that plays a key role in several important biological activities such as apoptosis, cell proliferation, differentiation, and immunity. However, limited studies have explored the functions of STAT genes in invertebrates. In the present study, the gene sequences of two STAT genes from the Pacific oyster (Crassostrea gigas), termed CgSTAT-Like-1 (CgSTAT-L1) and CgSTAT-Like-2 (CgSTAT-L2), were obtained using polymerase chain reaction (PCR) amplification and cloning. Multiple sequence comparisons revealed that the sequences of crucial domains of these proteins were conserved, and the similarity with the protein sequence of other molluscan STAT is close to 90 %. The phylogenetic analyses indicated that CgSTAT-L1 and CgSTAT-L2 are novel members of the mollusk STAT family. Quantitative real-time PCR results implied that CgSTAT-L1 and CgSTAT-L2 mRNA expression was found in all tissues, and significantly induced after challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), or poly(I:C). After that, dual-luciferase reporter assays denoted that overexpression of CgSTAT-L1 and CgSTAT-L2 significantly activated the NF-κB signaling, and, interestingly, the overexpressed CgSTAT proteins potentiated LPS-induced NF-κB activation. These results contributed a preliminary analysis of the immune-related function of STAT genes in oysters, laying the foundation for deeper understanding of the function of invertebrate STAT genes.


Asunto(s)
Secuencia de Aminoácidos , Crassostrea , Filogenia , Factores de Transcripción STAT , Alineación de Secuencia , Animales , Crassostrea/genética , Crassostrea/inmunología , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Alineación de Secuencia/veterinaria , Lipopolisacáridos/farmacología , Inmunidad Innata/genética , Peptidoglicano/farmacología , Poli I-C/farmacología , Secuencia de Bases , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ADN Complementario/genética , Clonación Molecular , Transducción de Señal
9.
Artículo en Inglés | MEDLINE | ID: mdl-38604561

RESUMEN

Colorful shells in mollusks are commonly attributable to the presence of biological pigments. In Pacific oysters, the inheritance patterns of several shell colors have been investigated, but little is known about the molecular mechanisms of melanogenesis and pigmentation. cAMP-response element binding proteins (CREB) are important transcription factors in the cAMP-mediated melanogenesis pathway. In this study, we characterized two CREB genes (CREB3L2 and CREB3L3) from Pacific oysters. Both of them contained a conserved DNA-binding and dimerization domain (a basic-leucine zipper domain). CREB3L2 and CREB3L3 were expressed highly in the mantle tissues and exhibited higher expression levels in the black-shell oyster than in the white. Masson-Fontana melanin staining and immunofluorescence analysis showed that the location of CREB3L2 protein was generally consistent with the distribution of melanin in oyster edge mantle. Dual-luciferase reporter assays revealed that CREB3L2 and CREB3L3 could activate the microphthalmia-associated transcription factor (MITF) promoter and this process was regulated by the level of cAMP. Additionally, we found that cAMP regulated melanogenic gene expression through the CREB-MITF-TYR axis. These results implied that CREB3L2 and CREB3L3 play important roles in melanin synthesis and pigmentation in Pacific oysters.


Asunto(s)
Crassostrea , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Melaninas , Animales , Melaninas/metabolismo , Melaninas/biosíntesis , Crassostrea/genética , Crassostrea/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Secuencia de Aminoácidos , Pigmentación/genética , Filogenia , Regulación de la Expresión Génica , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Melanogénesis
10.
Artículo en Inglés | MEDLINE | ID: mdl-38642610

RESUMEN

The Pacific oyster Crassostrea gigas is rich in taurine, which is crucial for its adaptation to the fluctuating intertidal environment and presents significant potential in improving taurine nutrition and boosting immunity in humans. Cysteine dioxygenase (CDO) is a key enzyme involved in the initial step of taurine biosynthesis and plays a crucial role in regulating taurine content in the body. In the present study, polymorphisms of CDO gene in C. gigas (CgCDO) and their association with taurine content were evaluated in 198 individuals. A total of 24 single nucleotide polymorphism (SNP) loci were identified in the exonic region of CgCDO gene by direct sequencing. Among these SNPs, c.279G>A and c.287C>A were found to be significantly associated with taurine content, with the GG and AA genotype at the two loci exhibiting enhanced taurine accumulation (p < 0.05). Haplotype analysis revealed that the 279GG/287AA haplotype had the highest taurine content of 29.24 mg/g, while the 279AA/287CC haplotype showed the lowest taurine content of 21.19 mg/g. These results indicated that the SNPs of CgCDO gene could influence the taurine content in C. gigas and have potential applications in the selective breeding of high-taurine varieties.


Asunto(s)
Crassostrea , Cisteína-Dioxigenasa , Polimorfismo de Nucleótido Simple , Taurina , Taurina/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Crassostrea/enzimología , Animales , Cisteína-Dioxigenasa/genética , Cisteína-Dioxigenasa/metabolismo , Haplotipos
11.
Glycoconj J ; 41(2): 151-162, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557922

RESUMEN

Molluscs are intermediate hosts for several parasites. The recognition processes, required to evade the host's immune response, depend on carbohydrates. Therefore, the investigation of mollusc glycosylation capacities is of high relevance to understand the interaction of parasites with their host. UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I (GnT-I) is the key enzyme for the biosynthesis of hybrid and complex type N-glycans catalysing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the α-1,3 Man antenna of Man5GlcNAc2. Thereby, the enzyme produces a suitable substrate for further enzymes, such as α-mannosidase II, GlcNAc-transferase II, galactosyltransferases or fucosyltransferases. The sequence of GnT- I from the Pacific oyster, Crassostrea gigas, was obtained by homology search using the corresponding human enzyme as the template. The obtained gene codes for a 445 amino acids long type II transmembrane glycoprotein and shared typical structural elements with enzymes from other species. The enzyme was expressed in insect cells and purified by immunoprecipitation using protein A/G-plus agarose beads linked to monoclonal His-tag antibodies. GnT-I activity was determined towards the substrates Man5-PA, MM-PA and GnM-PA. The enzyme displayed highest activity at pH 7.0 and 30 °C, using Man5-PA as the substrate. Divalent cations were indispensable for the enzyme, with highest activity at 40 mM Mn2+, while the addition of EDTA or Cu2+ abolished the activity completely. The activity was also reduced by the addition of UDP, UTP or galactose. In this study we present the identification, expression and biochemical characterization of the first molluscan UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I, GnT-I, from the Pacific oyster Crassostrea gigas.


Asunto(s)
Crassostrea , N-Acetilglucosaminiltransferasas , Animales , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Crassostrea/enzimología , Crassostrea/genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Clonación Molecular , Especificidad por Sustrato , Filogenia , Spodoptera
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230065, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497271

RESUMEN

The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Sistema Inmunológico
13.
Dev Comp Immunol ; 156: 105174, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548001

RESUMEN

The exosomal miRNA plays a crucial role in the intercellular communication response to environmental stress and pathogenic stimulation. In the present study, the expression of exosomal miRNAs in the Pacific oyster Crassostrea gigas after high-temperature stress or Vibrio splendidus stimulation was investigated through high-throughput sequencing. The exosomes were identified to be teardrop-like vesicles with the average size of 81.7 nm by transmission electron microscopy. There were 66 known miRNAs and 33 novel miRNAs identified, of which 10 miRNAs were differentially expressed after both high-temperature stress and Vibrio stimulation compared to the control group. A total of 1868 genes were predicted as the putative targets of miRNAs, of which threonine aspartase 1-like was targeted by the highest number of related miRNAs. The robustness and reliability of miRNA expression from the sRNA sequencing data were verified by employing eight miRNAs for qPCR. GO and KEGG clustering analyses revealed that apoptosis was significantly enriched by the target genes of differentially expressed exosomal miRNAs after high-temperature stress, and autophagy and cytokine activity were significantly enriched after Vibrio stimulation. Energy metabolism was found to be significantly shared in the target gene enrichments after both high-temperature stress and Vibrio stimulation. These findings would improve our understanding of the regulatory mechanisms of exosomal miRNAs in C. gigas after high-temperature stress or Vibrio stimulation.


Asunto(s)
Crassostrea , Exosomas , MicroARNs , Vibrio , Animales , Vibrio/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Exosomas/genética , Crassostrea/inmunología , Crassostrea/microbiología , Crassostrea/genética , Estrés Fisiológico/genética , Apoptosis , Autofagia/genética , Vibriosis/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica , Metabolismo Energético/genética , Regulación de la Expresión Génica , Calor , Respuesta al Choque Térmico/genética
14.
Mar Biotechnol (NY) ; 26(2): 364-379, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38483671

RESUMEN

Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.


Asunto(s)
Crassostrea , Melaninas , Animales , Exoesqueleto/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , AMP Cíclico/metabolismo , Perfilación de la Expresión Génica , Melaninas/metabolismo , Melaninas/biosíntesis , Pigmentación/genética , Transducción de Señal , Transcriptoma , Tirosina/metabolismo
15.
Int J Biol Macromol ; 266(Pt 2): 131138, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547943

RESUMEN

Melanocyte differentiation is orchestrated by the master regulator transcription factor MITF. However, its ability to discern distinct binding sites linked to effective gene regulation remains poorly understood. This study aims to assess how co-activator acetyltransferase interacts with MITF to modulate their related lysine action, thereby mediating downstream gene regulation, including DNA affinity, stability, transcriptional activity, particularly in the process of shell pigmentation. Here, we have demonstrated that the CgMITF protein can be acetylated, further enabling selective amplification of the melanocyte maturation program. Collaboration with transcriptional co-regulator p300 advances MITF dynamically interplay with downstream targeted gene promoters. We have established that MITF activation was partially dependent on the bHLH domain, which was well conserved across species. The bHLH domain contained conserved lysine residues, including K6 and K43, which interacted with the E-box motif of downstream targeted-genes. Mutations at K6 and K43 lead to a decrease in the binding affinity of the E-box motif. CgMITF protein bound to the E-box motif within the promoter regions of the tyrosinase-related genes, contributing to melanogenesis, and also interacted with the E-box motif within the TBX2 promoter regions, associated with melanocyte proliferation. We elucidated how the bHLH domain links the transcriptional regulation and acetylation modifications in the melanocyte development in C. gigas.


Asunto(s)
Proliferación Celular , Crassostrea , Melanocitos , Factor de Transcripción Asociado a Microftalmía , Animales , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Acetilación , Crassostrea/genética , Crassostrea/metabolismo , Procesamiento Proteico-Postraduccional , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Transcripción Genética , Melaninas/metabolismo , Melaninas/biosíntesis , Dominios Proteicos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Unión Proteica , Melanogénesis
16.
Theriogenology ; 218: 62-68, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301508

RESUMEN

The mangrove oyster Crassostrea rhizophorae is identified as a potentially valuable species for tropical aquaculture, however, information on the physiological mechanisms of reproduction under laboratory conditions for this species is limited. This study investigated the effects of salinity at different concentrations (15, 20, 25, 30, 35, and 40 g/L) on the induction of germinal vesicle breakdown (GVBD) of oocytes obtained through stripping, the release of polar bodies (PB1 and PB2), and the larval development of the mangrove oyster. The results revealed a relationship between salinity and the percentage of GVBD, with the most effective range being 30-40 g/L within the hydration time frame between 70 and 120 min. The release of 50 % of PB1 was detected within this salinity range, while for the release of 50 % of PB2, the saline treatments of 35 and 40 g/L showed the best results. Overall, the salinity range of 30-40 g/L is suggested as the most suitable of polyploidy induction methodologies through the retention of PB1 or PB2. Regarding larval hatching, while salinities between 25 and 40 g/L presented similar percentages, at 15 g/L no hatching was observed. This study demonstrated that salinity is a key factor in early pre- and post-fertilization stages for the successful reproduction of mangrove oyster in hatcheries and that the percentages of oocyte maturation and artificial fertilization can be optimized by adjusting salinity.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Salinidad , Acuicultura , Larva , Fertilización
17.
Environ Res ; 248: 118213, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280526

RESUMEN

Global ocean salinity is changing under rapid climate change and intensified anthropogenic activity. Increased differences in salinity threaten marine biodiversity, organismal survival, and evolution, particularly sessile invertebrates dwelling in highly fluctuating intertidal and estuarine environments. Comparing the responses of closely related species to salinity changes can provide insights into the adaptive mechanisms underlying inter- and intraspecific divergence in salinity tolerance, but are poorly understood in marine bivalves. We collected wild individuals of four Crassostrea species, in addition to two populations of the same species from their native habitats and determined the dynamics of hydrolyzed amino acids (HAAs) and transcriptional responses to hypersaline stress. In response to hypersaline stress, species/populations inhabiting natural high-salinity sea environments showed higher survival and less decline in HAAs than that of congeners inhabiting low-salinity estuaries. Thus, native environmental salinity shapes oyster tolerance. Notably, a strong negative correlation between the decline in HAAs and survival indicated that the HAAs pool could predict tolerance to hypersaline challenge. Four HAAs, including glutamine (Glu), aspartic acid (Asp), alanine (Ala) and glycine (Gly), were identified as key amino acids that contributed substantially to the emergency response to hypersaline stress. High-salinity-adapted oyster species only induced substantial decreases in Glu and Asp, whereas low-salinity-adapted congeners further incresaed Ala and Gly metabolism under hypersaline stress. The dynamics of the content and gene expression responsible for key amino acids pathways revealed the importance of maintaining the balance between energy production and ammonia detoxification in divergent hypersaline responses among oyster species/populations. High constructive or plastic expression of evolutionarily expanded gene copies in high-salinity-adapted species may contribute to their greater hypersaline tolerance. Our findings reveal the adaptive mechanism of key amino acids in salinity adaptation in marine bivalves and provide new avenues for the prediction of adaptive potential and aquaculture with high-salinity tolerant germplasms.


Asunto(s)
Crassostrea , Humanos , Animales , Crassostrea/genética , Amoníaco , Aminoácidos , Ambiente , Ecosistema , Salinidad
18.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256110

RESUMEN

Increasing evidence confirms that histone modification plays a critical role in preserving long-term immunological memory. Immune priming is a novel form of immunological memory recently verified in invertebrates. Toll-like receptor (TLR) signaling and cytokines have been reported to be involved in the immune priming of the Pacific oyster Crassostrea gigas. In the present study, the expression of Toll-like receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2) and interleukin 17-1 (CgIL17-1) was found to be elevated in the hemocytes of C. gigas at 6 h after the secondary stimulation with Vibrio splendidus, which was significantly higher than that at 6 h after the primary stimulation (p < 0.05). A significant increase in histone H3 lysine 4 trimethylation (H3K4me3) enrichment was detected in the promoter region of the CgTLR3 gene at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05). After the treatment with a histone methyltransferase inhibitor (5'-methylthioadenosine, MTA), the level of H3K4me3 at the promoter of the CgTLR3 gene decreased significantly at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was significantly repressed at 6 h after the secondary stimulation with V. splendidus (p < 0.05). Conversely, the treatment with monomethyl fumarate (MEF, an inhibitor of histone demethylases) resulted in a significant increase in H3K4me3 enrichment levels at the CgTLR3 promoter at 7 d after the primary stimulation (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was observed to increase significantly at 6 h after the secondary stimulation (p < 0.05). These results suggested that H3K4me3 regulated MyD88-dependent TLR signaling in the hemocytes of C. gigas, which defined the role of histone modifications in invertebrate immune priming.


Asunto(s)
Crassostrea , Desoxiadenosinas , Histonas , Tionucleósidos , Animales , Hemocitos , Crassostrea/genética , Interleucina-1
19.
Zool Res ; 45(1): 201-214, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199974

RESUMEN

Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters. The Jinjiang oyster ( Crassostrea ariakensis) is an economically and ecologically important species in China. In the present study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents. Analysis identified 9 483 differentially expressed genes (DEGs) and 7 215 genes with significantly differential chromatin accessibility (DCAGs) were obtained, with an overlap of 2 600 genes between them. Notably, a significant proportion of these genes were enriched in pathways related to glycogen metabolism, including "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, genome-wide association study (GWAS) identified 526 single nucleotide polymorphism (SNP) loci associated with glycogen content. These loci corresponded to 241 genes, 63 of which were categorized as both DEGs and DCAGs. This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C. ariakensis.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Estudio de Asociación del Genoma Completo/veterinaria , Secuenciación de Inmunoprecipitación de Cromatina/veterinaria , RNA-Seq/veterinaria , Análisis de Secuencia de ARN/veterinaria , Cromatina , Glucógeno
20.
Mar Biotechnol (NY) ; 26(1): 125-135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38217752

RESUMEN

The fecundity of triploid female Crassostrea gigas exhibited significant variation and was lower compared to diploid individuals. Previous studies categorized mature stage triploid female C. gigas into two groups: female α, characterized by a high number of oocytes, and female ß, displaying few or no oocytes. To investigate the molecular mechanisms underlying irregular oogenesis and fecundity differences in triploid C. gigas, we performed a comparative analysis of gonad transcriptomes at different stages of gonadal development, including female α, female ß, and diploids. During early oogenesis, functional enrichment analysis between female diploids and putative female ß triploids revealed differently expressed genes (DEGs) in the ribosome and ribosome biogenesis pathways. Expression levels of DEGs in these pathways were significantly decreased in the putative female ß triploid, suggesting a potential role of reduced ribosome levels in obstructing triploid oogenesis. Moreover, to identify regulatory pathways in gonad development, female oysters at the early and mature stages were compared. The DNA repair and recombination proteins pathways were enriched in female diploids and female α triploids but absent in female ß triploids. Overall, we propose that decreased ribosome biogenesis in female triploids hinders the differentiation of germ stem cells, leading to the formation of a large number of abnormal germ cells and ultimately resulting in reduced fecundity. The variation in fertility among triploids appeared to be related to the degree of DNA damage repair during female gonad development. This study offers valuable insights into the oogenesis process in female triploid C. gigas.


Asunto(s)
Crassostrea , Triploidía , Animales , Femenino , Humanos , Crassostrea/genética , Transcriptoma , Oogénesis/genética , Perfilación de la Expresión Génica , Ribosomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA