Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 560, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734819

RESUMEN

Photosynthetic cryptophytes are eukaryotic algae that utilize membrane-embedded chlorophyll a/c binding proteins (CACs) and lumen-localized phycobiliproteins (PBPs) as their light-harvesting antennae. Cryptophytes go through logarithmic and stationary growth phases, and may adjust their light-harvesting capability according to their particular growth state. How cryptophytes change the type/arrangement of the photosynthetic antenna proteins to regulate their light-harvesting remains unknown. Here we solve four structures of cryptophyte photosystem I (PSI) bound with CACs that show the rearrangement of CACs at different growth phases. We identify a cryptophyte-unique protein, PsaQ, which harbors two chlorophyll molecules. PsaQ specifically binds to the lumenal region of PSI during logarithmic growth phase and may assist the association of PBPs with photosystems and energy transfer from PBPs to photosystems.


Asunto(s)
Criptófitas , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Criptófitas/metabolismo , Criptófitas/genética , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Proteínas de Unión a Clorofila/genética , Fotosíntesis , Ficobiliproteínas/metabolismo , Ficobiliproteínas/genética
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38401169

RESUMEN

Photosynthetic cryptophytes are ubiquitous protists that are major participants in the freshwater phytoplankton bloom at the onset of spring. Mortality due to change in environmental conditions and grazing have been recognized as key factors contributing to bloom collapse. In contrast, the role of viral outbreaks as factors terminating phytoplankton blooms remains unknown from freshwaters. Here, we isolated and characterized a cryptophyte virus contributing to the annual collapse of a natural cryptophyte spring bloom population. This viral isolate is also representative for a clade of abundant giant viruses (phylum Nucleocytoviricota) found in freshwaters all over the world.


Asunto(s)
Virus Gigantes , Virus , Humanos , Fitoplancton , Criptófitas/genética , Eucariontes
3.
J Eukaryot Microbiol ; 71(1): e13003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37803921

RESUMEN

Eukaryotrophic protists are ecologically significant and possess characteristics key to understanding the evolution of eukaryotes; however, they remain poorly studied, due partly to the complexities of maintaining predator-prey cultures. Kaonashia insperata, gen. nov., et sp. nov., is a free-swimming biflagellated eukaryotroph with a conspicuous ventral groove, a trait observed in distantly related lineages across eukaryote diversity. Di-eukaryotic (predator-prey) cultures of K. insperata with three marine algae (Isochrysis galbana, Guillardia theta, and Phaeodactylum tricornutum) were established by single-cell isolation. Growth trials showed that the studied K. insperata clone grew particularly well on G. theta, reaching a peak abundance of 1.0 × 105 ± 4.0 × 104 cells ml-1 . Small-subunit ribosomal DNA phylogenies infer that K. insperata is a stramenopile with moderate support; however, it does not fall within any well-defined phylogenetic group, including environmental sequence clades (e.g. MASTs), and its specific placement remains unresolved. Electron microscopy shows traits consistent with stramenopile affinity, including mastigonemes on the anterior flagellum and tubular mitochondrial cristae. Kaonashia insperata may represent a novel major lineage within stramenopiles, and be important for understanding the evolutionary history of the group. While heterotrophic stramenopile flagellates are considered to be predominantly bacterivorous, eukaryotrophy may be relatively widespread amongst this assemblage.


Asunto(s)
Diatomeas , Estramenopilos , Filogenia , Estramenopilos/genética , ADN Ribosómico/genética , Diatomeas/genética , Criptófitas/genética
4.
Protist ; 174(6): 125994, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935085

RESUMEN

Cryptophytes are single celled protists found in all aquatic environments. They are composed of a heterotrophic genus, Goniomonas, and a largely autotrophic group comprising many genera. Cryptophytes evolved through secondary endosymbiosis between a host eukaryotic heterotroph and a symbiont red alga. This merger resulted in a four-genome system that includes the nuclear and mitochondrial genomes from the host and a second nuclear genome (nucleomorph) and plastid genome inherited from the symbiont. Here, we make use of different genomes (with potentially distinct evolutionary histories) to perform a phylogenomic study of the early history of cryptophytes. Using ultraconserved elements from the host nuclear genome and symbiont nucleomorph and plastid genomes, we produce a three-genome phylogeny of 91 strains of cryptophytes. Our phylogenetic analyses find that that there are three major cryptophyte clades: Clade 1 comprises Chroomonas and Hemiselmis species, Clade 2, a taxonomically rich clade, comprises at least twelve genera, and Clade 3, comprises the heterotrophic Goniomonas species. Each of these major clades include both freshwater and marine species, but subclades within these clades differ in degrees of niche conservatism. Finally, we discuss priorities for taxonomic revision to Cryptophyceae based on previous studies and in light of these phylogenomic analyses.


Asunto(s)
Criptófitas , Genoma Mitocondrial , Filogenia , Criptófitas/genética , Evolución Biológica , Eucariontes/genética , Genoma Mitocondrial/genética , Plastidios/genética
5.
Environ Microbiol ; 25(12): 3280-3297, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37845005

RESUMEN

Algae with a more diverse suite of pigments can, in principle, exploit a broader swath of the light spectrum through chromatic acclimation, the ability to maximize light capture via plasticity of pigment composition. We grew Rhodomonas salina in wide-spectrum, red, green, and blue environments and measured how pigment composition differed. We also measured expression of key light-capture and photosynthesis-related genes and performed a transcriptome-wide expression analysis. We observed the highest concentration of phycoerythrin in green light, consistent with chromatic acclimation. Other pigments showed trends inconsistent with chromatic acclimation, possibly due to feedback loops among pigments or high-energy light acclimation. Expression of some photosynthesis-related genes was sensitive to spectrum, although expression of most was not. The phycoerythrin α-subunit was expressed two-orders of magnitude greater than the ß-subunit even though the peptides are needed in an equimolar ratio. Expression of genes related to chlorophyll-binding and phycoerythrin concentration were correlated, indicating a potential synthesis relationship. Pigment concentrations and expression of related genes were generally uncorrelated, implying post-transcriptional regulation of pigments. Overall, most differentially expressed genes were not related to photosynthesis; thus, examining associations between light spectrum and other organismal functions, including sexual reproduction and glycolysis, may be important.


Asunto(s)
Criptófitas , Ficoeritrina , Ficoeritrina/genética , Ficoeritrina/metabolismo , Criptófitas/genética , Criptófitas/metabolismo , Fotosíntesis/genética , Luz , Expresión Génica
6.
Curr Biol ; 33(5): 973-980.e5, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36773606

RESUMEN

Stealing prey plastids for metabolic gain is a common phenomenon among protists within aquatic ecosystems.1 Ciliates of the Mesodinium rubrum species complex are unique in that they also steal a transcriptionally active but non-dividing prey nucleus, the kleptokaryon, from certain cryptophytes.2 The kleptokaryon enables full control and replication of kleptoplastids but has a half-life of about 10 days.2 Once the kleptokaryon is lost, the ciliate experiences a slow loss of photosynthetic metabolism and eventually death.2,3,4 This transient ability to function phototrophically allows M. rubrum to form productive blooms in coastal waters.5,6,7,8 Here, we show, using multi-omics approaches, that an Antarctic strain of the ciliate not only depends on stolen Geminigera cryophila organelles for photosynthesis but also for anabolic synthesis of fatty acids, amino acids, and other essential macromolecules. Transcription of diverse pathways was higher in the kleptokaryon than that in G. cryophila, and many increased in higher light. Proteins of major biosynthetic pathways were found in greater numbers in the kleptokaryon relative to M. rubrum, implying anabolic dependency on foreign metabolism. We show that despite losing transcriptional control of the kleptokaryon, M. rubrum regulates kleptoplastid pigments with changing light, implying an important role for post-transcriptional control. These findings demonstrate that the integration of foreign organelles and their gene and protein expression, energy metabolism, and anabolism occur in the absence of a stable endosymbiotic association. Our results shed light on potential events early in the process of complex plastid acquisition and broaden our understanding of symbiogenesis.


Asunto(s)
Cilióforos , Ecosistema , Robo , Fotosíntesis/fisiología , Plastidios/fisiología , Criptófitas/genética , Cilióforos/genética
7.
J Eukaryot Microbiol ; 70(1): e12927, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35662328

RESUMEN

The Cyanidiales are a group of mostly thermophilic and acidophilic red algae that thrive near volcanic vents. Despite their phylogenetic relationship, the reduced genomes of Cyanidioschyzon merolae and Galdieria sulphuraria are strikingly different with respect to pre-mRNA splicing, a ubiquitous eukaryotic feature. Introns are rare and spliceosomal machinery is extremely reduced in C. merolae, in contrast to G. sulphuraria. Previous studies also revealed divergent spliceosomes in the mesophilic red alga Porphyridium purpureum and the red algal derived plastid of Guillardia theta (Cryptophyta), along with unusually high levels of unspliced transcripts. To further examine the evolution of splicing in red algae, we compared C. merolae and G. sulphuraria, investigating splicing levels, intron position, intron sequence features, and the composition of the spliceosome. In addition to identifying 11 additional introns in C. merolae, our transcriptomic analysis also revealed typical eukaryotic splicing in G. sulphuraria, whereas most transcripts in C. merolae remain unspliced. The distribution of intron positions within their host genes was examined to provide insight into patterns of intron loss in red algae. We observed increasing variability of 5' splice sites and branch donor regions with increasing intron richness. We also found these relationships to be connected to reductions in and losses of corresponding parts of the spliceosome. Our findings highlight patterns of intron and spliceosome evolution in related red algae under the pressures of genome reduction.


Asunto(s)
Precursores del ARN , Rhodophyta , Precursores del ARN/genética , Precursores del ARN/metabolismo , Filogenia , Empalme del ARN , Empalmosomas/genética , Empalmosomas/metabolismo , Rhodophyta/genética , Intrones/genética , Eucariontes/genética , Criptófitas/genética
8.
ISME J ; 17(1): 84-94, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36207492

RESUMEN

Morphology-based microscopic approaches are insufficient for a taxonomic classification of bacterivorous heterotrophic nanoflagellates (HNF) in aquatic environments since their cells do not display reliably distinguishable morphological features. This leads to a considerable lack of ecological insights into this large and taxonomically diverse functional guild. Here, we present a combination of fluorescence in situ hybridization followed by catalyzed reporter deposition (CARD-FISH) and environmental sequence analyses which revealed that morphologically indistinguishable, so far largely cryptic and uncultured aplastidic cryptophytes are ubiquitous and prominent protistan bacterivores in diverse freshwater ecosystems. Using a general probe for Cryptophyceae and its heterotrophic CRY1 lineage, we analyzed different water layers in 24 freshwater lakes spanning a broad range of trophic states, sizes and geographical locations. We show that bacterivorous aplastidic cryptophytes and the CRY1 lineage accounted for ca. 2/3 and » of total HNF, respectively, in both epilimnetic and hypolimnetic samples. These heterotrophic cryptophytes were generally smaller and more abundant than their chloroplast-bearing counterparts. They had high uptake rates of bacteria, hinting at their important roles in channeling carbon flow from prokaryotes to higher trophic levels. The worldwide ubiquity of Cryptophyceae and its CRY1 lineage was supported by 18S rRNA gene sequence analyses across a diverse set of 297 freshwater metagenomes. While cryptophytes have been considered to be mainly plastidic "algae", we show that it is the aplastidic counterparts that contribute considerably to bacterial mortality rates. Additionally, our results suggest an undiscovered diversity hidden amongst these abundant and morphologically diverse aplastidic cryptophytes.


Asunto(s)
Criptófitas , Ecosistema , Hibridación Fluorescente in Situ , Criptófitas/genética , Criptófitas/microbiología , Procesos Heterotróficos , Bacterias/genética , Lagos , Filogenia
9.
BMC Biol ; 20(1): 227, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209116

RESUMEN

BACKGROUND: Cryptophytes are ecologically important algae of interest to evolutionary cell biologists because of the convoluted history of their plastids and nucleomorphs, which are derived from red algal secondary endosymbionts. To better understand the evolution of the cryptophyte nucleomorph, we sequenced nucleomorph genomes from two photosynthetic and two non-photosynthetic species in the genus Cryptomonas. We performed a comparative analysis of these four genomes and the previously published genome of the non-photosynthetic species Cryptomonas paramecium CCAP977/2a. RESULTS: All five nucleomorph genomes are similar in terms of their general architecture, gene content, and gene order and, in the non-photosynthetic strains, loss of photosynthesis-related genes. Interestingly, in terms of size and coding capacity, the nucleomorph genome of the non-photosynthetic species Cryptomonas sp. CCAC1634B is much more similar to that of the photosynthetic C. curvata species than to the non-photosynthetic species C. paramecium. CONCLUSIONS: Our results reveal fine-scale nucleomorph genome variation between distantly related congeneric taxa containing photosynthetic and non-photosynthetic species, including recent pseudogene formation, and provide a first glimpse into the possible impacts of the loss of photosynthesis on nucleomorph genome coding capacity and structure in independently evolved colorless strains.


Asunto(s)
Criptófitas , Genoma , Criptófitas/genética , Genómica , Fotosíntesis , Filogenia , Plastidios/genética
10.
Biochemistry (Mosc) ; 87(10): 1187-1198, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36273887

RESUMEN

Due to the unique capability of modulating cell membrane potential upon photoactivation, channelrhodopsins of green (Chlorophyta) and cryptophytic (Cryptophyta) algae are widely employed in optogenetics, a modern method of light-dependent regulation of biological processes. To enable the search for new genes perspective for optogenetics, we have developed the PCR tests for the presence of genes of the cation and anion channelrhodopsins. Six isolates of green algae Haematococcus and Bracteacoccus from the White Sea region and 2 specimens of Rhodomonas sp. (Cryptophyta) from the regions of White and Black Seas were analyzed. Using our PCR test we have demonstrated the known Haematococcus rhodopsin genes and have discovered novel rhodopsin genes in the genus of Bracteacoccus. Two distantly homologous genes of anion channelrhodopsins were also identified in the cryptophytic Rhodomonas sp. from the White and Black Seas. These results indicate that the developed PCR tests might be useful tool for a broad-range screening of the Chlorophyta and Cryptophyta algae to identify unique channelrhodopsin genes.


Asunto(s)
Criptófitas , Rodopsina , Channelrhodopsins/metabolismo , Criptófitas/genética , Criptófitas/metabolismo , Rodopsina/genética , Mar Negro , Optogenética/métodos , Aniones , Cationes
11.
Genome Biol ; 23(1): 65, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232465

RESUMEN

BACKGROUND: Nucleomorphs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. RESULTS: In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans. We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain. CONCLUSIONS: We provide the first study of a nucleomorph genome using modern functional genomic tools, and derive numerous novel insights into the physical and functional organization of these unique genomes.


Asunto(s)
Criptófitas , Genoma , Cromatina , Cromosomas , Criptófitas/genética , Eucariontes/genética
12.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35079797

RESUMEN

In many lineages of algae and land plants, photosynthesis was lost multiple times independently. Comparative analyses of photosynthetic and secondary nonphotosynthetic relatives have revealed the essential functions of plastids, beyond photosynthesis. However, evolutionary triggers and processes that drive the loss of photosynthesis remain unknown. Cryptophytes are microalgae with complex plastids derived from a red alga. They include several secondary nonphotosynthetic species with closely related photosynthetic taxa. In this study, we found that a cryptophyte, Cryptomonas borealis, is in a stage just prior to the loss of photosynthesis. Cryptomonas borealis was mixotrophic, possessed photosynthetic activity, and grew independent of light. The plastid genome of C. borealis had distinct features, including increases of group II introns with mobility, frequent genome rearrangements, incomplete loss of inverted repeats, and abundant small/medium/large-sized structural variants. These features provide insight into the evolutionary process leading to the loss of photosynthesis.


Asunto(s)
Genoma de Plastidios , Criptófitas/genética , Fotosíntesis/genética , Filogenia , Plastidios/genética
13.
mBio ; 12(6): e0297321, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903046

RESUMEN

The Andvord fjord in the West Antarctic Peninsula (WAP) is known for its productivity and abundant megafauna. Nevertheless, seasonal patterns of the molecular diversity and abundance of protistan community members underpinning WAP productivity remain poorly resolved. We performed spring and fall expeditions pursuing protistan diversity, abundance of photosynthetic taxa, and the connection to changing conditions. 18S rRNA amplicon sequence variant (ASV) profiles revealed diverse predatory protists spanning multiple eukaryotic supergroups, alongside enigmatic heterotrophs like the Picozoa. Among photosynthetic protists, cryptophyte contributions were notable. Analysis of plastid-derived 16S rRNA ASVs supported 18S ASV results, including a dichotomy between cryptophytes and diatom contributions previously reported in other Antarctic regions. We demonstrate that stramenopile and cryptophyte community structures have distinct attributes. Photosynthetic stramenopiles exhibit high diversity, with the polar diatom Fragilariopsis cylindrus, unidentified Chaetoceros species, and others being prominent. Conversely, ASV analyses followed by environmental full-length rRNA gene sequencing, electron microscopy, and flow cytometry revealed that a novel alga dominates the cryptophytes. Phylogenetic analyses established that TPG clade VII, as named here, is evolutionarily distinct from cultivated cryptophyte lineages. Additionally, cryptophyte cell abundance correlated with increased water temperature. Analyses of global data sets showed that clade VII dominates cryptophyte ASVs at Southern Ocean sites and appears to be endemic, whereas in the Arctic and elsewhere, Teleaulax amphioxeia and Plagioselmis prolonga dominate, although both were undetected in Antarctic waters. Collectively, our studies provide baseline data against which future change can be assessed, identify different diversification patterns between stramenopiles and cryptophytes, and highlight an evolutionarily distinct cryptophyte clade that thrives under conditions enhanced by warming. IMPORTANCE The climate-sensitive waters of the West Antarctic Peninsula (WAP), including its many fjords, are hot spots of productivity that support multiple marine mammal species. Here, we profiled protistan molecular diversity in a WAP fjord known for high productivity and found distinct spatiotemporal patterns across protistan groups. Alongside first insights to seasonal changes in community structure, we discovered a novel phytoplankton species with proliferation patterns linked to temperature shifts. We then examined evolutionary relationships between this novel lineage and other algae and their patterns in global ocean survey data. This established that Arctic and Antarctic cryptophyte communities have different species composition, with the newly identified lineage being endemic to Antarctic waters. Our research provides critical knowledge on how specific phytoplankton at the base of Antarctic food webs respond to warming, as well as information on overall diversity and community structure in this changing polar environment.


Asunto(s)
Biodiversidad , Fitoplancton/aislamiento & purificación , Regiones Antárticas , Criptófitas/clasificación , Criptófitas/genética , Criptófitas/aislamiento & purificación , Estuarios , Filogenia , Fitoplancton/clasificación , Fitoplancton/genética , Plastidios/clasificación , Plastidios/genética , Estaciones del Año , Estramenopilos/clasificación , Estramenopilos/genética , Estramenopilos/aislamiento & purificación
14.
Protist ; 172(4): 125832, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34597847

RESUMEN

Cryptophytes are a small group of photosynthetic biflagellate organisms distributed worldwide in fresh, brackish and marine waters. Although members of this class are easily distinguished from other groups, species identification is difficult and studies concerning their diversity are scarce. Two strains of an undescribed Hemiselmis species were isolated from the marine waters off Brazil and Japan. Analyses of morphology, phycobiliprotein spectral characterization, molecular phylogeny and ITS2 secondary structure comparisons were performed to assist the identification. The morphological features of Hemiselmis aquamarina sp. nov. matches that of other species from the same genus, but it has a new type of phycocyanin. Molecular phylogeny and ITS2 secondary structure support H. aquamarina as a distinct species. Furthermore, phylogenetic inferences indicate H. aquamarina as closely related to H. tepida, H. andersenii and H. rufescens. Currently, all Hemiselmis species have been described from the Northern Hemisphere and most from the subtropical region. H. aquamarina is the first species of this genus described from the South Atlantic.


Asunto(s)
Criptófitas , Ficobiliproteínas , Criptófitas/genética , Japón , Fotosíntesis , Filogenia
15.
mBio ; 12(4): e0165621, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34281394

RESUMEN

Cation and anion channelrhodopsins (CCRs and ACRs, respectively) primarily from two algal species, Chlamydomonas reinhardtii and Guillardia theta, have become widely used as optogenetic tools to control cell membrane potential with light. We mined algal and other protist polynucleotide sequencing projects and metagenomic samples to identify 75 channelrhodopsin homologs from four channelrhodopsin families, including one revealed in dinoflagellates in this study. We carried out electrophysiological analysis of 33 natural channelrhodopsin variants from different phylogenetic lineages and 10 metagenomic homologs in search of sequence determinants of ion selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins. Our results show that association of a reduced number of glutamates near the conductance path with anion selectivity depends on a wider protein context, because prasinophyte homologs with a glutamate pattern identical to that in cryptophyte ACRs are cation selective. Desensitization is also broadly context dependent, as in one branch of stramenopile ACRs and their metagenomic homologs, its extent roughly correlates with phylogenetic relationship of their sequences. Regarding spectral tuning, we identified two prasinophyte CCRs with red-shifted spectra to 585 nm. They exhibit a third residue pattern in their retinal-binding pockets distinctly different from those of the only two types of red-shifted channelrhodopsins known (i.e., the CCR Chrimson and RubyACRs). In cryptophyte ACRs we identified three specific residue positions in the retinal-binding pocket that define the wavelength of their spectral maxima. Lastly, we found that dinoflagellate rhodopsins with a TCP motif in the third transmembrane helix and a metagenomic homolog exhibit channel activity. IMPORTANCE Channelrhodopsins are widely used in neuroscience and cardiology as research tools and are considered prospective therapeutics, but their natural diversity and mechanisms remain poorly characterized. Genomic and metagenomic sequencing projects are producing an ever-increasing wealth of data, whereas biophysical characterization of the encoded proteins lags behind. In this study, we used manual and automated patch clamp recording of representative members of four channelrhodopsin families, including a family in dinoflagellates that we report in this study. Our results contribute to a better understanding of molecular determinants of ionic selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins.


Asunto(s)
Aniones , Cationes , Channelrhodopsins/clasificación , Channelrhodopsins/genética , Criptófitas/química , Criptófitas/genética , Filogenia , Activación del Canal Iónico , Procesos Fotoquímicos
16.
Biochim Biophys Acta Bioenerg ; 1862(2): 148349, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248117

RESUMEN

Using a quantum mechanical/molecular mechanical approach, we show the mechanisms of how the protein environment of Guillardia theta anion channelrhodopsin-1 (GtACR1) can shift the absorption wavelength. The calculated absorption wavelengths for GtACR1 mutants, M105A, C133A, and C237A are in agreement with experimentally measured wavelengths. Among 192 mutant structures investigated, mutations at Thr101, Cys133, Pro208, and Cys237 are likely to increase the absorption wavelength. In particular, T101A GtACR1 was expressed in HEK293T cells. The measured absorption wavelength is 10 nm higher than that of wild type, consistent with the calculated wavelength. (i) Removal of a polar residue from the Schiff base moiety, (ii) addition of a polar or acidic residue to the ß-ionone ring moiety, and (iii) addition of a bulky residue to increase the planarity of the ß-ionone and Schiff base moieties are the basis of increasing the absorption wavelength.


Asunto(s)
Channelrhodopsins/metabolismo , Criptófitas/metabolismo , Mutación Missense , Proteínas Protozoarias/metabolismo , Sustitución de Aminoácidos , Channelrhodopsins/genética , Criptófitas/genética , Células HEK293 , Humanos , Proteínas Protozoarias/genética
17.
ISME J ; 15(4): 1056-1072, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33230263

RESUMEN

The marine ciliate Mesodinium rubrum is famous for its ability to acquire and exploit chloroplasts and other cell organelles from some cryptophyte algal species. We sequenced genomes and transcriptomes of free-swimming Teleaulax amphioxeia, as well as well-fed and starved M. rubrum in order to understand cellular processes upon sequestration under different prey and light conditions. From its prey, the ciliate acquires the ability to photosynthesize as well as the potential to metabolize several essential compounds including lysine, glycan, and vitamins that elucidate its specific prey dependency. M. rubrum does not express photosynthesis-related genes itself, but elicits considerable transcriptional control of the acquired cryptophyte organelles. This control is limited as light-dependent transcriptional changes found in free-swimming T. amphioxeia got lost after sequestration. We found strong transcriptional rewiring of the cryptophyte nucleus upon sequestration, where 35% of the T. amphioxeia genes were significantly differentially expressed within well-fed M. rubrum. Qualitatively, 68% of all genes expressed within well-fed M. rubrum originated from T. amphioxeia. Quantitatively, these genes contributed up to 48% to the global transcriptome in well-fed M. rubrum and down to 11% in starved M. rubrum. This tertiary endosymbiosis system functions for several weeks, when deprived of prey. After this point in time, the ciliate dies if not supplied with fresh prey cells. M. rubrum represents one evolutionary way of acquiring photosystems from its algal prey, and might represent a step on the evolutionary way towards a permanent tertiary endosymbiosis.


Asunto(s)
Cilióforos , Dinoflagelados , Cloroplastos , Cilióforos/genética , Criptófitas/genética , Dinoflagelados/genética , Regulación de la Expresión Génica , Fotosíntesis
18.
PLoS One ; 15(12): e0243387, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33270796

RESUMEN

The Cryptomonad Guillardia theta has 42 genes encoding microbial rhodopsin-like proteins in their genomes. Light-driven ion-pump activity has been reported for some rhodopsins based on heterologous E. coli or mammalian cell expression systems. However, neither their physiological roles nor the expression of those genes in native cells are known. To reveal their physiological roles, we investigated the expression patterns of these genes under various growth conditions. Nitrogen (N) deficiency induced color change in exponentially growing G. theta cells from brown to green. The 29 rhodopsin-like genes were expressed in native cells. We found that the expression of 6 genes was induced under N depletion, while that of another 6 genes was reduced under N depletion.


Asunto(s)
Criptófitas/genética , Rodopsinas Microbianas/genética , Color , Criptófitas/crecimiento & desarrollo , Criptófitas/metabolismo , Perfilación de la Expresión Génica , Nitrógeno/metabolismo , Filogenia , Rodopsinas Microbianas/metabolismo
19.
Harmful Algae ; 99: 101907, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33218433

RESUMEN

Photosynthetic species of the dinoflagellate genus Dinophysis are known to retain temporary cryptophyte plastids of the Teleaulax/Plagioselmis/Geminigera clade after feeding the ciliate Mesodinium rubrum. In the present study, partial plastid 23S rDNA sequences were retrieved in Southern Chilean waters from oceanic (Los Lagos region), and fjord systems (Aysén region), in single cells of Dinophysis and accompanying organisms (the heliozoan Actinophrys cf. sol and tintinnid ciliates), identified by means of morphological discrimination under the light microscope. All plastid 23S rDNA sequences (n = 23) from Dinophysis spp. (Dinophysis acuta, D. caudata, D. tripos and D. subcircularis) belonged to cryptophytes from clade V (Rhinomonas, Rhodomonas and Storeatula), although they could not be identified at genus level. Moreover, five plastid sequences obtained from heliozoans (Actinophryida, tentatively identified as Actinophrys cf. sol), and tintinnid ciliates, grouped together with those cryptophyte sequences. In contrast, two additional sequences from tintinnids belonged to other taxa (chlorophytes and cyanobacteria). Overall, the present study represents the first time that red cryptophyte plastids outside of the Teleaulax/Plagioselmis/Geminigera clade dominate in wild photosynthetic Dinophysis spp. These findings suggest that either Dinophysis spp. are able to feed on other ciliate prey than Mesodinium and/or that cryptophyte plastids from clade V prevail in members of the M. rubrum species complex in the studied area.


Asunto(s)
Criptófitas , Dinoflagelados , Chile , Criptófitas/genética , Dinoflagelados/genética , Océanos y Mares , Plastidios
20.
Proc Natl Acad Sci U S A ; 117(37): 22833-22840, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32873643

RESUMEN

Channelrhodopsins are light-gated ion channels widely used to control neuronal firing with light (optogenetics). We report two previously unknown families of anion channelrhodopsins (ACRs), one from the heterotrophic protists labyrinthulea and the other from haptophyte algae. Four closely related labyrinthulea ACRs, named RubyACRs here, exhibit a unique retinal-binding pocket that creates spectral sensitivities with maxima at 590 to 610 nm, the most red-shifted channelrhodopsins known, long-sought for optogenetics, and more broadly the most red-shifted microbial rhodopsins thus far reported. We identified three spectral tuning residues critical for the red-shifted absorption. Photocurrents recorded from the RubyACR from Aurantiochytrium limacinum (designated AlACR1) under single-turnover excitation exhibited biphasic decay, the rate of which was only weakly voltage dependent, in contrast to that in previously characterized cryptophyte ACRs, indicating differences in channel gating mechanisms between the two ACR families. Moreover, in A. limacinum we identified three ACRs with absorption maxima at 485, 545, and 590 nm, indicating color-sensitive photosensing with blue, green, and red spectral variation of ACRs within individual species of the labyrinthulea family. We also report functional energy transfer from a cytoplasmic fluorescent protein domain to the retinal chromophore bound within RubyACRs.


Asunto(s)
Channelrhodopsins/química , Activación del Canal Iónico/fisiología , Aniones/metabolismo , Criptófitas/genética , Células HEK293 , Humanos , Canales Iónicos/química , Canales Iónicos/metabolismo , Luz , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Optogenética/métodos , Rodopsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA