Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.987
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731925

RESUMEN

Hemifacial microsomia (HFM) is a rare congenital genetic syndrome primarily affecting the first and second pharyngeal arches, leading to defects in the mandible, external ear, and middle ear. The pathogenic genes remain largely unidentified. Whole-exome sequencing (WES) was conducted on 12 HFM probands and their unaffected biological parents. Predictive structural analysis of the target gene was conducted using PSIPRED (v3.3) and SWISS-MODEL, while STRING facilitated protein-to-protein interaction predictions. CRISPR/Cas9 was applied for gene knockout in zebrafish. In situ hybridization (ISH) was employed to examine the spatiotemporal expression of the target gene and neural crest cell (NCC) markers. Immunofluorescence with PH3 and TUNEL assays were used to assess cell proliferation and apoptosis. RNA sequencing was performed on mutant and control embryos, with rescue experiments involving target mRNA injections and specific gene knockouts. CDC27 was identified as a novel candidate gene for HFM, with four nonsynonymous de novo variants detected in three unrelated probands. Structural predictions indicated significant alterations in the secondary and tertiary structures of CDC27. cdc27 knockout in zebrafish resulted in craniofacial malformation, spine deformity, and cardiac edema, mirroring typical HFM phenotypes. Abnormalities in somatic cell apoptosis, reduced NCC proliferation in pharyngeal arches, and chondrocyte differentiation issues were observed in cdc27-/- mutants. cdc27 mRNA injections and cdkn1a or tp53 knockout significantly rescued pharyngeal arch cartilage dysplasia, while sox9a mRNA administration partially restored the defective phenotypes. Our findings suggest a functional link between CDC27 and HFM, primarily through the inhibition of CNCC proliferation and disruption of pharyngeal chondrocyte differentiation.


Asunto(s)
Síndrome de Goldenhar , Pez Cebra , Animales , Pez Cebra/genética , Humanos , Masculino , Femenino , Síndrome de Goldenhar/genética , Síndrome de Goldenhar/patología , Apoptosis/genética , Cresta Neural/metabolismo , Secuenciación del Exoma , Proliferación Celular/genética , Fenotipo , Mutación , Técnicas de Inactivación de Genes
2.
Nat Commun ; 15(1): 3745, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702304

RESUMEN

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Asunto(s)
Diferenciación Celular , Variaciones en el Número de Copia de ADN , Proteína Proto-Oncogénica N-Myc , Cresta Neural , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Cresta Neural/metabolismo , Cresta Neural/patología , Femenino , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Aberraciones Cromosómicas , Células Madre Embrionarias Humanas/metabolismo , Transcriptoma , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
3.
Biochem Biophys Res Commun ; 710: 149861, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581949

RESUMEN

During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards. Observations at E12-13.5 revealed high levels of GFRA1 expression on the anti-mesenteric side of the hindgut, correlating with enhanced ENCC migration. This indicates that GFRA1 in EMCs plays a role in ENCC migration during development. Examining GFRA1 isoforms, we found high levels of GFRA1b, which lacks amino acids 140-144, in EMCs. To assess the impact of GFRA1 isoforms on EMC-ENCC communication, we conducted neurosphere drop assays. This revealed that GFRA1b-expressing cells promoted GDNF-dependent extension and increased neurite density in ENCC neurospheres. Co-culture of ENCC mimetic cells expressing RET and GFRA1a with EMC mimetic cells expressing GFRA1a, GFRA1b, or vector alone showed that only GFRA1b-expressing co-cultured cells sustained RET phosphorylation in ENCC-mimetic cells for over 120 min upon GDNF stimulation. Our study provides evidence that GFRA1b-mediated cell-to-cell communication plays a critical role in ENCC motility in enteric nervous system development. These findings contribute to understanding the cellular interactions and signaling mechanisms that underlie enteric nervous system formation and highlight potential therapeutic targets for gastrointestinal motility disorders.


Asunto(s)
Sistema Nervioso Entérico , Cresta Neural , Animales , Ratones , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Sistema Nervioso Entérico/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Cresta Neural/metabolismo , Isoformas de Proteínas/metabolismo
4.
Dev Biol ; 511: 63-75, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38621649

RESUMEN

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Asunto(s)
Quinasas DyrK , Regulación del Desarrollo de la Expresión Génica , Cresta Neural , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteínas de Xenopus , Xenopus laevis , Animales , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Transducción de Señal , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/metabolismo , Región Branquial/embriología , Región Branquial/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/embriología
5.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683849

RESUMEN

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Asunto(s)
Encéfalo , Diferenciación Celular , Pericitos , Factores de Transcripción , Proteínas de Pez Cebra , Pez Cebra , Pericitos/metabolismo , Pericitos/citología , Animales , Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Encéfalo/metabolismo , Encéfalo/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diferenciación Celular/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/metabolismo , Cresta Neural/citología , Mesodermo/metabolismo , Mesodermo/citología , Transducción de Señal , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética
6.
Nature ; 629(8010): 121-126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632395

RESUMEN

The neural crest is an embryonic stem cell population unique to vertebrates1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia2. Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates3-8. Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine ß-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.


Asunto(s)
Linaje de la Célula , Ganglios Simpáticos , Cresta Neural , Neuronas , Petromyzon , Sistema Nervioso Simpático , Tirosina 3-Monooxigenasa , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Neuronas/citología , Neuronas/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Dopamina beta-Hidroxilasa/genética , Vertebrados , Evolución Biológica , Norepinefrina/metabolismo
7.
Elife ; 122024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634469

RESUMEN

We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism.SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.


Asunto(s)
Serina Peptidasa A1 que Requiere Temperaturas Altas , Cresta Neural , Serpina E2 , Animales , Movimiento Celular/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Cresta Neural/embriología , Cresta Neural/metabolismo , Serpina E2/metabolismo , Transducción de Señal , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
8.
Nat Commun ; 15(1): 3301, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671004

RESUMEN

Diphthamide is a modified histidine residue unique for eukaryotic translation elongation factor 2 (eEF2), a key ribosomal protein. Loss of this evolutionarily conserved modification causes developmental defects through unknown mechanisms. In a patient with compound heterozygous mutations in Diphthamide Biosynthesis 1 (DPH1) and impaired eEF2 diphthamide modification, we observe multiple defects in neural crest (NC)-derived tissues. Knockin mice harboring the patient's mutations and Xenopus embryos with Dph1 depleted also display NC defects, which can be attributed to reduced proliferation in the neuroepithelium. DPH1 depletion facilitates dissociation of eEF2 from ribosomes and association with p53 to promote transcription of the cell cycle inhibitor p21, resulting in inhibited proliferation. Knockout of one p21 allele rescues the NC phenotypes in the knockin mice carrying the patient's mutations. These findings uncover an unexpected role for eEF2 as a transcriptional coactivator for p53 to induce p21 expression and NC defects, which is regulated by diphthamide modification.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Histidina , Histidina/análogos & derivados , Antígenos de Histocompatibilidad Menor , Cresta Neural , Factor 2 de Elongación Peptídica , Proteína p53 Supresora de Tumor , Proteínas Supresoras de Tumor , Animales , Cresta Neural/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Ratones , Factor 2 de Elongación Peptídica/metabolismo , Factor 2 de Elongación Peptídica/genética , Histidina/metabolismo , Ribosomas/metabolismo , Mutación , Proliferación Celular , Xenopus laevis , Femenino , Técnicas de Sustitución del Gen , Xenopus , Masculino , Ratones Noqueados
9.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619396

RESUMEN

Piezo1 and Piezo2 are recently reported mechanosensory ion channels that transduce mechanical stimuli from the environment into intracellular biochemical signals in various tissues and organ systems. Here, we show that Piezo1 and Piezo2 display a robust expression during jawbone development. Deletion of Piezo1 in neural crest cells causes jawbone malformations in a small but significant number of mice. We further demonstrate that disruption of Piezo1 and Piezo2 in neural crest cells causes more striking defects in jawbone development than any single knockout, suggesting essential but partially redundant roles of Piezo1 and Piezo2. In addition, we observe defects in other neural crest derivatives such as malformation of the vascular smooth muscle in double knockout mice. Moreover, TUNEL examinations reveal excessive cell death in osteogenic cells of the maxillary and mandibular arches of the double knockout mice, suggesting that Piezo1 and Piezo2 together regulate cell survival during jawbone development. We further demonstrate that Yoda1, a Piezo1 agonist, promotes mineralization in the mandibular arches. Altogether, these data firmly establish that Piezo channels play important roles in regulating jawbone formation and maintenance.


Asunto(s)
Canales Iónicos , Maxilares , Ratones Noqueados , Cresta Neural , Animales , Canales Iónicos/metabolismo , Canales Iónicos/genética , Cresta Neural/metabolismo , Ratones , Maxilares/embriología , Maxilares/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mandíbula/embriología , Mandíbula/metabolismo , Osteogénesis/genética , Pirazinas , Tiadiazoles
10.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683994

RESUMEN

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Asunto(s)
Cresta Neural , Análisis de la Célula Individual , Xenopus laevis , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Análisis de la Célula Individual/métodos , Xenopus laevis/embriología , Regulación del Desarrollo de la Expresión Génica , Movimiento Celular , Redes Reguladoras de Genes , Transcriptoma , Gastrulación , Placa Neural/metabolismo , Placa Neural/embriología , Placa Neural/citología , Transición Epitelial-Mesenquimal/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , Neurulación/genética , Neurulación/fisiología , Diferenciación Celular
11.
Nat Cell Biol ; 26(4): 530-541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499770

RESUMEN

Embryonic induction is a key mechanism in development that corresponds to an interaction between a signalling and a responding tissue, causing a change in the direction of differentiation by the responding tissue. Considerable progress has been achieved in identifying inductive signals, yet how tissues control their responsiveness to these signals, known as competence, remains poorly understood. While the role of molecular signals in competence has been studied, how tissue mechanics influence competence remains unexplored. Here we investigate the role of hydrostatic pressure in controlling competence in neural crest cells, an embryonic cell population. We show that neural crest competence decreases concomitantly with an increase in the hydrostatic pressure of the blastocoel, an embryonic cavity in contact with the prospective neural crest. By manipulating hydrostatic pressure in vivo, we show that this increase leads to the inhibition of Yap signalling and impairs Wnt activation in the responding tissue, which would be required for neural crest induction. We further show that hydrostatic pressure controls neural crest induction in amphibian and mouse embryos and in human cells, suggesting a conserved mechanism across vertebrates. Our work sets out how tissue mechanics can interplay with signalling pathways to regulate embryonic competence.


Asunto(s)
Inducción Embrionaria , Cresta Neural , Animales , Humanos , Ratones , Presión Hidrostática , Cresta Neural/metabolismo , Estudios Prospectivos , Proteínas Wnt/metabolismo
12.
Stem Cells Dev ; 33(9-10): 228-238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38534877

RESUMEN

Periodontal tissue regeneration is important for preserving teeth. Periodontal ligament stem cells (PDLSCs) are useful in periodontal tissue regeneration; however, tooth extraction is required to obtain these cells. Therefore, we focused on induced pluripotent stem (iPS) cells and established a method to obtain PDLSC-like cells from iPS cells. Specifically, we first differentiated iPS cells into neural crest-like cells (iNCs). Next, we obtained PDLSC-like cells (iPDLSCs) by culturing iNCs on extracellular matrix (ECM) derived from human primary periodontal ligament cells (HPDLCs). This differentiation method suggested that ECM derived from HPDLCs is important for iPDLSC differentiation. Thus, we aimed to identify the PDLSC-inducing factor present in HPDLC-derived ECM in this study. We first performed comprehensive analyses of HPDLC genes and identified fibrillin-2 (FBN2), an ECM-related factor. Furthermore, to clarify the effect of FBN2 on iPDLSC differentiation, we cultured iNCs using ECM derived from HPDLCs with FBN2 knocked down. As a result, expression of PDL-related markers was reduced in iNCs cultured on ECM derived from HPDLCs transfected with FBN2 siRNA (iNC-siFBN2) compared with iPDLSCs. Furthermore, the expression of CD105 (a mesenchymal stem cell marker), proliferation ability, and multipotency of iNC-siFBN2 were lower compared with iPDLSCs. Next, we cultured iNCs on FBN2 recombinant protein; however, expression of PDL-related markers did not increase compared with iPDLSC. The present results suggest the critical involvement of FBN2 in inducing iPDLSCs from iNCs when in fact it does not promote iPDLSC differantiation. Therefore, we need to elucidate the entire HPDLC-ECMs, responsible for iPDLSCs induction.


Asunto(s)
Diferenciación Celular , Fibrilina-2 , Células Madre Pluripotentes Inducidas , Ligamento Periodontal , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Fibrilina-2/genética , Fibrilina-2/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Células Madre/metabolismo , Células Madre/citología
13.
Invest Ophthalmol Vis Sci ; 65(3): 30, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38517430

RESUMEN

Purpose: Intraflagellar transport 46 (IFT46) is an integral subunit of the IFT-B complex, playing a key role in the assembly and maintenance of primary cilia responsible for transducing signaling pathways. Despite its predominant expression in the basal body of cilia, the precise role of Ift46 in ocular development remains undetermined. This study aimed to elucidate the impact of neural crest (NC)-specific deletion of Ift46 on ocular development. Methods: NC-specific conditional knockout mice for Ift46 (NC-Ift46F/F) were generated by crossing Ift46F mice with Wnt1-Cre2 mice, enabling the specific deletion of Ift46 in NC-derived cells (NCCs). Sonic Hedgehog (Shh) and Notch signaling activities in NC-Ift46F/F mice were evaluated using Gli1lacZ and CBF:H2B-Venus reporter mice, respectively. Cell fate mapping was conducted using ROSAmTmG reporter mice. Results: The deletion of Ift46 in NCCs resulted in a spectrum of ocular abnormalities, including thickened corneal stroma, hypoplasia of the anterior chamber, irregular iris morphology, and corneal neovascularization. Notably, this deletion led to reduced Shh signal activity in the periocular mesenchyme, sustained expression of key transcription factors Foxc1, Foxc2 and Pitx2, along with persistent cell proliferation. Additionally, it induced increased Notch signaling activity and the development of ectopic neovascularization within the corneal stroma. Conclusions: The absence of primary cilia due to Ift46 deficiency in NCCs is associated with anterior segment dysgenesis (ASD) and corneal neovascularization, suggesting a potential link to Axenfeld-Rieger syndrome, a disorder characterized by ASD. This underscores the pivotal role of primary cilia in ensuring proper anterior segment development and maintaining an avascular cornea.


Asunto(s)
Cilios , Neovascularización de la Córnea , Anomalías del Ojo , Ratones , Animales , Cilios/metabolismo , Cresta Neural/metabolismo , Neovascularización de la Córnea/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Córnea , Ratones Noqueados , Proteínas del Citoesqueleto/metabolismo
14.
Development ; 151(6)2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38512806

RESUMEN

The mechanistic target of rapamycin (mTOR) coordinates metabolism and cell growth with environmental inputs. mTOR forms two functional complexes: mTORC1 and mTORC2. Proper development requires both complexes but mTORC1 has unique roles in numerous cellular processes, including cell growth, survival and autophagy. Here, we investigate the function of mTORC1 in craniofacial development. We created a zebrafish raptor mutant via CRISPR/Cas9, to specifically disrupt mTORC1. The entire craniofacial skeleton and eyes were reduced in size in mutants; however, overall body length and developmental timing were not affected. The craniofacial phenotype associates with decreased chondrocyte size and increased neural crest cell death. We found that autophagy is elevated in raptor mutants. Chemical inhibition of autophagy reduced cell death and improved craniofacial phenotypes in raptor mutants. Genetic inhibition of autophagy, via mutation of the autophagy gene atg7, improved facial phenotypes in atg7;raptor double mutants, relative to raptor single mutants. We conclude that finely regulated levels of autophagy, via mTORC1, are crucial for craniofacial development.


Asunto(s)
Cresta Neural , Pez Cebra , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Cresta Neural/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Autofagia/genética , Muerte Celular , Mutación/genética
15.
Int J Biol Macromol ; 266(Pt 2): 131216, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556235

RESUMEN

Treacher Collins syndrome-3 (TCS-3) is a rare congenital craniofacial disorder attributed to variants in the RNA pol I subunit C (POLR1C). The pathogenesis of TCS-3 linked to polr1c involves the activation of apoptosis-dependent p53 pathways within neural crest cells (NCCs). This occurs due to disruptions in ribosome biogenesis, and the restoration of polr1c expression in early embryogenesis effectively rescues the observed craniofacial phenotype in polr1c-deficient zebrafish. Clinical variability in TCS patients suggests interactions between genes and factors like oxidative stress. Elevated production of reactive oxygen species (ROS) in epithelial cells may worsen phenotypic outcomes in TCS individuals. Our study confirmed excessive ROS production in facial regions, inducing apoptosis and altering p53 pathways. Deregulated cell-cycle and epithelial-to-mesenchymal transition (EMT) genes were also detected in the TCS-3 model. Utilizing p53 inhibitor (Pifithrin-α; PFT-α) or antioxidants (Glutathione; GSH and N-Acetyl-L-cysteine; NAC) effectively corrected migrated NCC distribution in the pharyngeal arch (PA), suppressed oxidative stress, prevented cell death, and modulated EMT inducers. Crucially, inhibiting p53 activation or applying antioxidants within a specific time window, notably within 30 h post-fertilization (hpf), successfully reversed phenotypic effects induced by polr1c MO.


Asunto(s)
Antioxidantes , Benzotiazoles , Modelos Animales de Enfermedad , Disostosis Mandibulofacial , Estrés Oxidativo , Especies Reactivas de Oxígeno , Tolueno/análogos & derivados , Proteína p53 Supresora de Tumor , Proteínas de Pez Cebra , Pez Cebra , Animales , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Disostosis Mandibulofacial/genética , Disostosis Mandibulofacial/tratamiento farmacológico , Antioxidantes/farmacología , Benzotiazoles/farmacología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Tolueno/farmacología , Cresta Neural/efectos de los fármacos , Cresta Neural/metabolismo , Apoptosis/efectos de los fármacos , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/metabolismo , ARN Polimerasa I/genética
16.
Stem Cells Transl Med ; 13(5): 490-504, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38387006

RESUMEN

Regenerative cell therapy to replenish the missing neurons and glia in the aganglionic segment of Hirschsprung disease represents a promising treatment option. However, the success of cell therapies for this condition are hindered by poor migration of the transplanted cells. This limitation is in part due to a markedly less permissive extracellular environment in the postnatal gut than that of the embryo. Coordinated interactions between enteric neural crest-derived cells (ENCDCs) and their local environment drive migration along the embryonic gut during development of the enteric nervous system. Modifying transplanted cells, or the postnatal extracellular environment, to better recapitulate embryonic ENCDC migration could be leveraged to improve the engraftment and coverage of stem cell transplants. We compared the transcriptomes of ENCDCs from the embryonic intestine to that of postnatal-derived neurospheres and identified 89 extracellular matrix (ECM)-associated genes that are differentially expressed. Agrin, a heparin sulfate proteoglycan with a known inhibitory effect on ENCDC migration, was highly over-expressed by postnatal-derived neurospheres. Using a function-blocking antibody and a shRNA-expressing lentivirus, we show that inhibiting agrin promotes ENCDC migration in vitro and following cell transplantation ex vivo and in vivo. This enhanced migration is associated with an increased proportion of GFAP + cells, whose migration is especially enhanced.


Asunto(s)
Agrina , Movimiento Celular , Células-Madre Neurales , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Ratones , Agrina/metabolismo , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/citología , Colon/metabolismo , Colon/citología , Cresta Neural/metabolismo , Cresta Neural/citología , Enfermedad de Hirschsprung/metabolismo , Enfermedad de Hirschsprung/terapia , Trasplante de Células Madre/métodos
17.
Congenit Anom (Kyoto) ; 64(2): 47-60, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38403785

RESUMEN

Cranial neural crest cells (NCCs) are critical for craniofacial development. The administration of valproic acid (VPA) to pregnant females causes craniofacial malformations in offspring. However, the in vivo influence of VPA on mammalian cranial NCCs remains unclear. In this study, we aimed to elucidate the developmental stage-specific effect of VPA on cranial NCCs through the administration of a single dose of VPA to pregnant rat females immediately prior to the formation of the cranial neural crest (NC). We performed whole-mount immunohistochemistry or in situ hybridization to examine localization changes of gene transcripts associated with the epithelial-mesenchymal transition of the cranial NC (i.e., cranial NCC formation) and cranial NCC migration. The results showed that Hoxa2 mRNA was abnormally detected and Sox9 mRNA expression was decreased in the midbrain-rhombomere (R) 1/2 NC, which forms cranial NCCs that migrate to the frontonasal mass (FNM) and branchial arch (BA) 1, through VPA administration, thus reducing the formation of SNAI2-positive NCCs. Hoxa2-positive NCCs were detected normally in BA2 and abnormally in FNM and BA1, which are normally Hox-free, implying VPA-induced abnormal cranial NCC migration. In vitro verification experiments using the whole embryo culture system revealed that midbrain-R4 NCC migration was abnormal. These results indicate that VPA reduces the formation/delamination of the midbrain-R1/2 NCCs in a developmental stage-specific manner and subsequently causes the abnormal migration of R4 NCCs, which suggests that the abnormal formation and migration of cranial NCCs contribute to the inhibition of axonal elongation in the trigeminal nerve and a reduction in head size.


Asunto(s)
Cresta Neural , Ácido Valproico , Animales , Ratas , Cresta Neural/metabolismo , Ácido Valproico/toxicidad , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Movimiento Celular , Mamíferos
18.
Sci Adv ; 10(5): eadi1737, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306433

RESUMEN

Brain mural cells regulate development and function of the blood-brain barrier and control blood flow. Existing in vitro models of human brain mural cells have low expression of key mural cell genes, including NOTCH3. Thus, we asked whether activation of Notch3 signaling in hPSC-derived neural crest could direct the differentiation of brain mural cells with an improved transcriptional profile. Overexpression of the Notch3 intracellular domain (N3ICD) induced expression of mural cell markers PDGFRß, TBX2, FOXS1, KCNJ8, SLC6A12, and endogenous Notch3. The resulting N3ICD-derived brain mural cells produced extracellular matrix, self-assembled with endothelial cells, and had functional KATP channels. ChIP-seq revealed that Notch3 serves as a direct input to relatively few genes in the context of this differentiation process. Our work demonstrates that activation of Notch3 signaling is sufficient to direct the differentiation of neural crest to mural cells and establishes a developmentally relevant differentiation protocol.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes , Humanos , Células Endoteliales/metabolismo , Cresta Neural/metabolismo , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Encéfalo/metabolismo , Factores de Transcripción Forkhead/metabolismo
19.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38063851

RESUMEN

Cornelia de Lange syndrome (CdLS) is a congenital disorder featuring facial dysmorphism, postnatal growth deficits, cognitive disability and upper limb abnormalities. CdLS is genetically heterogeneous, with cases arising from mutation of BRD4, a bromodomain protein that binds and reads acetylated histones. In this study, we have modeled CdLS facial pathology through mouse neural crest cell (NCC)-specific mutation of BRD4 to characterize cellular and molecular function in craniofacial development. Mice with BRD4 NCC loss of function died at birth with severe facial hypoplasia, cleft palate, mid-facial clefting and exencephaly. Following migration, BRD4 mutant NCCs initiated RUNX2 expression for differentiation to osteoblast lineages but failed to induce downstream RUNX2 targets required for lineage commitment. BRD4 bound to active enhancers to regulate expression of osteogenic transcription factors and extracellular matrix components integral for bone formation. RUNX2 physically interacts with a C-terminal domain in the long isoform of BRD4 and can co-occupy osteogenic enhancers. This BRD4 association is required for RUNX2 recruitment and appropriate osteoblast differentiation. We conclude that BRD4 controls facial bone development through osteoblast enhancer regulation of the RUNX2 transcriptional program.


Asunto(s)
Síndrome de Cornelia de Lange , Factores de Transcripción , Animales , Ratones , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Síndrome de Cornelia de Lange/genética , Cresta Neural/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Factores de Transcripción/metabolismo
20.
Birth Defects Res ; 116(1): e2271, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964651

RESUMEN

BACKGROUND: The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS: In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.


Asunto(s)
Labio Leporino , Fisura del Paladar , Humanos , Epigénesis Genética/genética , Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Cresta Neural/metabolismo , Transducción de Señal/genética , Labio Leporino/genética , Labio Leporino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA