Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.006
Filtrar
1.
Curr Top Dev Biol ; 159: 132-167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729675

RESUMEN

The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.


Asunto(s)
Cresta Neural , Animales , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/fisiología , Humanos , Sensación/fisiología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/fisiología , Órganos de los Sentidos/citología , Vertebrados/embriología , Vertebrados/fisiología
2.
Dev Biol ; 511: 63-75, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38621649

RESUMEN

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Asunto(s)
Quinasas DyrK , Regulación del Desarrollo de la Expresión Génica , Cresta Neural , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteínas de Xenopus , Xenopus laevis , Animales , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Transducción de Señal , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/metabolismo , Región Branquial/embriología , Región Branquial/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/embriología
3.
Dev Biol ; 511: 26-38, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38580174

RESUMEN

In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.


Asunto(s)
Tubo Neural , Médula Espinal , Animales , Médula Espinal/embriología , Tubo Neural/embriología , Cresta Neural/embriología , Cresta Neural/citología , Cresta Neural/fisiología , Diferenciación Celular/fisiología , Neuroglía/fisiología , Células Neuroepiteliales/citología , Células Neuroepiteliales/fisiología , Humanos
4.
Elife ; 122024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634469

RESUMEN

We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism.SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.


Asunto(s)
Serina Peptidasa A1 que Requiere Temperaturas Altas , Cresta Neural , Serpina E2 , Animales , Movimiento Celular/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Cresta Neural/embriología , Cresta Neural/metabolismo , Serpina E2/metabolismo , Transducción de Señal , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
5.
Gastroenterology ; 166(6): 1085-1099, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452824

RESUMEN

BACKGROUND & AIMS: The enteric nervous system (ENS), the gut's intrinsic nervous system critical for gastrointestinal function and gut-brain communication, is believed to mainly originate from vagal neural crest cells (vNCCs) and partially from sacral NCCs (sNCCs). Resolving the exact origins of the ENS is critical for understanding congenital ENS diseases but has been confounded by the inability to distinguish between both NCC populations in situ. Here, we aimed to resolve the exact origins of the mammalian ENS. METHODS: We genetically engineered mouse embryos facilitating comparative lineage-tracing of either all (pan-) NCCs including vNCCs or caudal trunk and sNCCs (s/tNCCs) excluding vNCCs. This was combined with dual-lineage tracing and 3-dimensional reconstruction of pelvic plexus and hindgut to precisely pinpoint sNCC and vNCC contributions. We further used coculture assays to determine the specificity of cell migration from different neural tissues into the hindgut. RESULTS: Both pan-NCCs and s/tNCCs contributed to established NCC derivatives but only pan-NCCs contributed to the ENS. Dual-lineage tracing combined with 3-dimensional reconstruction revealed that s/tNCCs settle in complex patterns in pelvic plexus and hindgut-surrounding tissues, explaining previous confusion regarding their contributions. Coculture experiments revealed unspecific cell migration from autonomic, sensory, and neural tube explants into the hindgut. Lineage tracing of ENS precursors lastly provided complimentary evidence for an exclusive vNCC origin of the murine ENS. CONCLUSIONS: sNCCs do not contribute to the murine ENS, suggesting that the mammalian ENS exclusively originates from vNCCs. These results have immediate implications for comprehending (and devising treatments for) congenital ENS disorders, including Hirschsprung's disease.


Asunto(s)
Linaje de la Célula , Movimiento Celular , Sistema Nervioso Entérico , Cresta Neural , Animales , Cresta Neural/citología , Cresta Neural/embriología , Sistema Nervioso Entérico/embriología , Ratones , Técnicas de Cocultivo , Ratones Transgénicos , Nervio Vago/embriología , Sacro/inervación
6.
Nature ; 628(8007): 391-399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408487

RESUMEN

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Asunto(s)
Tipificación del Cuerpo , Microfluídica , Tubo Neural , Humanos , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular , Cresta Neural/citología , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células Madre Pluripotentes/citología , Prosencéfalo/citología , Prosencéfalo/embriología , Médula Espinal/citología , Médula Espinal/embriología
7.
Nature ; 612(7941): 732-738, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517595

RESUMEN

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células Madre
8.
Nature ; 610(7930): 190-198, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36131018

RESUMEN

Although melanoma is notorious for its high degree of heterogeneity and plasticity1,2, the origin and magnitude of cell-state diversity remains poorly understood. Equally, it is unclear whether growth and metastatic dissemination are supported by overlapping or distinct melanoma subpopulations. Here, by combining mouse genetics, single-cell and spatial transcriptomics, lineage tracing and quantitative modelling, we provide evidence of a hierarchical model of tumour growth that mirrors the cellular and molecular logic underlying the cell-fate specification and differentiation of the embryonic neural crest. We show that tumorigenic competence is associated with a spatially localized perivascular niche, a phenotype acquired through an intercellular communication pathway established by endothelial cells. Consistent with a model in which only a fraction of cells are fated to fuel growth, temporal single-cell tracing of a population of melanoma cells with a mesenchymal-like state revealed that these cells do not contribute to primary tumour growth but, instead, constitute a pool of metastatic initiating cells that switch cell identity while disseminating to secondary organs. Our data provide a spatially and temporally resolved map of the diversity and trajectories of melanoma cell states and suggest that the ability to support growth and metastasis are limited to distinct pools of cells. The observation that these phenotypic competencies can be dynamically acquired after exposure to specific niche signals warrant the development of therapeutic strategies that interfere with the cancer cell reprogramming activity of such microenvironmental cues.


Asunto(s)
Proliferación Celular , Melanoma , Metástasis de la Neoplasia , Animales , Comunicación Celular , Diferenciación Celular , Linaje de la Célula , Rastreo Celular , Reprogramación Celular , Células Endoteliales , Melanoma/genética , Melanoma/patología , Mesodermo/patología , Ratones , Metástasis de la Neoplasia/patología , Cresta Neural/embriología , Fenotipo , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 119(31): e2116974119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881792

RESUMEN

Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.


Asunto(s)
Anomalías Craneofaciales , ARN Polimerasa I , ARN Ribosómico , Proteínas Ribosómicas , Cráneo , Transcripción Genética , Animales , Anomalías Craneofaciales/genética , Disostosis Mandibulofacial/genética , Ratones , Cresta Neural/embriología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , Proteínas Ribosómicas/metabolismo , Cráneo/embriología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
Elife ; 112022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044299

RESUMEN

Serum response factor (SRF) is an essential transcription factor that influences many cellular processes including cell proliferation, migration, and differentiation. SRF directly regulates and is required for immediate early gene (IEG) and actin cytoskeleton-related gene expression. SRF coordinates these competing transcription programs through discrete sets of cofactors, the ternary complex factors (TCFs) and myocardin-related transcription factors (MRTFs). The relative contribution of these two programs to in vivo SRF activity and mutant phenotypes is not fully understood. To study how SRF utilizes its cofactors during development, we generated a knock-in SrfaI allele in mice harboring point mutations that disrupt SRF-MRTF-DNA complex formation but leave SRF-TCF activity unaffected. Homozygous SrfaI/aI mutants die at E10.5 with notable cardiovascular phenotypes, and neural crest conditional mutants succumb at birth to defects of the cardiac outflow tract but display none of the craniofacial phenotypes associated with complete loss of SRF in that lineage. Our studies further support an important role for MRTF mediating SRF function in cardiac neural crest and suggest new mechanisms by which SRF regulates transcription during development.


Asunto(s)
Cresta Neural/embriología , Factor de Respuesta Sérica/genética , Factores Complejos Ternarios/genética , Factores de Transcripción/genética , Animales , Ratones , Factor de Respuesta Sérica/metabolismo , Factores Complejos Ternarios/metabolismo , Factores de Transcripción/metabolismo
11.
Elife ; 112022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35088714

RESUMEN

The epiblast of vertebrate embryos is comprised of neural and non-neural ectoderm, with the border territory at their intersection harboring neural crest and cranial placode progenitors. Here, we a generate single-cell atlas of the developing chick epiblast from late gastrulation through early neurulation stages to define transcriptional changes in the emerging 'neural plate border' as well as other regions of the epiblast. Focusing on the border territory, the results reveal gradual establishment of heterogeneous neural plate border signatures, including novel genes that we validate by fluorescent in situ hybridization. Developmental trajectory analysis infers that segregation of neural plate border lineages only commences at early neurulation, rather than at gastrulation as previously predicted. We find that cells expressing the prospective neural crest marker Pax7 contribute to multiple lineages, and a subset of premigratory neural crest cells shares a transcriptional signature with their border precursors. Together, our results suggest that cells at the neural plate border remain heterogeneous until early neurulation, at which time progenitors become progressively allocated toward defined neural crest and placode lineages. The data also can be mined to reveal changes throughout the developing epiblast.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cresta Neural/embriología , Placa Neural/embriología , Neurulación/fisiología , Animales , Embrión de Pollo/citología , Pollos/fisiología , Estratos Germinativos/fisiología , Hibridación Fluorescente in Situ , Factor de Transcripción PAX7/análisis
12.
Dev Biol ; 483: 39-57, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34990731

RESUMEN

Neural crest (NC) cells are a dynamic population of embryonic stem cells that create various adult tissues in vertebrate species including craniofacial bone and cartilage and the peripheral and enteric nervous systems. NC development is thought to be a conserved and complex process that is controlled by a tightly-regulated gene regulatory network (GRN) of morphogens, transcription factors, and cell adhesion proteins. While multiple studies have characterized the expression of several GRN factors in single species, a comprehensive protein analysis that directly compares expression across development is lacking. To address this lack in information, we used three closely related avian models, Gallus gallus (chicken), Coturnix japonica (Japanese quail), and Pavo cristatus (Indian peafowl), to compare the localization and timing of four GRN transcription factors, PAX7, SNAI2, SOX9, and SOX10, from the onset of neurulation to migration. While the spatial expression of these factors is largely conserved, we find that quail NC cells express SNAI2, SOX9, and SOX10 proteins at the equivalent of earlier developmental stages than chick and peafowl. In addition, quail NC cells migrate farther and more rapidly than the larger organisms. These data suggest that despite a conservation of NC GRN players, differences in the timing of NC development between species remain a significant frontier to be explored with functional studies.


Asunto(s)
Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Movimiento Celular/genética , Pollos/genética , Coturnix/embriología , Coturnix/genética , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/metabolismo , Neurulación/genética , Animales , Embrión de Pollo , Pollos/metabolismo , Coturnix/metabolismo , Femenino , Redes Reguladoras de Genes , Cresta Neural/embriología , Tubo Neural/embriología , Tubo Neural/metabolismo , Oviparidad/genética , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo
13.
J Med Genet ; 59(2): 105-114, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34667088

RESUMEN

SOX10 belongs to a family of 20 SRY (sex-determining region Y)-related high mobility group box-containing (SOX) proteins, most of which contribute to cell type specification and differentiation of various lineages. The first clue that SOX10 is essential for development, especially in the neural crest, came with the discovery that heterozygous mutations occurring within and around SOX10 cause Waardenburg syndrome type 4. Since then, heterozygous mutations have been reported in Waardenburg syndrome type 2 (Waardenburg syndrome type without Hirschsprung disease), PCWH or PCW (peripheral demyelinating neuropathy, central dysmyelination, Waardenburg syndrome, with or without Hirschsprung disease), intestinal manifestations beyond Hirschsprung (ie, chronic intestinal pseudo-obstruction), Kallmann syndrome and cancer. All of these diseases are consistent with the regulatory role of SOX10 in various neural crest derivatives (melanocytes, the enteric nervous system, Schwann cells and olfactory ensheathing cells) and extraneural crest tissues (inner ear, oligodendrocytes). The recent evolution of medical practice in constitutional genetics has led to the identification of SOX10 variants in atypical contexts, such as isolated hearing loss or neurodevelopmental disorders, making them more difficult to classify in the absence of both a typical phenotype and specific expertise. Here, we report novel mutations and review those that have already been published and their functional consequences, along with current understanding of SOX10 function in the affected cell types identified through in vivo and in vitro models. We also discuss research options to increase our understanding of the origin of the observed phenotypic variability and improve the diagnosis and medical care of affected patients.


Asunto(s)
Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/fisiología , Animales , Sistema Nervioso Entérico/fisiología , Regulación del Desarrollo de la Expresión Génica , Pérdida Auditiva/genética , Enfermedad de Hirschsprung/genética , Humanos , Síndrome de Kallmann/genética , Melanocitos/fisiología , Mutación , Neoplasias/genética , Cresta Neural/embriología , Cresta Neural/fisiología , Fenotipo , Síndrome de Waardenburg/genética
14.
FASEB J ; 36(1): e22113, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939699

RESUMEN

Intrauterine infection would harm a developing embryo/fetus, thereby increasing the risk of developmental malformation. But, whether or not the infection-induced inflammation affects neural crest development still remains obscure. In this study, we employed meta-analysis to demonstrate the potential correlation between infection-induced inflammation and craniofacial anomalies, which was usually derived from the problems in neural crest cell development. The correlation was further verified by inflammatory cytokine release and the activation of nuclear factor kappa-light-chain enhancer of activated B cells signaling in lipopolysaccharide-treated HH10 chicken embryos. In such an inflammatory condition, AP-2α- and Pax7-labeled pre-migratory and migratory neural crest cells in HH10 chicken embryos were significantly less than the ones in control. The bioinformatics analysis of RNA-seq data demonstrated that the principal differential gene expression occurred in transforming growth factor-beta (TGF-ß) signaling pathway, which was confirmed by the subsequent experimental results of quantitative PCR and immunofluorescent staining. Under this inflammatory circumstance, whole-mount in situ hybridization, immunofluorescence, and quantitative PCR showed the gene expression changes of key EMT-related transcription factors including upregulated Msx1, downregulated Slug, and FoxD3, as well as adhesion molecules and extracellular matrix protein including upregulated Cadherrin6B, E-cadherin, N-cadherin, and Laminin at the dorsal portion of neural tube of HH10 chicken embryos. Meanwhile, the bioinformatics analysis of RNA-seq data also manifested the differential gene expressions relevant to cell proliferation, which was confirmed by proliferating cell nuclear antigen Western blot data and co-immunofluorescence staining of human natural killer-1 and phosphorylated histone H3. In brief, this study revealed for the first time that the double-edged sword role of TGF-ß signaling pathway between intrauterine inflammation (protective role) and cranial neural crest development (harmful role).


Asunto(s)
Proteínas Aviares/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/embriología , RNA-Seq , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteínas Aviares/genética , Embrión de Pollo , Pollos , Humanos , Factor de Crecimiento Transformador beta/genética
15.
Dev Biol ; 483: 66-75, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34968443

RESUMEN

In recent years CRISPR-Cas9 knockouts (KO) have become increasingly ultilised to study gene function. MicroRNAs (miRNAs) are short non-coding RNAs, 20-22 nucleotides long, which affect gene expression through post-transcriptional repression. We previously identified miRNAs-196a and -219 as implicated in the development of Xenopus neural crest (NC). The NC is a multipotent stem-cell population, specified during early neurulation. Following EMT, NC cells migrate to various points in the developing embryo where they give rise to a number of tissues including parts of the peripheral nervous system, pigment cells and craniofacial skeleton. Dysregulation of NC development results in many diseases grouped under the term neurocristopathies. As miRNAs are so small, it is difficult to design CRISPR sgRNAs that reproducibly lead to a KO. We have therefore designed a novel approach using two guide RNAs to effectively 'drop out' a miRNA. We have knocked out miR-196a and miR-219 and compared the results to morpholino knockdowns (KD) of the same miRNAs. Validation of efficient CRISPR miRNA KO and phenotype analysis included use of whole-mount in situ hybridization of key NC and neural plate border markers such as Pax3, Xhe2, Sox10 and Snail2, q-RT-PCR and Sanger sequencing. To show specificity we have also rescued the knockout phenotype using miRNA mimics. MiRNA-219 and miR-196a KO's both show loss of NC, altered neural plate and hatching gland phenotypes. Tadpoles show gross craniofacial and pigment phenotypes.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , MicroARNs/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Hibridación in Situ/métodos , Morfolinos/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Neurulación/genética , Fenotipo , ARN Guía de Kinetoplastida/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
16.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822717

RESUMEN

Cells are permanently exposed to a multitude of different kinds of signals: however, how cells respond to simultaneous extracellular signals within a complex in vivo environment is poorly understood. Here, we studied the role of the mechanosensitive ion channel Piezo1 on the migration of the neural crest, a multipotent embryonic cell population. We identify that Piezo1 is required for the migration of Xenopus cephalic neural crest. We show that loss of Piezo1 promotes focal adhesion turnover and cytoskeletal dynamics by controlling Rac1 activity, leading to increased speed of migration. Moreover, overactivation of Rac1, due to Piezo1 inhibition, counteracts cell migration inhibitory signals by Semaphorin 3A and Semaphorin 3F, generating aberrant neural crest invasion in vivo. Thus, we find that, for directional migration in vivo, neural crest cells require a tight regulation of Rac1, by semaphorins and Piezo1. We reveal here that a balance between a myriad of signals through Rac1 dictates cell migration in vivo, a mechanism that is likely to be conserved in other cell migration processes.


Asunto(s)
Movimiento Celular , Canales Iónicos/metabolismo , Cresta Neural/embriología , Semaforina-3A/metabolismo , Transducción de Señal , Proteínas de Xenopus/metabolismo , Animales , Canales Iónicos/genética , Cresta Neural/citología , Semaforina-3A/genética , Proteínas de Xenopus/genética , Xenopus laevis
17.
Cell Prolif ; 54(12): e13144, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34697858

RESUMEN

OBJECTIVES: The mammalian tongue develops from the branchial arches (1-4) and comprises highly organized tissues compartmentalized by mesenchyme/connective tissue that is largely derived from neural crest (NC). This study aimed to understand the roles of tumour suppressor Neurofibromin 2 (Nf2) in NC-derived tongue mesenchyme in regulating Hippo signalling and cell proliferation for the proper development of tongue shape and size. MATERIALS AND METHODS: Conditional knockout (cKO) of Nf2 in NC cell lineage was generated using Wnt1-Cre (Wnt1-Cre/Nf2cKO ). Nf2 expression, Hippo signalling activities, cell proliferation and tongue shape and size were thoroughly analysed in different tongue regions and tissue types of Wnt1-Cre/Nf2cKO and Cre- /Nf2fx/fx littermates at various stages (E10.5-E18.5). RESULTS: In contrast to many other organs in which the Nf2/Hippo pathway activity restrains growth and cell proliferation and as a result, loss of Nf2 decreases Hippo pathway activity and promotes an enlarged organ development, here we report our observations of distinct, tongue region- and stage-specific alterations of Hippo signalling activity and cell proliferation in Nf2cKO in NC-derived tongue mesenchyme. Compared to Cre- /Nf2fx / fx littermates, Wnt1-Cre/Nf2cKO depicted a non-proportionally enlarged tongue (macroglossia) at E12.5-E13.5 and microglossia at later stages (E15.5-E18.5). Specifically, at E12.5 Nf2cKO mutants had a decreased level of Hippo signalling transcription factor Yes-associated protein (Yap), Yap target genes and cell proliferation anteriorly, while having an increased Yap, Yap target genes and cell proliferation posteriorly, which lead to a tip-pointed and posteriorly widened tongue. At E15.5, loss of Nf2 in the NC lineage resulted in distinct changes in cell proliferation in different regions, that is, high in epithelium and mesenchyme subjacent to the epithelium, and lower in deeper layers of the mesenchyme. At E18.5, cell proliferation was reduced throughout the Nf2cKO tongue.


Asunto(s)
Proliferación Celular , Eliminación de Gen , Vía de Señalización Hippo , Mesodermo/embriología , Factor 2 Relacionado con NF-E2/deficiencia , Cresta Neural/embriología , Lengua/embriología , Animales , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/metabolismo , Tamaño de los Órganos
18.
Genesis ; 59(11): e23445, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34490995

RESUMEN

Mouse models provide opportunities to investigate genetic interactions that cause or modify the frequency of neural tube defects (NTDs). Mutation of the PAX3 transcription factor prevents neural tube closure, leading to cranial and spinal NTDs whose frequency is responsive to folate status. Canonical Wnt signalling is implicated both in regulation of Pax3 expression and as a target of PAX3. This study investigated potential interactions of Pax3 mutation and canonical Wnt signalling using conditional gain- and loss-of-function models of ß-catenin. We found an additive effect of ß-catenin gain of function and Pax3 loss of function on NTDs and neural crest defects. ß-catenin gain of function in the Pax3 expression domain led to significantly increased frequency of cranial but not spinal NTDs in embryos that are heterozygous for Pax3 mutation, while both cranial and spinal neural tube closure were exacerbated in Pax3 homozygotes. Similarly, deficits of migrating neural crest cells were exacerbated by ß-catenin gain of function, with almost complete ablation of spinal neural crest cells and derivatives in Pax3 homozygous mutants. Pax3 expression was not affected by ß-catenin gain of function, while we confirmed that loss of function led to reduced Pax3 transcription. In contrast to gain of function, ß-catenin knockout in the Pax3 expression domain lowered the frequency of cranial NTDs in Pax3 null embryos. However, loss of function of ß-catenin and Pax3 resulted in spinal NTDs, suggesting differential regulation of cranial and spinal neural tube closure. In summary, ß-catenin function modulates the frequency of PAX3-related NTDs in the mouse.


Asunto(s)
Cresta Neural/metabolismo , Defectos del Tubo Neural/genética , Factor de Transcripción PAX3/genética , Vía de Señalización Wnt , Animales , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Mutación , Cresta Neural/anomalías , Cresta Neural/embriología , Factor de Transcripción PAX3/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
19.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34383890

RESUMEN

Neural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the 'hinge and caps' model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.


Asunto(s)
Tipificación del Cuerpo , Cara/embriología , Factor de Transcripción GATA3/metabolismo , Animales , Región Branquial/citología , Región Branquial/embriología , Región Branquial/metabolismo , Muerte Celular , Proliferación Celular , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Embrión de Mamíferos , Factor de Transcripción GATA3/genética , Regulación del Desarrollo de la Expresión Génica , Mandíbula/citología , Mandíbula/embriología , Maxilar/citología , Maxilar/embriología , Ratones , Morfogénesis , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo
20.
Biol Open ; 10(9)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463758

RESUMEN

Molecular and cellular mechanisms underlying variation in adult form remain largely unknown. Adult pigment patterns of fishes in the genus Danio, which includes zebrafish, Danio rerio, consist of horizontal stripes, vertical bars, spots and uniform patterns, and provide an outstanding opportunity to identify causes of species level variation in a neural crest derived trait. Understanding pigment pattern variation requires quantitative approaches to assess phenotypes, yet such methods have been mostly lacking for pigment patterns. We introduce metrics derived from information theory that describe patterns and pattern variation in Danio fishes. We find that these metrics used singly and in multivariate combinations are suitable for distinguishing general pattern types, and can reveal even subtle phenotypic differences attributable to mutations. Our study provides new tools for analyzing pigment pattern in Danio and potentially other groups, and sets the stage for future analyses of pattern morphospace and its mechanistic underpinnings.


Asunto(s)
Desarrollo Embrionario/genética , Metamorfosis Biológica/genética , Cresta Neural/embriología , Pigmentación/genética , Pez Cebra/embriología , Animales , Evolución Biológica , Embrión no Mamífero , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA