Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 14-29, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34981758

RESUMEN

With recent developments in X-ray sources, instrumentation and data-analysis tools, time-resolved crystallographic experiments, which were originally the preserve of a few expert groups, are becoming simpler and can be carried out at more radiation sources, and are thus increasingly accessible to a growing user base. However, these experiments are just that: discrete experiments, not just `data collections'. As such, careful planning and consideration of potential pitfalls is required to enable a successful experiment. Here, some of the key factors that should be considered during the planning and execution of a time-resolved structural study are outlined, with a particular focus on synchrotron-based experiments.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Sincrotrones , Animales , Análisis de Datos , Enzimas/química , Humanos
2.
Commun Biol ; 4(1): 1044, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493805

RESUMEN

In cryo-electron microscopy (cryo-EM) data collection, locating a target object is error-prone. Here, we present a machine learning-based approach with a real-time object locator named yoneoLocr using YOLO, a well-known object detection system. Implementation shows its effectiveness in rapidly and precisely locating carbon holes in single particle cryo-EM and in locating crystals and evaluating electron diffraction (ED) patterns in automated cryo-electron crystallography (cryo-EX) data collection. The proposed approach will advance high-throughput and accurate data collection of images and diffraction patterns with minimal human operation.


Asunto(s)
Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/instrumentación , Recolección de Datos/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Algoritmos , Microscopía por Crioelectrón/instrumentación , Procesamiento de Imagen Asistido por Computador/instrumentación
3.
J Synchrotron Radiat ; 28(Pt 4): 1210-1215, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34212886

RESUMEN

BL-11C, a new protein crystallography beamline, is an in-vacuum undulator-based microfocus beamline used for macromolecular crystallography at the Pohang Accelerator Laboratory and it was made available to users in June 2017. The beamline is energy tunable in the range 5.0-20 keV to support conventional single- and multi-wavelength anomalous-dispersion experiments against a wide range of heavy metals. At the standard working energy of 12.659 keV, the monochromated beam is focused to 4.1 µm (V) × 8.5 µm (H) full width at half-maximum at the sample position and the measured photon flux is 1.3 × 1012 photons s-1. The experimental station is equipped with a Pilatus3 6M detector, a micro-diffractometer (MD2S) incorporating a multi-axis goniometer, and a robotic sample exchanger (CATS) with a dewar capacity of 90 samples. This beamline is suitable for structural determination of weakly diffracting crystalline substances, such as biomaterials, including protein, nucleic acids and their complexes. In addition, serial crystallography experiments for determining crystal structures at room temperature are possible. Herein, the current beamline characteristics, technical information for users and some recent scientific highlights are described.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Sustancias Macromoleculares/química , Proteínas/química , Radioisótopos de Carbono , Diseño de Equipo , Legionella/química , Muramidasa/química , Neisseria meningitidis/química , Elementos Estructurales de las Proteínas , Sincrotrones , Zymomonas/química
4.
Nat Commun ; 12(1): 4461, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294694

RESUMEN

Serial femtosecond crystallography has opened up many new opportunities in structural biology. In recent years, several approaches employing light-inducible systems have emerged to enable time-resolved experiments that reveal protein dynamics at high atomic and temporal resolutions. However, very few enzymes are light-dependent, whereas macromolecules requiring ligand diffusion into an active site are ubiquitous. In this work we present a drop-on-drop sample delivery system that enables the study of enzyme-catalyzed reactions in microcrystal slurries. The system delivers ligand solutions in bursts of multiple picoliter-sized drops on top of a larger crystal-containing drop inducing turbulent mixing and transports the mixture to the X-ray interaction region with temporal resolution. We demonstrate mixing using fluorescent dyes, numerical simulations and time-resolved serial femtosecond crystallography, which show rapid ligand diffusion through microdroplets. The drop-on-drop method has the potential to be widely applicable to serial crystallography studies, particularly of enzyme reactions with small molecule substrates.


Asunto(s)
Cristalografía por Rayos X/métodos , Enzimas/química , Enzimas/metabolismo , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Pollos , Cristalografía por Rayos X/instrumentación , Diseño de Equipo , Modelos Moleculares , Muramidasa/química , Muramidasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , beta-Lactamasas/química , beta-Lactamasas/metabolismo
6.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 628-644, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950019

RESUMEN

Serial synchrotron crystallography (SSX) is enabling the efficient use of small crystals for structure-function studies of biomolecules and for drug discovery. An integrated SSX system has been developed comprising ultralow background-scatter sample holders suitable for room and cryogenic temperature crystallographic data collection, a sample-loading station and a humid `gloveless' glovebox. The sample holders incorporate thin-film supports with a variety of designs optimized for different crystal-loading challenges. These holders facilitate the dispersion of crystals and the removal of excess liquid, can be cooled at extremely high rates, generate little background scatter, allow data collection over >90° of oscillation without obstruction or the risk of generating saturating Bragg peaks, are compatible with existing infrastructure for high-throughput cryocrystallography and are reusable. The sample-loading station allows sample preparation and loading onto the support film, the application of time-varying suction for optimal removal of excess liquid, crystal repositioning and cryoprotection, and the application of sealing films for room-temperature data collection, all in a controlled-humidity environment. The humid glovebox allows microscope observation of the sample-loading station and crystallization trays while maintaining near-saturating humidities that further minimize the risks of sample dehydration and damage, and maximize working times. This integrated system addresses common problems in obtaining properly dispersed, properly hydrated and isomorphous microcrystals for fixed-orientation and oscillation data collection. Its ease of use, flexibility and optimized performance make it attractive not just for SSX but also for single-crystal and few-crystal data collection. Fundamental concepts that are important in achieving desired crystal distributions on a sample holder via time-varying suction-induced liquid flows are also discussed.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Diseño de Equipo , Proteínas/química , Manejo de Especímenes/métodos , Sincrotrones/instrumentación
7.
Methods Mol Biol ; 2305: 203-228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33950392

RESUMEN

Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.


Asunto(s)
Cristalografía por Rayos X/métodos , Rayos Láser , Sustancias Macromoleculares/química , Sincrotrones , Difracción de Rayos X/métodos , Cristalografía por Rayos X/instrumentación , Electrones , Sustancias Macromoleculares/ultraestructura , Biología Molecular , Proteínas/química , Proteínas/ultraestructura , Difracción de Rayos X/instrumentación
8.
Methods Mol Biol ; 2225: 125-162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33108661

RESUMEN

The myxoma virus has become of interest in human medicine in the last two decades as it has the ability to infect many types of human cancer cells and is being used as a platform to develop viro-therapeutic agents that suppress aggressive and damaging immune responses and inflammation. Furthermore, the myxoma virus encodes proteins that have strong immunosuppressive effects, and several of the myxoma virus-encoded immunomodulators are being developed to treat systemic inflammatory syndromes such as cardiovascular disease and transplant rejection. Myxoma virus encodes the M-T7 protein, the most abundantly secreted protein expressed in myxoma virus-infected cells, originally identified as a rabbit species-specific interferon-gamma (IFN-γ) receptor homolog and as a chemokine-modulating protein binding a wide range of mammalian chemokines. M-T7 is a critical virulence factor for viral pathogenesis that increases virus lethality when expressed. Although M-T7 has been extensively studied using biochemical and biophysical techniques and its interactome map is well known, its three-dimensional (3D) structure remains elusive. Obtaining the 3D structure of M-T7 would be greatly beneficial and is a crucial step toward advancing M-T7 research through understanding the molecular function and activity of M-T7 as a novel therapeutic reagent and to rationally develop this protein as a drug. This chapter provides an overview of the structural determination techniques, especially X-ray crystallography, that can be applied toward the goal of achieving the first high-resolution structure of M-T7. In addition, details of up-and-coming methods are discussed, including X-ray diffraction at X-ray free electron lasers (XFELs), nuclear magnetic resonance (NMR), cryo-electron microscopy (cryo-EM), Micro-electron diffraction (Micro-ED), and small-angle X-ray scattering (SAXS), and their potential applications to M-T7 structural biology.


Asunto(s)
Cristalización/métodos , Cristalografía por Rayos X/métodos , Myxoma virus/química , Receptores de Interferón/ultraestructura , Proteínas Virales/ultraestructura , Factores de Virulencia/genética , Difracción de Rayos X/métodos , Secuencia de Aminoácidos , Clonación Molecular , Microscopía por Crioelectrón , Cristalografía por Rayos X/instrumentación , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Receptores de Interferón/química , Receptores de Interferón/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestructura , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética , Factores de Virulencia/metabolismo , Difracción de Rayos X/instrumentación
9.
Sci Rep ; 10(1): 19305, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168855

RESUMEN

In meso crystallization of membrane proteins relies on the use of lipids capable of forming a lipidic cubic phase (LCP). However, almost all previous crystallization trials have used monoacylglycerols, with 1-(cis-9-octadecanoyl)-rac-glycerol (MO) being the most widely used lipid. We now report that EROCOC17+4 mixed with 10% (w/w) cholesterol (Fig. 1) serves as a new matrix for crystallization and a crystal delivery medium in the serial femtosecond crystallography of Adenosine A2A receptor (A2AR). The structures of EROCOC17+4-matrix grown A2AR crystals were determined at 2.0 Å resolution by serial synchrotron rotation crystallography at a cryogenic temperature, and at 1.8 Å by LCP-serial femtosecond crystallography, using an X-ray free-electron laser at 4 and 20 °C sample temperatures, and are comparable to the structure of the MO-matrix grown A2AR crystal (PDB ID: 4EIY). Moreover, X-ray scattering measurements indicated that the EROCOC17+4/water system did not form the crystalline LC phase at least down to - 20 °C, in marked contrast to the equilibrium MO/water system, which transforms into the crystalline LC phase below about 17 °C. As the LC phase formation within the LCP-matrix causes difficulties in protein crystallography experiments in meso, this feature of EROCOC17+4 will expand the utility of the in meso method.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Lípidos/química , Monoglicéridos/química , Terpenos/química , Animales , Colesterol/química , Cristalización , Escherichia coli , Proteínas de la Membrana/química , Receptores de Adenosina A2/química , Células Sf9 , Spodoptera , Sincrotrones , Temperatura , Rayos X
10.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 568-576, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135675

RESUMEN

Multi-crystal data collection using synchrotron radiation was successfully applied to determine the three-dimensional structure of a triclinic crystal form of Dps from Escherichia coli at 2.0 Šresolution. The final data set was obtained by combining 261 partial diffraction data sets measured from crystals with an average size of approximately 5 µm. The most important features of diffraction data measurement and processing for low-symmetry crystals are discussed.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Cristalografía por Rayos X/métodos , Proteínas de Escherichia coli/química , Análisis por Conglomerados , Cristalografía por Rayos X/instrumentación , Modelos Moleculares , Sincrotrones
11.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 938-945, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021495

RESUMEN

The native SAD phasing method uses the anomalous scattering signals from the S atoms contained in most proteins, the P atoms in nucleic acids or other light atoms derived from the solution used for crystallization. These signals are very weak and careful data collection is required, which makes this method very difficult. One way to enhance the anomalous signal is to use long-wavelength X-rays; however, these wavelengths are more strongly absorbed by the materials in the pathway. Therefore, a crystal-mounting platform for native SAD data collection that removes solution around the crystals has been developed. This platform includes a novel solution-free mounting tool and an automatic robot, which extracts the surrounding solution, flash-cools the crystal and inserts the loop into a UniPuck cassette for use in the synchrotron. Eight protein structures (including two new structures) have been successfully solved by the native SAD method from crystals prepared using this platform.


Asunto(s)
Automatización de Laboratorios , Cristalografía por Rayos X , Modelos Moleculares , Proteínas/química , Automatización de Laboratorios/instrumentación , Automatización de Laboratorios/métodos , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Conformación Proteica
12.
PLoS One ; 15(9): e0239706, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32976530

RESUMEN

Flash-cooling of macromolecular crystals for X-ray diffraction analysis is usually performed in liquid nitrogen (LN2). Cryogens different than LN2 are used as well for this procedure but are highly underrepresented, e.g., liquid propane and liquid ethane. These two cryogens have significantly higher cooling rates compared with LN2 and may thus be beneficial for flash-cooling of macromolecular crystals. Flash-cooling in liquid propane or liquid ethane results in sample vitrification but is accompanied by solidification of these cryogens, which is not compatible with the robotic systems nowadays used for crystal mounting at most synchrotrons. Here we provide a detailed description of a new double-chambered device and procedure to flash-cool loop mounted macromolecular crystals in different cryogenic liquids. The usage of this device may result in specimens of better crystal- and optical quality in terms of mosaic spread and ice contamination. Furthermore, applying the described procedure with the new double-chambered device provides the possibility to screen for the best flash-cooling cryogen for macromolecular crystals on a routine basis, and, most importantly, the samples obtained allow the usage of state-of-the-art robotic sample-loading systems at synchrotrons.


Asunto(s)
Frío , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Etano/química , Nitrógeno/química , Propano/química
13.
J Synchrotron Radiat ; 27(Pt 5): 1095-1102, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876583

RESUMEN

Over the last decade, serial crystallography, a method to collect complete diffraction datasets from a large number of microcrystals delivered and exposed to an X-ray beam in random orientations at room temperature, has been successfully implemented at X-ray free-electron lasers and synchrotron radiation facility beamlines. This development relies on a growing variety of sample presentation methods, including different fixed target supports, injection methods using gas-dynamic virtual-nozzle injectors and high-viscosity extrusion injectors, and acoustic levitation of droplets, each with unique requirements. In comparison with X-ray free-electron lasers, increased beam time availability makes synchrotron facilities very attractive to perform serial synchrotron X-ray crystallography (SSX) experiments. Within this work, the possibilities to perform SSX at BioMAX, the first macromolecular crystallography beamline at  MAX IV Laboratory in Lund, Sweden, are described, together with case studies from the SSX user program: an implementation of a high-viscosity extrusion injector to perform room temperature serial crystallography at BioMAX using two solid supports - silicon nitride membranes (Silson, UK) and XtalTool (Jena Bioscience, Germany). Future perspectives for the dedicated serial crystallography beamline MicroMAX at MAX IV Laboratory, which will provide parallel and intense micrometre-sized X-ray beams, are discussed.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Sincrotrones , Diseño de Equipo , Laboratorios , Compuestos de Silicona , Suecia , Temperatura
14.
Trends Pharmacol Sci ; 41(11): 830-839, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32950259

RESUMEN

Rational drug discovery has greatly accelerated the development of safer and more efficacious therapeutics, assisted significantly by insights from experimentally determined 3D structures of ligands in complex with their targets. Serial crystallography (SX) with X-ray free-electron lasers has enabled structural determination using micrometer- or nanometer-size crystals. This technology, applied in the past decade to solve structures of notoriously difficult-to-study drug targets at room temperature, has now been adapted for use in synchrotron radiation facilities. Ultrashort time scales allow time-resolved characterization of dynamic structural changes and pave the road to study the molecular mechanisms by 'molecular movie.' This article summarizes the latest progress in SX technology and deliberates its demanding applications in future structure-based drug discovery.


Asunto(s)
Cristalografía por Rayos X/métodos , Descubrimiento de Drogas/métodos , Receptores Acoplados a Proteínas G/química , Cristalografía por Rayos X/instrumentación , Descubrimiento de Drogas/instrumentación , Humanos , Rayos Láser , Conformación Proteica , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad , Sincrotrones
15.
Acta Crystallogr D Struct Biol ; 76(Pt 7): 630-635, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32627736

RESUMEN

The Canadian Macromolecular Crystallography Facility (CMCF) consists of two beamlines dedicated to macromolecular crystallography: CMCF-ID and CMCF-BM. After the first experiments were conducted in 2006, the facility has seen a sharp increase in usage and has produced a significant amount of data for the Canadian crystallographic community. Upgrades aimed at increasing throughput and flux to support the next generation of more demanding experiments are currently under way or have recently been completed. At CMCF-BM, this includes an enhanced monochromator, automounter software upgrades and a much faster detector. CMCF-ID will receive a major upgrade including a new undulator, a new monochromator and new optics to stably focus the beam onto a smaller sample size, as well as a brand-new detector.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Diseño de Equipo , Sustancias Macromoleculares/química , Programas Informáticos , Canadá
16.
Int J Mol Sci ; 21(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397185

RESUMEN

Serial crystallography (SX) provides an opportunity to observe the molecular dynamics of macromolecular structures at room temperature via pump-probe studies. The delivery of crystals embedded in a viscous medium via an injector or syringe is widely performed in synchrotrons or X-ray free-electron laser facilities with low repetition rates. Various viscous media have been developed; however, there are cases in which the delivery material undesirably interacts chemically or biologically with specific protein samples, or changes the stability of the injection stream, depending on the crystallization solution. Therefore, continued discovery and characterization of new delivery media is necessary for expanding future SX applications. Here, the preparation and characterization of new polysaccharide (wheat starch (WS) and alginate)-based sample delivery media are introduced for SX. Crystals embedded in a WS or alginate injection medium showed a stable injection stream at a flow rate of < 200 nL/min and low-level X-ray background scattering similar to other hydrogels. Using these media, serial millisecond crystallography (SMX) was performed, and the room temperature crystal structures of glucose isomerase and lysozyme were determined at 1.9-2.0 Å resolutions. WS and alginate will allow an expanded application of sample delivery media in SX experiments.


Asunto(s)
Cristalización/métodos , Cristalografía por Rayos X/métodos , Polisacáridos/química , Sincrotrones/instrumentación , Isomerasas Aldosa-Cetosa/química , Alginatos/química , Cristalización/instrumentación , Cristalografía por Rayos X/instrumentación , Muramidasa/química , Almidón/química , Jeringas , Temperatura , Viscosidad
17.
J Synchrotron Radiat ; 27(Pt 3): 860-863, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381791

RESUMEN

In this paper, the design and functionalities of the high-throughput TELL sample exchange system for macromolecular crystallography is presented. TELL was developed at the Paul Scherrer Institute with a focus on speed, storage capacity and reliability to serve the three macromolecular crystallography beamlines of the Swiss Light Source, as well as the SwissMX instrument at SwissFEL.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Sustancias Macromoleculares/química , Diseño de Equipo , Reproducibilidad de los Resultados , Robótica/instrumentación , Sincrotrones/instrumentación
18.
Methods Mol Biol ; 2127: 293-319, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32112330

RESUMEN

The lipid cubic phases (LCP) have enabled the determination of many important high-resolution structures of membrane proteins such as G-protein-coupled receptors, photosensitive proteins, enzymes, channels, and transporters. However, harvesting the crystals from the glass or plastic plates in which crystals grow is challenging. The in meso in situ serial X-ray crystallography (IMISX) method uses thin plastic windowed plates that minimize LCP crystal manipulation. The method, which is compatible with high-throughput in situ measurements, allows systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without direct crystal harvesting. In this chapter, we describe an IMISX protocol for in situ serial X-ray data collection of LCP-grown crystals at both cryogenic and room temperatures which includes the crystallization setup, sample delivery, automated serial diffraction data collection, and experimental phasing. We also detail how the IMISX method was applied successfully for the structure determination of two novel targets-the undecaprenyl-pyrophosphate phosphatase BacA and the chemokine G-protein-coupled receptor CCR2A.


Asunto(s)
Recolección de Datos , Proteínas de la Membrana/química , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Análisis de Datos , Recolección de Datos/instrumentación , Recolección de Datos/métodos , Rayos Láser , Luz , Lípidos/química , Conformación Proteica , Sincrotrones , Difracción de Rayos X/instrumentación , Difracción de Rayos X/métodos
19.
Methods Mol Biol ; 2127: 321-338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32112331

RESUMEN

Membrane proteins are highly interesting targets due to their pivotal role in cell function and disease. They are inserted in cell membranes, are often intrinsically flexible, and can adopt several conformational states to carry out their function. Although most overall folds of membrane proteins are known, many questions remain about specific functionally relevant intramolecular rearrangements that require experimental structure determination. Here, using the example of rhodopsin, we describe how to prepare and analyze membrane protein crystals for serial crystallography at room temperature, a new technique allowing to merge diffraction data from thousands of injector-delivered crystals that are too tiny for classical single-crystal analysis even in cryogenic conditions. The application of serial crystallography for studying protein dynamics is mentioned.


Asunto(s)
Proteínas de la Membrana/química , Rodopsina/química , Cristalización , Cristalografía/instrumentación , Cristalografía/métodos , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Conformación Proteica , Sincrotrones , Temperatura , Viscosidad
20.
Acta Crystallogr D Struct Biol ; 76(Pt 2): 155-165, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32038046

RESUMEN

Reducing the sample-exchange time is a crucial issue in maximizing the throughput of macromolecular crystallography (MX) beamlines because the diffraction data collection itself is completed within a minute in the era of pixel-array detectors. To this end, an upgraded sample changer, SPACE-II, has been developed on the basis of the previous model, SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), at the BL41XU beamline at SPring-8. SPACE-II achieves one sample-exchange step within 16 s, of which its action accounts for only 11 s, because of three features: (i) the implementation of twin arms that enable samples to be exchanged in one cycle of mount-arm action, (ii) the implementation of long-stroke mount arms that allow samples to be exchanged without withdrawal of the detector and (iii) the use of a fast-moving translation and rotation stage for the mount arms. By pre-holding the next sample prior to the sample-exchange sequence, the time was further decreased to 11 s in the case of automatic data collection, of which the action of SPACE-II accounted for 8 s. Moreover, the sample capacity was expanded from four to eight Uni-Pucks. The performance of SPACE-II has been demonstrated in over two years of operation at BL41XU; the average number of samples mounted on the diffractometer in one day was increased from 132 to 185, with an error rate of 0.089%, which counted incidents in which users could not continue with an experiment without recovery work by entering the experimental hutch. On the basis of these results, SPACE-II has been installed at three other MX beamlines at SPring-8 as of July 2019. The fast and highly reliable SPACE-II is now one of the most important pieces of infrastructure for the MX beamlines at SPring-8, providing users with the opportunity to fully make use of limited beamtime with brilliant X-rays.


Asunto(s)
Automatización , Cristalografía por Rayos X/instrumentación , Recolección de Datos/métodos , Sustancias Macromoleculares/química , Cristalografía por Rayos X/métodos , Robótica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA