Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Int Immunopharmacol ; 135: 112242, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38772296

RESUMEN

The emergence of Cryptococcus neoformans has posed an undeniable burden to many regions worldwide, with its strains mainly entering the lungs through the respiratory tract and spreading throughout the body. Limitations of drug regimens, such as high costs and limited options, have directed our attention toward the promising field of vaccine development. In this study, the subtractive proteomics approach was employed to select target proteins from databases that can accurately cover serotypes A and D of the Cryptococcus neoformans. Further, two multi-epitope vaccines consisting of T and B cell epitopes were demonstrated that they have good structural stability and could bind with immune receptor to induce desired immune responses in silico. After further evaluation, these vaccines show the potential for large-scale production and applicability to the majority of the population of the world. In summary, these two vaccines have been theoretically proven to combat Cryptococcus neoformans infections, awaiting further experimental validation of their actual protective effects.


Asunto(s)
Biología Computacional , Criptococosis , Cryptococcus neoformans , Epítopos de Linfocito B , Vacunas Fúngicas , Proteómica , Cryptococcus neoformans/inmunología , Vacunas Fúngicas/inmunología , Proteómica/métodos , Criptococosis/inmunología , Criptococosis/prevención & control , Humanos , Biología Computacional/métodos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Animales , Antígenos Fúngicos/inmunología , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/química , Desarrollo de Vacunas , Inmunoinformática
2.
ACS Infect Dis ; 10(6): 2089-2100, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38819951

RESUMEN

Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, which poses a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semisynthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semisynthetic glycoconjugate vaccines contain an identical synthetic decasaccharide (M2 motif) antigen. This antigen is present in serotype A strains, which constitute 95% of the clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity toward M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced weakly opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). These findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. This antigen could serve as a component in a multivalent GXM motif vaccine.


Asunto(s)
Anticuerpos Antifúngicos , Criptococosis , Cryptococcus neoformans , Vacunas Fúngicas , Glicoconjugados , Vacunas Conjugadas , Cryptococcus neoformans/inmunología , Animales , Vacunas Fúngicas/inmunología , Ratones , Criptococosis/prevención & control , Criptococosis/inmunología , Glicoconjugados/inmunología , Glicoconjugados/química , Vacunas Conjugadas/inmunología , Anticuerpos Antifúngicos/inmunología , Femenino , Polisacáridos/inmunología , Polisacáridos/química , Ratones Endogámicos BALB C , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/química , Antígenos Fúngicos/inmunología
3.
Methods Mol Biol ; 2775: 411-422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758334

RESUMEN

Cryptococcus neoformans infections are a major worldwide concern as current treatment strategies are becoming less effective in alleviating the infection. The most extreme and fatal cases are those of immunocompromised individuals. Clinical treatments for cryptococcosis are limited to a few classes of approved drugs, and due to a rise in drug resistance, these drugs are becoming less effective. Therefore, it is essential to develop innovative ways to control this infection. Vaccinations have emerged as a safe, viable, and cost-effective solution to treat a number of diseases over the years. Currently, there are no clinically available vaccines to treat cryptococcal infections, but a number of studies have shown promising results in animal models. Here, we present step-by-step experimental protocols using live-attenuated or heat-killed C. neoformans cells as a vaccination strategy in a preventive or in a therapeutic murine model of cryptococcosis.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Modelos Animales de Enfermedad , Vacunas Fúngicas , Cryptococcus neoformans/inmunología , Criptococosis/inmunología , Criptococosis/prevención & control , Animales , Vacunas Fúngicas/inmunología , Ratones , Vacunación/métodos , Vacunas Atenuadas/inmunología , Humanos
4.
Methods Mol Biol ; 2775: 393-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758333

RESUMEN

Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.


Asunto(s)
Quitosano , Criptococosis , Cryptococcus neoformans , Vacunas Fúngicas , Animales , Quitosano/química , Ratones , Vacunas Fúngicas/inmunología , Vacunas Fúngicas/genética , Vacunas Fúngicas/administración & dosificación , Criptococosis/inmunología , Criptococosis/prevención & control , Criptococosis/microbiología , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Vacunación/métodos , Femenino , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética
5.
mBio ; 15(5): e0064924, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38619236

RESUMEN

Invasive fungal infections are a significant public health concern, with mortality rates ranging from 20% to 85% despite current treatments. Therefore, we examined whether a ketogenic diet could serve as a successful treatment intervention in murine models of Cryptococcus neoformans and Candida albicans infection in combination with fluconazole-a low-cost, readily available antifungal therapy. The ketogenic diet is a high-fat, low-carbohydrate diet that promotes fatty acid oxidation as an alternative to glycolysis through the production of ketone bodies. In this series of experiments, mice fed a ketogenic diet prior to infection with C. neoformans and treated with fluconazole had a significant decrease in fungal burden in both the brain (mean 2.66 ± 0.289 log10 reduction) and lung (mean 1.72 ± 0.399 log10 reduction) compared to fluconazole treatment on a conventional diet. During C. albicans infection, kidney fungal burden of mice in the keto-fluconazole combination group was significantly decreased compared to fluconazole alone (2.37 ± 0.770 log10-reduction). Along with higher concentrations of fluconazole in the plasma and brain tissue, fluconazole efficacy was maximized at a significantly lower concentration on a keto diet compared to a conventional diet, indicating a dramatic effect on fluconazole pharmacodynamics. Our findings indicate that a ketogenic diet potentiates the effect of fluconazole at multiple body sites during both C. neoformans and C. albicans infection and could have practical and promising treatment implications.IMPORTANCEInvasive fungal infections cause over 2.5 million deaths per year around the world. Treatments for fungal infections are limited, and there is a significant need to develop strategies to enhance antifungal efficacy, combat antifungal resistance, and mitigate treatment side effects. We determined that a high-fat, low-carbohydrate ketogenic diet significantly potentiated the therapeutic effect of fluconazole, which resulted in a substantial decrease in tissue fungal burden of both C. neoformans and C. albicans in experimental animal models. We believe this work is the first of its kind to demonstrate that diet can dramatically influence the treatment of fungal infections. These results highlight a novel strategy of antifungal drug enhancement and emphasize the need for future investigation into dietary effects on antifungal drug activity.


Asunto(s)
Antifúngicos , Candida albicans , Candidiasis , Criptococosis , Cryptococcus neoformans , Dieta Cetogénica , Modelos Animales de Enfermedad , Fluconazol , Animales , Fluconazol/farmacología , Fluconazol/administración & dosificación , Ratones , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Candidiasis/dietoterapia , Candidiasis/microbiología , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Criptococosis/dietoterapia , Criptococosis/prevención & control , Femenino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Pulmón/microbiología , Pulmón/efectos de los fármacos
6.
Molecules ; 28(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687052

RESUMEN

Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.


Asunto(s)
Antifúngicos , Biopelículas , Cryptococcus neoformans , Proteínas Fúngicas , Lisofosfolipasa , Macrófagos Alveolares , Própolis , Humanos , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Criptococosis/prevención & control , Criptococosis/terapia , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/patogenicidad , Etanol/química , Proteínas Fúngicas/antagonistas & inhibidores , Liposomas , Enfermedades Pulmonares Fúngicas/prevención & control , Enfermedades Pulmonares Fúngicas/terapia , Lisofosfolipasa/antagonistas & inhibidores , Macrófagos Alveolares/microbiología , Própolis/química , Própolis/farmacología , Virulencia/efectos de los fármacos , Factores de Virulencia/antagonistas & inhibidores , Antifúngicos/química , Antifúngicos/farmacología
7.
Emerg Microbes Infect ; 12(2): 2244087, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37526401

RESUMEN

Systemic infection with Cryptococcus neoformans, a dangerous and contagious pathogen found throughout the world, frequently results in lethal cryptococcal pneumonia and meningoencephalitis, and no effective treatments and vaccination of cryptococcosis are available. Here, we describe Prm1, a novel regulator of C. neoformans virulence. C. neoformans prm1Δ cells exhibit extreme sensitivity to various environmental stress conditions. Furthermore, prm1Δ cells show deficiencies in the biosynthesis of chitosan and mannoprotein, which in turn result in impairment of cell wall integrity. Treatment of mice with heat-killed prm1Δ cells was found to facilitate the host immunological defence against infection with wild-type C. neoformans. Further investigation demonstrated that prm1Δ cells strongly promote pulmonary production of interferon-γ, leading to activation of macrophage M1 differentiation and inhibition of M2 polarization. Therefore, our findings suggest that C. neoformans Prm1 may be a viable target for the development of anti-cryptococcosis medications and, cells lacking Prm1 represent a promising candidate for a vaccine.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Animales , Ratones , Calor , Criptococosis/prevención & control , Cryptococcus neoformans/genética , Vacunación , Inmunización
8.
J Am Soc Mass Spectrom ; 34(9): 1928-1940, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37222660

RESUMEN

Fungal pathogens are emerging threats to global health with the rise of incidence associated with climate change and increased geographical distribution; factors also influencing host susceptibility to infection. Accurate detection and diagnosis of fungal infections is paramount to offer rapid and effective therapeutic options. For improved diagnostics, the discovery and development of protein biomarkers presents a promising avenue; however, this approach requires a priori knowledge of infection hallmarks. To uncover putative novel biomarkers of disease, profiling of the host immune response and pathogen virulence factor production is indispensable. In this study, we use mass-spectrometry-based proteomics to resolve the temporal proteome of Cryptococcus neoformans infection of the spleen following a murine model of infection. Dual perspective proteome profiling defines global remodeling of the host over a time course of infection, confirming activation of immune associated proteins in response to fungal invasion. Conversely, pathogen proteomes detect well-characterized C. neoformans virulence determinants, along with novel mapped patterns of pathogenesis during the progression of disease. Together, our innovative systematic approach confirms immune protection against fungal pathogens and explores the discovery of putative biomarker signatures from complementary biological systems to monitor the presence and progression of cryptococcal disease.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Humanos , Animales , Ratones , Proteoma , Bazo/metabolismo , Criptococosis/microbiología , Criptococosis/prevención & control , Factores de Virulencia/metabolismo , Biomarcadores , Proteínas Fúngicas/metabolismo
9.
PeerJ ; 11: e14778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743957

RESUMEN

Background: Cryptococcosis is a relevant invasive fungal infection that affects immunocompromised and immunocompetent individuals when caused by Cryptococcus gattii. Host innate and adaptive immune responses can be subverted by C. gattii, that blocks the differentiation of T helper (Th) 1 and Th17 cells, which are involved in the protection against cryptococcosis. Moreover, the macrophage polarization is modulated by C. gattii infection that requires a balance in the macrophage subsets to control the C. gattii infection. Toll-like receptor (TLR) 2 agonists are important immunomodulators favoring a pro-inflammatory response with potential fungicidal activity, and TLR2 agonists have been used as adjuvants in vaccines against infections caused by bacteria or viruses. Therefore, this work aimed to evaluate the immunomodulatory effect of the tripalmitoyl lipopeptide S-glycerol cysteine (Pam3CSK4 or P3C4), a TLR2 agonist, as an adjuvant in the vaccination against C. gattii infection. Methods and Results: C57BL/6 mice were immunized with 2 × 107 inactivated yeasts of C. gattii via intranasal route on day 1, 14 and 28 (Immunized group). Immunization was associated with 1µg or 10µg of adjuvant P3C4 (Immunized+P3C4-1µg or Immunized+P3C4-10 µg), followed by C. gattii infection on day 42 after the immunization protocol. Immunized+P3C4-1 µg group had reduced levels of IgG1, IgG2a and IgA and no significant difference in the IgG and IgM anti-GXM antibody titer was detected, compared to the Immunized group. High levels of IL-17 and IL-1ß in lung tissue of mice from the Immunized+P3C4-1µg group did not promote a predominance of Th17 cells, in contrast, the frequency of TLR2+ cells was increased in immunized mice that received 1 µg of P3C4. The reduction in the relative expression of T-bet and high levels of Foxp3 detected in the lungs of the Immunized+P3C4-1µg group suggest a prevalence of regulatory T cells in the tissue, which did not contribute to the control of C. gattii infection. The immunization protocol associated with 10 µg of adjuvant P3C4 induced high levels of IL-17 in the lung tissue, whereas the levels of pro-inflammatory cytokines were downregulated. To evaluate the effect of adjuvant P3C4 in the control of C. gattii infection, quantification of the fungal burden in the lungs was performed by the CFU assay, and the groups with adjuvant P3C4 showed a pulmonary C. gattii burden that was not significantly altered when compared with the immunized group. The mice that received 1 µg of adjuvant P3C4 had a lower percentage of inflammatory infiltrate in the lungs. Conclusion: The immunomodulatory effect of P3C4, associated with the immunization protocol, plays an imbalance between pro- and anti-inflammatory response in the lungs that did not favor a protection against C. gattii infection, which is related to the immune response characterized by a suppressive/regulatory profile in the pulmonary microenvironment after C. gattii infection.


Asunto(s)
Criptococosis , Cryptococcus gattii , Animales , Ratones , Interleucina-17 , Receptor Toll-Like 2 , Ratones Endogámicos C57BL , Criptococosis/prevención & control , Inmunización , Vacunación , Adyuvantes Inmunológicos/farmacología
10.
Microbiol Immunol ; 67(5): 211-223, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36786396

RESUMEN

Cryptococcosis is a mycosis caused by Cryptococcus neoformans and C. gattii species complexes. Although this infection is potentially lethal, no prophylactic vaccine is yet commercially available, and the immune memory that enables prevention is still under investigation. These pathogens have a capsule layer for immune evasion and a sophisticated mechanism to advance the infection, and it is expected that these characteristics will make it difficult to develop prophylactic vaccines and to decipher the protective immunity. The current vaccine studies are focused on subunit, mRNA, DNA, and viral vector vaccines, with whole-cell vaccines also proving successful against cryptococcal infections. Cryptococcal whole-cell vaccines have been composed of highly immunostimulating strains with low-pathogenicity that are modified by genetic recombination technology. Examples include the whole-cell vaccines H99γ, sgl1∆, fbp1∆, znf2oe , cda1/2/3∆, cap59∆, and cap60∆. Some of these whole-cell vaccines were found to be highly effective in prolonging life and suppressing the fungal burden after an infection challenge in mice, and to be cross-reactive to C. neoformans, C. gattii, and other fungal pathogens. Furthermore, for some vaccines, the protective effect can be retained even in an immunocompromised host depleted of CD4+ T cells. These findings have provided new insights into protective immunity that should aid in vaccine development. In this review, we highlight the upsides and downsides of whole-cell vaccines against cryptococcosis.


Asunto(s)
Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Vacunas , Animales , Ratones , Criptococosis/prevención & control , Criptococosis/microbiología , Linfocitos T
11.
Microbes Infect ; 25(6): 105122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36842669

RESUMEN

Prior infections can provide protection or enhance susceptibility to a subsequent infection through microorganism's interaction or host immunomodulation. Staphylococcus aureus (SA) and Cryptococcus gattii (CG) cause lungs infection, but it is unclear how they interact in vivo. This study aimed to study the effects of the primary SA lung infection on secondary cryptococcosis caused by CG in a murine model. The mice's survival, fungal burden, behavior, immune cells, cytokines, and chemokines were quantified to evaluate murine cryptococcosis under the influence of a previous SA infection. Further, fungal-bacterial in vitro interaction was studied in a culture medium and a phagocytosis assay. The primary infection with SA protects animals from the subsequent CG infection by reducing lethality, improving behavior, and impairing the fungal proliferation within the host. This phenotype was associated with the proinflammatory antifungal host response elicited by the bacteria in the early stage of cryptococcosis. There was no direct inhibition of CG by SA, although the phagocytic activity of macrophages was reduced. Identifying mechanisms involved in this protection may lead to new approaches for preventing and treating cryptococcosis.


Asunto(s)
Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Animales , Ratones , Cryptococcus neoformans/genética , Staphylococcus aureus , Modelos Animales de Enfermedad , Criptococosis/microbiología , Criptococosis/prevención & control , Cryptococcus gattii/fisiología
12.
Immunobiology ; 228(1): 152312, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577248

RESUMEN

BACKGROUND: Airway epithelial cells are crucial for the establishment of cryptococcosis. In experimental cryptococcosis, the Th2 immune response is associated with host susceptibility, while Th1 cells are associated with protection. The absence of IL-27 receptor alpha in mice favor the increase Cryptococcus neoformans burden in the lung. Here, we evaluated the effects of the combination of IL-4, IFN-γ or IL-27 with C. gattii on human bronchial epithelial cells (BEAS-2B). METHODS: BEAS-2B were stimulated with IL-4, IFN-γ or IL-27 (100 ng/mL) and/or live yeast forms of C. gattii (multiplicities of infection (MOI) of 1-100) and vice-versa, as well as with heat-killed cells of C. gattii for 24 h. RESULTS: None of the C. gattii MOIs had cytotoxic effects on BEAS-2B when compared to control. The cells stimulated by cytokines (IL-4, IFN-γ or IL-27) followed by live yeast forms of C. gattii (MOI of 100) infection and vice-versa demonstrated a reduction in IL-6, IL-8 and/or CCL2 production and activation of STAT6 (induced by IL-4) and STAT1 (induced by IL-27 or IFN-γ) when compared to cells stimulated with C. gattii, IL-4, IFN-γ or IL-27. In the combination of cytokines and heat-killed cells of C. gattii, no inhibition of these inflammatory parameters was observed. The growth of C. gattii was increased while the phagocytosis of live yeast forms of C. gattii in the BEAS-2B were reduced in the presence of IL-4, IFN-γ or IL-27. Conclusion The association of live yeast forms, but not heat-killed yeast forms, of C. gattii with IL-4, IFN-γ or IL-27 induced an anti-inflammatory effect.


Asunto(s)
Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Interleucina-27 , Humanos , Criptococosis/prevención & control , Citocinas/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Interferón gamma/farmacología , Interleucina-4/farmacología
13.
PLoS Negl Trop Dis ; 16(8): e0010625, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36006867

RESUMEN

Cryptococcosis is a neglected tropical infection and a major cause of morbidity and mortality, especially in HIV-positive persons in Africa. Efforts to manage HIV infection have not had any significant impact on the fatalities due to cryptococcosis. An integrated healthcare approach that includes universal care coverage for Africans, expanded national care guidelines to include CrAg screening for vulnerable groups in all African countries, collaborative research, infection surveillance, and data sharing within Africa will mark a turnaround point.


Asunto(s)
Criptococosis , Cryptococcus , Prestación Integrada de Atención de Salud , Infecciones por VIH , África/epidemiología , Antígenos Fúngicos , Criptococosis/diagnóstico , Criptococosis/epidemiología , Criptococosis/prevención & control , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Humanos
14.
Front Cell Infect Microbiol ; 11: 739027, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568097

RESUMEN

Cryptococcus neoformans is a fungal pathogen causing life-threatening meningoencephalitis in susceptible individuals. Fungal vaccine development has been hampered by the fact that cryptococcosis occurs during immunodeficiency. We previously reported that a C. neoformans mutant (Δsgl1) accumulating sterylglucosides (SGs) is avirulent and provides complete protection to WT challenge, even under CD4+ T cell depletion, an immunodeficient condition commonly associated with cryptococcosis. We found high levels of SGs in the lungs post-immunization with Δsgl1 that decreased upon fungal clearance. Th1 cytokines increased whereas Th2 cytokines concurrently decreased, coinciding with a large recruitment of leukocytes to the lungs. Depletion of B or CD8+ T cells did not affect either Δsgl1 clearance or protection from WT challenge. Although CD4+ T cell depletion affected clearance, mice were still protected indicating that clearance of the mutant was not necessary for host protection. Protection was lost only when both CD4+ and CD8+ T cells were depleted, highlighting a previously unexplored role of fungal-derived SGs as an immunoadjuvant for host protection against cryptococcosis.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Animales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Criptococosis/prevención & control , Pulmón , Ratones , Vacunación
15.
Semin Respir Crit Care Med ; 41(1): 69-79, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32000285

RESUMEN

Cryptococcosis has become an important infection in both immunocompromised and immunocompetent hosts. Although Cryptococcus is mainly recognized by its ability to cause meningoencephalitis, it can infect almost any organ of the human body, with pulmonary infection being the second most common disease manifestation. In cases of meningitis, symptom onset may be insidious, but headaches, fevers, or mental status changes should warrant diagnostic testing. Symptoms of pulmonary disease are nonspecific and may include fever, chills, cough, malaise, night sweats, dyspnea, weight loss, and hemoptysis. Due to protean manifestations of infection, diagnosis may be delayed or misdiagnosis may occur. Diagnosis typically is made by antigen testing of serum or cerebrospinal fluid or by culture or histopathology of infected tissues. A lumbar puncture with the measurement of opening pressure is recommended for patients with suspected or proven cryptococcosis. Treatment of cryptococcosis is based on the anatomical site of disease, severity of disease, and underlying immune status of the patient. Amphotericin B preparations plus 5-flucytosine is used as initial treatment of meningitis, disseminated infection, or moderate-to-severe pulmonary infection followed by fluconazole as a consolidation therapy. Fluconazole is effective for mild-to-moderate pulmonary infection. Important complications include elevated intracranial pressure and immune reconstitution syndrome, which may resemble active disease.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/tratamiento farmacológico , Criptococosis/diagnóstico , Criptococosis/tratamiento farmacológico , Enfermedades Pulmonares Fúngicas/diagnóstico , Enfermedades Pulmonares Fúngicas/tratamiento farmacológico , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Anfotericina B/uso terapéutico , Antifúngicos/uso terapéutico , Criptococosis/prevención & control , Fluconazol/uso terapéutico , Humanos , Huésped Inmunocomprometido , Enfermedades Pulmonares Fúngicas/prevención & control , Radiografía
16.
Med Mycol ; 58(2): 227-239, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31095342

RESUMEN

Current antifungal drugs present poor effectiveness and there is no available vaccine for fungal infections. Thus, novel strategies to treat or prevent invasive mycosis, such as cryptococcosis, are highly desirable. One strategy is the use of immunomodulators of polysaccharide nature isolated from mushrooms. The purpose of the present work was to evaluate the immunostimulatory activity of ß-(1,3)-glucan-containing exopolysaccharides (EPS) from the edible mushrooms Auricularia auricula in phagocytes and mice infected with Cryptococcus neoformans. EPS triggered macrophages and dendritic cell activation upon binding to Dectin-1, a pattern recognition receptor of the C-type lectin receptor family. Engagement of Dectin-1 culminated in pro-inflammatory cytokine production and cell maturation via its canonical Syk-dependent pathway signaling. Furthermore, upon EPS treatment, M2-like phenotype macrophages, known to support intracellular survival and replication of C. neoformans, repolarize to M1 macrophage pattern associated with enhanced production of the microbicidal molecule nitric oxide that results in efficient killing of C. neoformans. Treatment with EPS also upregulated transcript levels of genes encoding products associated with host protection against C. neoformans and Dectin-1 mediated signaling in macrophages. Finally, orally administrated ß-glucan-containing EPS from A. auricular enhanced the survival of mice infected with C. neoformans. In conclusion, the results demonstrate that EPS from A. auricula exert immunostimulatory activity in phagocytes and induce host protection against C. neoformans, suggesting that polysaccharides from this mushroom may be promising as an adjuvant for vaccines or antifungal therapy.


Asunto(s)
Agaricales/química , Criptococosis/prevención & control , Polisacáridos Fúngicos/inmunología , Fagocitos/efectos de los fármacos , Fagocitos/inmunología , beta-Glucanos/inmunología , Animales , Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Citocinas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Factores Inmunológicos/farmacología , Lectinas Tipo C/inmunología , Enfermedades Pulmonares Fúngicas , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Fagocitos/microbiología , Transducción de Señal , beta-Glucanos/farmacología
17.
Vaccine ; 38(3): 620-626, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31699504

RESUMEN

Meningitis due to Cryptococcus neoformans is responsible for upwards of 180,000 deaths worldwide annually, mostly in immunocompromised individuals. Currently there are no licensed fungal vaccines, and even with anti-fungal drug treatment, cryptococcal meningitis is often fatal. Our lab previously demonstrated vaccination with recombinant cryptococcal proteins delivered in glucan particles (GPs) protects mice against an otherwise lethal infection. The aim of the present study was to discover additional cryptococcal antigens affording vaccine-mediated protection. Sixteen proteins, each with evidence of extracellularity, were selected for in vivo testing based on their abundance in protective alkaline extracts of an acapsular C. neoformans strain, their known immunogenicity, and/or their high transcript level during human infection. Candidate antigens were recombinantly expressed in E. coli, purified and loaded into GPs. BALB/c and C57BL/6 mice received three subcutaneous injections of GP-based vaccine, and survival was assessed for 84 days following a lethal orotracheal challenge with strain KN99. As with our six published GP-vaccines, we saw differences in overall protection between mouse strains such that BALB/c mice typically demonstrated better survival than C57BL/6 mice. From these studies, we identified seven new proteins which, when administered as GP-vaccines, protect BALB/c and/or C57BL/6 mice against cryptococcal infection. With these results, we expand the pool of novel protective antigens to eleven proteins and demonstrate the potential for selection of highly transcribed extracellular proteins as vaccine targets. These screens highlight the efficacy of GP-subunit vaccines and identify promising antigens for further testing in anti-cryptococcal, multi-epitope vaccine formulations.


Asunto(s)
Antígenos Fúngicos/administración & dosificación , Criptococosis/prevención & control , Cryptococcus neoformans/efectos de los fármacos , Vacunas Fúngicas/administración & dosificación , Glucanos/administración & dosificación , Animales , Antígenos Fúngicos/inmunología , Criptococosis/inmunología , Cryptococcus neoformans/fisiología , Vacunas Fúngicas/inmunología , Glucanos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Especificidad de la Especie
18.
Biomolecules ; 9(12)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817559

RESUMEN

Cryptococcus neoformans is an encapsulated yeast responsible for more than 180,000 deaths per year. The standard therapeutic approach against cryptococcosis is a combination of amphotericin B with flucytosine. In countries where cryptococcosis is most prevalent, 5-fluorocytosine is rarely available, and amphotericin B requires intravenous administration. C. neoformans biofilm formation is related to increased drug resistance, which is an important outcome for hospitalized patients. Here, we describe new molecules with anti-cryptococcal activity. A collection of 66 semisynthetic derivatives of ursolic acid and betulinic acid was tested against mature biofilms of C. neoformans at 25 µM. Out of these, eight derivatives including terpenes, benzazoles, flavonoids, and quinolines were able to cause damage and eradicate mature biofilms. Four terpene compounds demonstrated significative growth inhibition of C. neoformans. Our study identified a pentacyclic triterpenoid derived from betulinic acid (LAFIS13) as a potential drug for anti-cryptococcal treatment. This compound appears to be highly active with low toxicity at minimal inhibitory concentration and capable of biofilm eradication.


Asunto(s)
Biopelículas/efectos de los fármacos , Criptococosis/prevención & control , Cryptococcus neoformans/fisiología , Triterpenos Pentacíclicos/farmacología , Línea Celular , Criptococosis/microbiología , Cryptococcus neoformans/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Triterpenos Pentacíclicos/química , Triterpenos/química , Ácido Betulínico , Ácido Ursólico
19.
mBio ; 10(6)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772051

RESUMEN

Cryptococcus neoformans is a fungal pathogen that infects the lungs and then often disseminates to the central nervous system, causing meningitis. How Cryptococcus is able to suppress host immunity and escape the antifungal activity of macrophages remains incompletely understood. We reported that the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase, promotes Cryptococcus virulence by regulating host-Cryptococcus interactions. Our recent studies demonstrated that the fbp1Δ mutant elicited superior protective Th1 host immunity in the lungs and that the enhanced immunogenicity of heat-killed fbp1Δ yeast cells can be harnessed to confer protection against a subsequent infection with the virulent parental strain. We therefore examined the use of heat-killed fbp1Δ cells in several vaccination strategies. Interestingly, the vaccine protection remains effective even in mice depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that vaccinating mice with heat-killed fbp1Δ induces significant cross-protection against challenge with diverse invasive fungal pathogens, including C. neoformans, C. gattii, and Aspergillus fumigatus, as well as partial protection against Candida albicans Thus, our data suggest that the heat-killed fbp1Δ strain has the potential to be a suitable vaccine candidate against cryptococcosis and other invasive fungal infections in both immunocompetent and immunocompromised populations.IMPORTANCE Invasive fungal infections kill more than 1.5 million people each year, with limited treatment options. There is no vaccine available in clinical use to prevent and control fungal infections. Our recent studies showed that a mutant of the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase in Cryptococcus neoformans, elicited superior protective Th1 host immunity. Here, we demonstrate that the heat-killed fbp1Δ cells (HK-fbp1) can be harnessed to confer protection against a challenge by the virulent parental strain, even in animals depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that HK-fbp1 vaccination induces significant cross-protection against challenge with diverse invasive fungal pathogens. Thus, our data suggest that HK-fbp1 has the potential to be a broad-spectrum vaccine candidate against invasive fungal infections in both immunocompetent and immunocompromised populations.


Asunto(s)
Criptococosis/prevención & control , Cryptococcus neoformans/inmunología , Vacunas Fúngicas/administración & dosificación , Infecciones Fúngicas Invasoras/prevención & control , Animales , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/fisiología , Protección Cruzada , Criptococosis/inmunología , Criptococosis/microbiología , Cryptococcus gattii/inmunología , Cryptococcus gattii/fisiología , Cryptococcus neoformans/química , Cryptococcus neoformans/genética , Femenino , Proteínas Fúngicas/administración & dosificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Vacunas Fúngicas/genética , Vacunas Fúngicas/inmunología , Calor , Humanos , Infecciones Fúngicas Invasoras/inmunología , Infecciones Fúngicas Invasoras/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/genética , Vacunas de Productos Inactivados/inmunología
20.
mBio ; 10(3)2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213551

RESUMEN

Cryptococcus neoformans causes deadly mycosis primarily in AIDS patients, whereas Cryptococcus gattii infects mostly non-HIV patients, even in regions with high burdens of HIV/AIDS and an established environmental presence of C. gattii As HIV induces type I IFN (t1IFN), we hypothesized that t1IFN would differentially affect the outcome of C. neoformans and C. gattii infections. Exogenous t1IFN induction using stabilized poly(I·C) (pICLC) improved murine outcomes in either cryptococcal infection. In C. neoformans-infected mice, pICLC activity was associated with C. neoformans containment and classical Th1 immunity. In contrast, pICLC activity against C. gattii did not require any immune factors previously associated with C. neoformans immunity: T, B, and NK cells, IFN-γ, and macrophages were all dispensable. Interestingly, C. gattii pICLC activity depended on ß-2-microglobulin, which impacts iron levels among other functions. Iron supplementation reversed pICLC activity, suggesting C. gattii pICLC activity requires iron limitation. Also, pICLC induced a set of iron control proteins, some of which were directly inhibitory to cryptococcus in vitro, suggesting t1IFN regulates iron availability in the pulmonary air space fluids. Thus, exogenous induction of t1IFN significantly improves the outcome of murine infection by C. gattii and C. neoformans but by distinct mechanisms; the C. gattii effect was mediated by iron limitation, while the effect on C. neoformans infection was through induction of classical T-cell-dependent immunity. Together this difference in types of T-cell-dependent t1IFN immunity for different Cryptococcus species suggests a possible mechanism by which HIV infection may select against C. gattii but not C. neoformansIMPORTANCECryptococcus neoformans and Cryptococcus gattii cause fatal infection in immunodeficient and immunocompetent individuals. While these fungi are sibling species, C. gattii infects very few AIDS patients, while C. neoformans infection is an AIDS-defining illness, suggesting that the host response to HIV selects C. neoformans over C. gattii We used a viral mimic molecule (pICLC) to stimulate the immune response, and pICLC treatment improved mouse outcomes from both species. pICLC-induced action against C. neoformans was due to activation of well-defined immune pathways known to deter C. neoformans, whereas these immune pathways were dispensable for pICLC treatment of C. gattii Since these immune pathways are eventually destroyed by HIV/AIDS, our data help explain why the antiviral immune response in AIDS patients is unable to control C. neoformans infection but is protective against C. gattii Furthermore, pICLC induced tighter control of iron in the lungs of mice, which inhibited C. gattii, thus suggesting an entirely new mode of nutritional immunity activated by viral signals.


Asunto(s)
Criptococosis/inmunología , Criptococosis/prevención & control , Interferón Tipo I/farmacología , Hierro/metabolismo , Linfocitos T/inmunología , Animales , Cryptococcus gattii/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Hierro/administración & dosificación , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli I-C/administración & dosificación , Células TH1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA