Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 636
Filtrar
1.
Nat Commun ; 12(1): 3835, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158510

RESUMEN

Transcription restart after a genotoxic challenge is a fundamental yet poorly understood process. Here, we dissect the interplay between transcription and chromatin restoration after DNA damage by focusing on the human histone chaperone complex HIRA, which is required for transcription recovery post UV. We demonstrate that HIRA is recruited to UV-damaged chromatin via the ubiquitin-dependent segregase VCP to deposit new H3.3 histones. However, this local activity of HIRA is dispensable for transcription recovery. Instead, we reveal a genome-wide function of HIRA in transcription restart that is independent of new H3.3 and not restricted to UV-damaged loci. HIRA coordinates with ASF1B to control transcription restart by two independent pathways: by stabilising the associated subunit UBN2 and by reducing the expression of the transcription repressor ATF3. Thus, HIRA primes UV-damaged chromatin for transcription restart at least in part by relieving transcription inhibition rather than by depositing new H3.3 as an activating bookmark.


Asunto(s)
Proteínas de Ciclo Celular/genética , Daño del ADN , Chaperonas de Histonas/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Transcripción Genética , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Cromatina/efectos de la radiación , Reparación del ADN , Células HeLa , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Humanos , Factores de Transcripción/metabolismo , Rayos Ultravioleta , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
2.
Cell Rep ; 35(2): 108965, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852864

RESUMEN

Conversion of promoter-proximally paused RNA polymerase II (RNAPII) into elongating polymerase by the positive transcription elongation factor b (P-TEFb) is a central regulatory step of mRNA synthesis. The activity of P-TEFb is controlled mainly by the 7SK small nuclear ribonucleoprotein (snRNP), which sequesters active P-TEFb into inactive 7SK/P-TEFb snRNP. Here we demonstrate that under normal culture conditions, the lack of 7SK snRNP has only minor impacts on global RNAPII transcription without detectable consequences on cell proliferation. However, upon ultraviolet (UV)-light-induced DNA damage, cells lacking 7SK have a defective transcriptional response and reduced viability. Both UV-induced release of "lesion-scanning" polymerases and activation of key early-responsive genes are compromised in the absence of 7SK. Proper induction of 7SK-dependent UV-responsive genes requires P-TEFb activity directly mobilized from the nucleoplasmic 7SK/P-TEFb snRNP. Our data demonstrate that the primary function of the 7SK/P-TEFb snRNP is to orchestrate the proper transcriptional response to stress.


Asunto(s)
Leucocitos/efectos de la radiación , Factor B de Elongación Transcripcional Positiva/genética , ARN Polimerasa II/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Transcripción Genética/efectos de la radiación , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Supervivencia Celular , Cromatina/química , Cromatina/metabolismo , Cromatina/efectos de la radiación , Daño del ADN , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Leucocitos/citología , Leucocitos/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/deficiencia , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Rayos Ultravioleta
3.
Int J Radiat Biol ; 97(4): 494-506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33428851

RESUMEN

PURPOSE: The aim of the present study was to evaluate the effect of the histone lysine-methyltransferase (HKMT) inhibitor chaetocin on chromatin structure and its effect on ionizing radiation (IR) induced DNA damage response. METHODS: Concentration and time-dependent effects of chaetocin on chromatin clustering and its reversibility were analyzed by immunofluorescent assays in the non-small cell lung carcinoma (NSCLC) cell lines H460 and H1299Q4 and in human skin fibroblasts. In addition, IR induced damage response (γH2AX, 53BP1, and pATM foci formation) was studied by immunofluorescent assays. The effect on survival was determined by performing single-cell clonogenic assays. RESULTS: Chaetocin significantly increased the radiation sensitivity of H460 (F test on nonlinear regression, p < .0011) and of H1299 (p = .0201). In addition, treatment with 15 nM chaetocin also decreased the total radiation doses that control 50% of the plaque monolayers (TCD50) from 17.2 ± 0.3 Gy to 7.3 ± 0.4 Gy (p < .0001) in H1299 cells and from 11.6 ± 0.1 Gy to 6.5 ± 0.3 Gy (p < .0001). Phenotypically, chaetocin led to a time and concentration-dependent clustering of the chromatin in H1299 as well as in fibroblasts, but not in H460 cells. This phenotype of chaetocin induced chromatin clustering (CICC) was reversible and depended on the expression of the HKMTs SUV39H1 and G9a. Treatment with siRNA for SUV39h1 and G9a significantly reduced the CICC phenotype. Immunofluorescent assay results showed that the CICC phenotype was enriched for the heterochromatic marker proteins H3K9me3 and HP1α. γH2AX foci formation was not affected, neither in cells with normal nor with CICC phenotype. In contrast, repair signaling with 53BP1 and pATM foci formation was significantly reduced in the CICC phenotype. CONCLUSIONS: Treatment with chaetocin increased the radiation sensitivity of cells in vitro and DNA damage response, especially of 53BP1 and ATM-dependent repair by affecting chromatin structure. The obtained results support the potential use of natural HKMT inhibitors such as chaetocin or other bioactive compounds in improving radiosensitivity of cancer cells.


Asunto(s)
Cromatina/genética , Reparación del ADN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cromatina/efectos de los fármacos , Cromatina/efectos de la radiación , Homólogo de la Proteína Chromobox 5 , Reparación del ADN/efectos de la radiación , Humanos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Piperazinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Transducción de Señal/efectos de la radiación
4.
Nucleic Acids Res ; 48(21): e122, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33053171

RESUMEN

Protein-protein interactions are essential to ensure timely and precise recruitment of chromatin remodellers and repair factors to DNA damage sites. Conventional analyses of protein-protein interactions at a population level may mask the complexity of interaction dynamics, highlighting the need for a method that enables quantification of DNA damage-dependent interactions at a single-cell level. To this end, we integrated a pulsed UV laser on a confocal fluorescence lifetime imaging (FLIM) microscope to induce localized DNA damage. To quantify protein-protein interactions in live cells, we measured Förster resonance energy transfer (FRET) between mEGFP- and mCherry-tagged proteins, based on the fluorescence lifetime reduction of the mEGFP donor protein. The UV-FLIM-FRET system offers a unique combination of real-time and single-cell quantification of DNA damage-dependent interactions, and can distinguish between direct protein-protein interactions, as opposed to those mediated by chromatin proximity. Using the UV-FLIM-FRET system, we show the dynamic changes in the interaction between poly(ADP-ribose) polymerase 1, amplified in liver cancer 1, X-ray repair cross-complementing protein 1 and tripartite motif containing 33 after DNA damage. This new set-up complements the toolset for studying DNA damage response by providing single-cell quantitative and dynamic information about protein-protein interactions at DNA damage sites.


Asunto(s)
Osteoblastos/efectos de la radiación , Poli(ADP-Ribosa) Polimerasa-1/genética , Mapeo de Interacción de Proteínas/métodos , Factores de Transcripción/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Línea Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Cromatina/efectos de la radiación , Daño del ADN , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Rayos Láser , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen Óptica , Osteoblastos/citología , Osteoblastos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Unión Proteica , Transducción de Señal , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Rayos Ultravioleta , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Proteína Fluorescente Roja
5.
DNA Repair (Amst) ; 96: 102974, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32998084

RESUMEN

The dynamic structure of nuclear chromatin and its regulation in the formation of repair complex is essential in DNA damage response and repair. Using single molecule localization microscopy STORM this work discovered that the nuclear chromatin organization was relaxed from 200 to 400 nm thick irregular frame and remodeled to dispersed sub-100 nm structure in HeLa cells after X-ray irradiation. The DSB repair factors (γ-H2AX, MDC1, 53BP1) showed distribution as microscale-colocalized and nanoscale interlaced substructure in the DSB repair complex. The dual-color nanoscopic imaging of γ-H2AX and chromatin at the DSB sites suggest that DNA damage response and repair cascade are chromatin structure-dependent and also partly dependent on the distance to the DSB sites. The sub-100 nm structure of fibers and nanoclusters of the relaxed nuclear chromatin and the DSB repair factors highly resembled the cross-section view of chromatin organization. These data demonstrated the polymorphic and dynamic behavior of the chromatin organization in vivo, and provided nanoscale insight into the interplay between chromatin remodeling and DNA damage response and DNA repair.


Asunto(s)
Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Reparación del ADN , Imagen Individual de Molécula , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Cromatina/efectos de la radiación , ADN/metabolismo , ADN/efectos de la radiación , Células HeLa , Histonas/metabolismo , Humanos , Radiación Ionizante , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
6.
Nucleic Acids Res ; 48(16): 9181-9194, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32789493

RESUMEN

The NAD+-dependent deacetylase and mono-ADP-ribosyl transferase SIRT6 stabilizes the genome by promoting DNA double strand break repair, thereby acting as a tumor suppressor. However, whether SIRT6 regulates nucleotide excision repair (NER) remains unknown. Here, we showed that SIRT6 was recruited to sites of UV-induced DNA damage and stimulated the repair of UV-induced DNA damage. Mechanistic studies further indicated that SIRT6 interacted with DDB2, the major sensor initiating global genome NER (GG-NER), and that the interaction was enhanced upon UV irradiation. SIRT6 deacetylated DDB2 at two lysine residues, K35 and K77, upon UV stress and then promoted DDB2 ubiquitination and segregation from chromatin, thereby facilitating downstream signaling. In addition, we characterized several SIRT6 mutations derived from melanoma patients. These SIRT6 mutants ablated the stimulatory effect of SIRT6 on NER and destabilized the genome due to (i) partial loss of enzymatic activity (P27S or H50Y), (ii) a nonsense mutation (R150*) or (iii) high turnover rates (G134W). Overall, we demonstrate that SIRT6 promotes NER by deacetylating DDB2, thereby preventing the onset of melanomagenesis.


Asunto(s)
Carcinogénesis/genética , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Melanoma/genética , Sirtuinas/genética , Carcinogénesis/efectos de la radiación , Cromatina/genética , Cromatina/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Células HeLa , Humanos , Melanoma/patología , Mutación/efectos de la radiación , Ubiquitinación/efectos de la radiación , Rayos Ultravioleta/efectos adversos
7.
Sci Rep ; 10(1): 2200, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32042076

RESUMEN

Over the past decades, there have been huge advances in understanding cellular responses to ionising radiation (IR) and DNA damage. These studies, however, were mostly executed with cell lines and mice using single or multiple acute doses of radiation. Hence, relatively little is known about how continuous exposure to low dose ionising radiation affects normal cells and organisms, even though our cells are constantly exposed to low levels of radiation. We addressed this issue by examining the consequences of exposing human primary cells to continuous ionising γ-radiation delivered at 6-20 mGy/h. Although these dose rates are estimated to inflict fewer than a single DNA double-strand break (DSB) per hour per cell, they still caused dose-dependent reductions in cell proliferation and increased cellular senescence. We concomitantly observed histone protein levels to reduce by up to 40%, which in contrast to previous observations, was not mainly due to protein degradation but instead correlated with reduced histone gene expression. Histone reductions were accompanied by enlarged nuclear size paralleled by an increase in global transcription, including that of pro-inflammatory genes. Thus, chronic irradiation, even at low dose-rates, can induce cell senescence and alter gene expression via a hitherto uncharacterised epigenetic route. These features of chronic radiation represent a new aspect of radiation biology.


Asunto(s)
Cromatina/efectos de la radiación , Expresión Génica/efectos de la radiación , Histonas/efectos de la radiación , Animales , Línea Celular , Proliferación Celular/efectos de la radiación , Senescencia Celular/efectos de la radiación , ADN/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/fisiología , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Histonas/genética , Humanos , Masculino , Ratones , Cultivo Primario de Células
8.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059363

RESUMEN

We propose a comprehensive mathematical model to study the dynamics of ionizing radiation induced Ataxia-telangiectasia mutated (ATM) activation that consists of ATM activation through dual mechanisms: the initiative activation pathway triggered by the DNA damage-induced local chromatin relaxation and the primary activation pathway consisting of a self-activation loop by interplay with chromatin relaxation. The model is expressed as a series of biochemical reactions, governed by a system of differential equations and analyzed by dynamical systems techniques. Radiation induced double strand breaks (DSBs) cause rapid local chromatin relaxation, which is independent of ATM but initiates ATM activation at damage sites. Key to the model description is how chromatin relaxation follows when active ATM phosphorylates KAP-1, which subsequently spreads throughout the chromatin and induces global chromatin relaxation. Additionally, the model describes how oxidative stress activation of ATM triggers a self-activation loop in which PP2A and ATF2 are released so that ATM can undergo autophosphorylation and acetylation for full activation in relaxed chromatin. In contrast, oxidative stress alone can partially activate ATM because phosphorylated ATM remains as a dimer. The model leads to predictions on ATM mediated responses to DSBs, oxidative stress, or both that can be tested by experiments.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/efectos de la radiación , Ataxia Telangiectasia/metabolismo , Cromatina/metabolismo , Cromatina/efectos de la radiación , Modelos Teóricos , Radiación Ionizante , Factor de Transcripción Activador 2/metabolismo , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Bleomicina/farmacología , Proteínas de Ciclo Celular/metabolismo , Cromatina/efectos de los fármacos , Roturas del ADN de Doble Cadena , Daño del ADN , Humanos , Estrés Oxidativo , Fosforilación , Transducción de Señal/fisiología , Biología de Sistemas , Proteína 28 que Contiene Motivos Tripartito/metabolismo
9.
Med Phys ; 47(4): 1958-1970, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31971258

RESUMEN

PURPOSE: Monte Carlo (MC) simulation of radiation interactions with water medium at physical, physicochemical, and chemical stages, as well as the computation of biologically relevant quantities such as DNA damages, are of critical importance for the understanding of microscopic basis of radiation effects. Due to the large problem size and many-body simulation problem in the chemical stage, existing CPU-based computational packages encounter the problem of low computational efficiency. This paper reports our development on a GPU-based microscopic Monte Carlo simulation tool gMicroMC using advanced GPU-acceleration techniques. METHODS: gMicroMC simulated electron transport in the physical stage using an interaction-by-interaction scheme to calculate the initial events generating radicals in water. After the physicochemical stage, initial positions of all radicals were determined. Simulation of radicals' diffusion and reactions in the chemical stage was achieved using a step-by-step model using GPU-accelerated parallelization together with a GPU-enabled box-sorting algorithm to reduce the computations of searching for interaction pairs and therefore improve efficiency. A multi-scale DNA model of the whole lymphocyte cell nucleus containing ~6.2 Gbp of DNA was built. RESULTS: Accuracy of physical stage simulation was demonstrated by computing stopping power and track length. The results agreed with published data and the data produced by GEANT4-DNA (version 10.3.3) simulations with 10 -20% difference in most cases. Difference of yield values of major radiolytic species from GEANT4-DNA results was within 10%. We computed DNA damages caused by monoenergetic 662 keV photons, approximately representing 137 Cs decay. Single-strand break (SSB) and double-strand break (DSB) yields were 196 ± 8 SSB/Gy/Gbp and 7.3 ± 0.7 DSB/Gy/Gbp, respectively, which agreed with the result of 188 SSB/Gy/Gbp and 8.4 DSB/Gy/Gbp computed by Hsiao et al. Compared to computation using a single CPU, gMicroMC achieved a speedup factor of ~540x using an NVidia TITAN Xp GPU card. CONCLUSIONS: The achieved accuracy and efficiency demonstrated that gMicroMC can facilitate research on microscopic radiation transport simulation and DNA damage calculation. gMicroMC is an open-source package available to the research community.


Asunto(s)
Algoritmos , Daño del ADN , Método de Montecarlo , Radiación Ionizante , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Cromatina/genética , Cromatina/efectos de la radiación , Gráficos por Computador , Linfocitos/citología , Linfocitos/efectos de la radiación , Reproducibilidad de los Resultados
10.
Clin Epigenetics ; 12(1): 4, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900196

RESUMEN

BACKGROUND: Poor-responsiveness of tumors to radiotherapy is a major clinical problem. Owing to the dynamic nature of the epigenome, the identification and targeting of potential epigenetic modifiers may be helpful to curb radio-resistance. This requires a detailed exploration of the epigenetic changes that occur during the acquirement of radio-resistance. Such an understanding can be applied for effective utilization of treatment adjuncts to enhance the efficacy of radiotherapy and reduce the incidence of tumor recurrence. RESULTS: This study explored the epigenetic alterations that occur during the acquirement of radio-resistance. Sequential irradiation of MCF7 breast cancer cell line up to 20 Gy generated a radio-resistant model. Micrococcal nuclease digestion demonstrated the presence of compact chromatin architecture coupled with decreased levels of histone PTMs H3K9ac, H3K27 ac, and H3S10pK14ac in the G0/G1 and mitotic cell cycle phases of the radio-resistant cells. Further investigation revealed that the radio-resistant population possessed high HDAC and low HAT activity, thus making them suitable candidates for HDAC inhibitor-based radio-sensitization. Treatment of radio-resistant cells with HDAC inhibitor valproic acid led to the retention of γH2AX and decreased H3S10p after irradiation. Additionally, an analysis of 38 human patient samples obtained from 8 different tumor types showed variable tumor HDAC activity, thus demonstrating inter-tumoral epigenetic heterogeneity in a patient population. CONCLUSION: The study revealed that an imbalance of HAT and HDAC activities led to the loss of site-specific histone acetylation and chromatin compaction as breast cancer cells acquired radio-resistance. Due to variation in the tumor HDAC activity among patients, our report suggests performing a prior assessment of the tumor epigenome to maximize the benefit of HDAC inhibitor-based radio-sensitization.


Asunto(s)
Neoplasias de la Mama/radioterapia , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Ácido Valproico/farmacología , Acetilación/efectos de la radiación , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral/efectos de la radiación , Cromatina/efectos de la radiación , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/genética , Epigénesis Genética/efectos de la radiación , Femenino , Inhibidores de Histona Desacetilasas/metabolismo , Histonas/efectos de la radiación , Humanos , Incidencia , Recurrencia Local de Neoplasia/epidemiología , Fenotipo , Radioterapia/efectos adversos , Ácido Valproico/metabolismo
11.
Nucleic Acids Res ; 48(4): 1652-1668, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31930303

RESUMEN

The excision of mutagenic DNA adducts by the nucleotide excision repair (NER) pathway is essential for genome stability, which is key to avoiding genetic diseases, premature aging, cancer and neurologic disorders. Due to the need to process an extraordinarily high damage density embedded in the nucleosome landscape of chromatin, NER activity provides a unique functional caliper to understand how histone modifiers modulate DNA damage responses. At least three distinct lysine methyltransferases (KMTs) targeting histones have been shown to facilitate the detection of ultraviolet (UV) light-induced DNA lesions in the difficult to access DNA wrapped around histones in nucleosomes. By methylating core histones, these KMTs generate docking sites for DNA damage recognition factors before the chromatin structure is ultimately relaxed and the offending lesions are effectively excised. In view of their function in priming nucleosomes for DNA repair, mutations of genes coding for these KMTs are expected to cause the accumulation of DNA damage promoting cancer and other chronic diseases. Research on the question of how KMTs modulate DNA repair might pave the way to the development of pharmacologic agents for novel therapeutic strategies.


Asunto(s)
Cromatina/genética , Daño del ADN/genética , Histona Metiltransferasas/genética , Histonas/genética , Cromatina/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Inestabilidad Genómica/genética , Inestabilidad Genómica/efectos de la radiación , Histona Metiltransferasas/química , Metilación/efectos de la radiación , Nucleosomas/genética , Nucleosomas/efectos de la radiación , Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de la radiación , Rayos Ultravioleta
12.
Asian J Androl ; 22(4): 401-408, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31210149

RESUMEN

The sperm nucleus is prone to sustain DNA damage before and after ejaculation. Distribution of the damage is not homogeneous, and the factors determining differential sensitivity among nuclear regions have not yet been characterized. Human sperm chromatin contains three structural domains, two of which are considered the most susceptible to DNA damage: the histone bound domain, harboring developmental related genes, and the domain associated with nuclear matrix proteins. Using a quantitative polymerase chain reaction (qPCR) approach, we analyzed the number of lesions in genes homeobox A3 (HOXA3), homeobox B5 (HOXB 5), sex-determining region Y (SRY)-box 2 (SOX2), ß-GLOBIN, rDNA 18S, and rDNA 28S in human sperm after ultraviolet irradiation (400 µW cm-2, 10 min), H2O2treatment (250 mmol l-1, 20 min), and cryopreservation, which showed differential susceptibility to genetic damage. Differential vulnerability is dependent on the genotoxic agent and independent of the sperm nuclear proteins to which the chromatin is bound and of accessibility to the transcription machinery. Immunodetection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed that the highest level of oxidation was observed after H2O2treatment. The distribution of oxidative lesions also differed depending on the genotoxic agent. 8-OHdG did not colocalize either with histone 3 (H3) or with type IIα + ß topoisomerase (TOPO IIα + ß) after H2O2treatment but matched perfectly with peroxiredoxin 6 (PRDX6), which is involved in H2O2metabolism. Our study reveals that the characteristics of the sperm head domains are responsible for access of the genotoxicants and cause differential degree of damage to nuclear areas, whereas chromatin packaging has a very limited relevance. The histone-enriched genes analyzed cannot be used as biomarkers of oxidative DNA damage.


Asunto(s)
Cromatina/efectos de los fármacos , Cromatina/efectos de la radiación , Criopreservación , Daño del ADN , Oxidantes/farmacología , Espermatozoides/efectos de los fármacos , Espermatozoides/efectos de la radiación , Rayos Ultravioleta/efectos adversos , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Adulto , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Cromatina/metabolismo , ADN Ribosómico/genética , Voluntarios Sanos , Proteínas de Homeodominio/genética , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Reacción en Cadena de la Polimerasa , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Factores de Transcripción SOXB1/genética , Preservación de Semen , Cabeza del Espermatozoide/efectos de los fármacos , Cabeza del Espermatozoide/metabolismo , Cabeza del Espermatozoide/efectos de la radiación , Espermatozoides/metabolismo , Globinas beta/genética
13.
Nucleic Acids Res ; 48(3): 1314-1326, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31822909

RESUMEN

Multifractionated irradiation is the mainstay of radiation treatment in cancer therapy. Yet, little is known about the cellular DNA repair processes that take place between radiation fractions, even though understanding the molecular mechanisms promoting cancer cell recovery and survival could improve patient outcome and identify new avenues for targeted intervention. To address this knowledge gap, we systematically characterized how cells respond differentially to multifractionated and single-dose radiotherapy, using a combination of genetics-based and functional approaches. We found that both cancer cells and normal fibroblasts exhibited enhanced survival after multifractionated irradiation compared with an equivalent single dose of irradiation, and this effect was entirely dependent on 53BP1-mediated NHEJ. Furthermore, we identified RIF1 as the critical effector of 53BP1. Inhibiting 53BP1 recruitment to damaged chromatin completely abolished the survival advantage after multifractionated irradiation and could not be reversed by suppressing excessive end resection. Analysis of the TCGA database revealed lower expression of 53BP1 pathway genes in prostate cancer, suggesting that multifractionated radiotherapy might be a favorable option for radio-oncologic treatment in this tumor type. We propose that elucidation of DNA repair mechanisms elicited by different irradiation dosing regimens could improve radiotherapy selection for the individual patient and maximize the efficacy of radiotherapy.


Asunto(s)
Supervivencia Celular/genética , Neoplasias de la Próstata/radioterapia , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Animales , Supervivencia Celular/efectos de la radiación , Cromatina/efectos de la radiación , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Fibroblastos/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Células HeLa , Humanos , Masculino , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transducción de Señal/efectos de la radiación
14.
Nucleic Acids Res ; 48(2): 736-747, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31740976

RESUMEN

Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are predominantly repaired by non-homologous end joining (NHEJ). IR-induced DNA damage activates autophagy, an intracellular degradation process that delivers cytoplasmic components to the lysosome. We identified the deubiquitinase USP14 as a novel autophagy substrate and a regulator of IR-induced DNA damage response (DDR) signaling. Inhibition of autophagy increased levels and DSB recruitment of USP14. USP14 antagonized RNF168-dependent ubiquitin signaling and downstream 53BP1 chromatin recruitment. Here we show that autophagy-deficient cells are defective in NHEJ, as indicated by decreased IR-induced foci (IRIF) formation by pS2056-, pT2609-DNA-PKcs, pS1778-53BP1, RIF1 and a reporter assay activation. Moreover, chromatin recruitment of key NHEJ proteins, including, Ku70, Ku80, DNA-PKcs and XLF was diminished in autophagy-deficient cells. USP14 inhibition rescued the activity of NHEJ-DDR proteins in autophagy-deficient cells. Mass spectrometric analysis identified USP14 interaction with core NHEJ proteins, including Ku70, which was validated by co-immunoprecipitation. An in vitro assay revealed that USP14 targeted Ku70 for deubiquitination. AKT, which mediates Ser432-USP14 phosphorylation, was required for IRIF formation by USP14. Similar to USP14 block, AKT inhibition rescued the activity of NHEJ-DDR proteins in autophagy- and PTEN-deficient cells. These findings reveal a novel negative PTEN/Akt-dependent regulation of NHEJ by USP14.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de la radiación , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ubiquitina Tiolesterasa/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Autofagia/efectos de la radiación , Cromatina/genética , Cromatina/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Células HEK293 , Humanos , Autoantígeno Ku/genética , Fosfohidrolasa PTEN/deficiencia , Radiación Ionizante , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Proteína 1 de Unión al Supresor Tumoral P53/genética
15.
PLoS Genet ; 15(11): e1008476, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31738755

RESUMEN

Plants are exposed to the damaging effect of sunlight that induces DNA photolesions. In order to maintain genome integrity, specific DNA repair pathways are mobilized. Upon removal of UV-induced DNA lesions, the accurate re-establishment of epigenome landscape is expected to be a prominent step of these DNA repair pathways. However, it remains poorly documented whether DNA methylation is accurately maintained at photodamaged sites and how photodamage repair pathways contribute to the maintenance of genome/methylome integrities. Using genome wide approaches, we report that UV-C irradiation leads to CHH DNA methylation changes. We identified that the specific DNA repair pathways involved in the repair of UV-induced DNA lesions, Direct Repair (DR), Global Genome Repair (GGR) and small RNA-mediated GGR prevent the excessive alterations of DNA methylation landscape. Moreover, we identified that UV-C irradiation induced chromocenter reorganization and that photodamage repair factors control this dynamics. The methylome changes rely on misregulation of maintenance, de novo and active DNA demethylation pathways highlighting that molecular processes related to genome and methylome integrities are closely interconnected. Importantly, we identified that photolesions are sources of DNA methylation changes in repressive chromatin. This study unveils that DNA repair factors, together with small RNA, act to accurately maintain both genome and methylome integrities at photodamaged silent genomic regions, strengthening the idea that plants have evolved sophisticated interplays between DNA methylation dynamics and DNA repair.


Asunto(s)
Daño del ADN/genética , Metilación de ADN/genética , Reparación del ADN/genética , Epigenoma/genética , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Cromatina/genética , Cromatina/efectos de la radiación , Daño del ADN/efectos de la radiación , Metilación de ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Epigenoma/efectos de la radiación , Genoma de Planta/genética , Genoma de Planta/efectos de la radiación , Rayos Ultravioleta
16.
Sci Rep ; 9(1): 10568, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332255

RESUMEN

Charged-particle microbeams (CPMs) provide a unique opportunity to investigate the effects of ionizing radiation on living biological specimens with a precise control of the delivered dose, i.e. the number of particles per cell. We describe a methodology to manipulate and micro-irradiate early stage C. elegans embryos at a specific phase of the cell division and with a controlled dose using a CPM. To validate this approach, we observe the radiation-induced damage, such as reduced cell mobility, incomplete cell division and the appearance of chromatin bridges during embryo development, in different strains expressing GFP-tagged proteins in situ after irradiation. In addition, as the dosimetry of such experiments cannot be extrapolated from random irradiations of cell populations, realistic three-dimensional models of 2 cell-stage embryo were imported into the Geant4 Monte-Carlo simulation toolkit. Using this method, we investigate the energy deposit in various chromatin condensation states during the cell division phases. The experimental approach coupled to Monte-Carlo simulations provides a way to selectively irradiate a single cell in a rapidly dividing multicellular model with a reproducible dose. This method opens the way to dose-effect investigations following targeted irradiation.


Asunto(s)
Caenorhabditis elegans/efectos de la radiación , Embrión no Mamífero/efectos de la radiación , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/ultraestructura , División Celular/efectos de la radiación , Cromatina/efectos de la radiación , Cromosomas/efectos de la radiación , Embrión no Mamífero/ultraestructura , Desarrollo Embrionario/efectos de la radiación , Microscopía Confocal/métodos , Método de Montecarlo , Radiometría
17.
Sci Rep ; 9(1): 8451, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186478

RESUMEN

Nanosecond pulsed electric fields (nsPEFs) have gained attention as a novel physical stimulus for life sciences. Although cancer therapy is currently their promising application, nsPEFs have further potential owing to their ability to elicit various cellular responses. This study aimed to explore stimulatory actions of nsPEFs, and we used HL-60 cells that were differentiated into neutrophils under cultured conditions. Exposure of neutrophil-differentiated HL-60 cells to nsPEFs led to the extracellular release of chromosomal DNA, which appears to be equivalent to neutrophil extracellular traps (NETs) that serve as a host defense mechanism against pathogens. Fluorometric measurement of extracellular DNA showed that DNA extrusion was rapidly induced after nsPEF exposure and increased over time. Western blot analysis demonstrated that nsPEFs induced histone citrullination that is the hydrolytic conversion of arginine to citrulline on histones and facilitates chromatin decondensation. DNA extrusion and histone citrullination by nsPEFs were cell type-specific and Ca2+-dependent events. Taken together, these observations suggest that nsPEFs drive the mechanism for neutrophil-specific immune response without infection, highlighting a novel aspect of nsPEFs as a physical stimulus.


Asunto(s)
Apoptosis/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Estimulación Eléctrica , Neutrófilos/efectos de la radiación , Apoptosis/genética , Cromatina/genética , Cromatina/efectos de la radiación , Citrulinación/genética , Citrulinación/efectos de la radiación , ADN/genética , ADN/efectos de la radiación , Trampas Extracelulares/genética , Trampas Extracelulares/efectos de la radiación , Células HL-60 , Células HeLa , Histonas/genética , Histonas/efectos de la radiación , Humanos , Leucopoyesis/genética , Leucopoyesis/efectos de la radiación
18.
J Exp Clin Cancer Res ; 38(1): 203, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101118

RESUMEN

BACKGROUND: The VRK1 chromatin kinase regulates the organization of locally altered chromatin induced by DNA damage. The combination of ionizing radiation with inhibitors of DNA damage responses increases the accumulation of DNA damage in cancer cells, which facilitates their antitumor effect, a process regulated by VRK1. METHODS: Tumor cell lines with different genetic backgrounds were treated with olaparib to determine their effect on the activation of DNA repair pathways induced by ionizing radiation. The effect of combining olaparib with depletion of the chromatin kinase VRK1 was studied in the context of double-strand breaks repair pathway after treatment with ionizing radiation. The initiation and progression of DDR were studied by specific histone acetylation, as a marker of local chromatin relaxation, and formation of γH2AX and 53BP1 foci. RESULTS: In this work, we have studied the effect that VRK1 by itself or in collaboration with olaparib, an inhibitor of PARP, has on the DNA oxidative damage induced by irradiation in order to identify its potential as a new drug target. The combination of olaparib and ionizing radiation increases DNA damage permitting a significant reduction of their respective doses to achieve a similar amount of DNA damage detected by γH2AX and 53BP1 foci. Different treatment combinations of olaparib and ionizing radiation permitted to reach the maximum level of DNA damage at lower doses of both treatments. Furthermore, we have studied the effect that depletion of the VRK1 chromatin kinase, a regulator of DDR, has on this response. VRK1 knockdown impaired all steps in the DDR induced by these treatments, which were detected by a reduction of sequential markers such as H4K16 ac, γH2AX, NBS1 and 53BP1. Moreover, this effect of VRK1 is independent of TP53 or ATM, two genes frequently mutated in cancer. CONCLUSION: The protective DNA damage response induced by ionizing radiation is impaired by the combination of olaparib with depletion of VRK1, and can be used to reduce doses of radiation and their associated toxicity. Proteins implicated in DNA damage responses are suitable targets for development of new therapeutic strategies and their combination can be an alternative form of synthetic lethality.


Asunto(s)
Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Células A549 , Acetilación/efectos de los fármacos , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/radioterapia , Fosforilación/efectos de los fármacos , Ftalazinas/farmacología , Piperazinas/farmacología , Interferencia de ARN , Radiación Ionizante , Mutaciones Letales Sintéticas/genética
19.
Nucleic Acids Res ; 47(12): e69, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-30927002

RESUMEN

Chromatin immunoprecipitation (ChIP) is the most widely used approach for identification of genome-associated proteins and their modifications. We have previously introduced a microplate-based ChIP platform, Matrix ChIP, where the entire ChIP procedure is done on the same plate without sample transfers. Compared to conventional ChIP protocols, the Matrix ChIP assay is faster and has increased throughput. However, even with microplate ChIP assays, sample preparation and chromatin fragmentation (which is required to map genomic locations) remains a major bottleneck. We have developed a novel technology (termed 'PIXUL') utilizing an array of ultrasound transducers for simultaneous shearing of samples in standard 96-well microplates. We integrated PIXUL with Matrix ChIP ('PIXUL-ChIP'), that allows for fast, reproducible, low-cost and high-throughput sample preparation and ChIP analysis of 96 samples (cell culture or tissues) in one day. Further, we demonstrated that chromatin prepared using PIXUL can be used in an existing ChIP-seq workflow. Thus, the high-throughput capacity of PIXUL-ChIP provides the means to carry out ChIP-qPCR or ChIP-seq experiments involving dozens of samples. Given the complexity of epigenetic processes, the use of PIXUL-ChIP will advance our understanding of these processes in health and disease, as well as facilitate screening of epigenetic drugs.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Epigénesis Genética , Animales , Línea Celular , Cromatina/efectos de la radiación , ADN/efectos de la radiación , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , ARN Polimerasa II/análisis , Ondas Ultrasónicas
20.
Andrologia ; 51(5): e13238, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30706512

RESUMEN

This study was performed to investigate in vitro effects of deoxynivalenol (DON) on mice sperm quality parameters including viability, motility and DNA damages at various concentrations and exposure times. Mice spermatozoa were exposed to DON at 0, 2.5, 5 and 10 µM for 1, 3 and 6 hr, motility parameters were evaluated by computer-assisted analysis and viability was examined by colorimetric metabolic activity assay and HOS test. DNA damage was examined by acridine orange staining, and sperm damages via lipid peroxidation pathway were determined by malondialdehyde (MDA) content measurement. DON affected sperm parameters in a concentration- and time-dependent manner. In all test groups, the average path velocity and progressive motile spermatozoa were remarkably reduced. In comparison with the controls, after 1, 3 and 6 hr exposure to DON, viability of spermatozoa was reduced 25, 30 and 49% respectively. DON exposure at 10 µM for 6 hr resulted in 15% DNA damage and 2.5-fold more MDA generation, when compared with nonexposed spermatozoa. Our data suggest that DON causes sperm quality parameters decline in concentration- and time-dependent fashion, which attribute to the reduction in sperm metabolic activity and membrane integrity and equally to increase in lipid peroxidation rate and DNA damage.


Asunto(s)
Cromatina/efectos de la radiación , Daño del ADN/efectos de la radiación , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Fusarium/química , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Estrés Oxidativo/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Análisis de Semen , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA