Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.176
Filtrar
1.
J Pharm Biomed Anal ; 245: 116180, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703748

RESUMEN

Oligonucleotides have emerged as important therapeutic options for inherited diseases. In recent years, RNA therapeutics, especially mRNA, have been pushed to the market. Analytical methods for these molecules have been published extensively in the last few years. Notably, mass spectrometry has proven as a state-of-the-art quality control method. For RNA based therapeutics, numerous methods are available, while DNA therapeutics lack of suitable MS-based methods when it comes to molecules exceeding approximately 60 nucleotides. We present a method which combines the use of common restriction enzymes and short enzyme-directing oligonucleotides to generate DNA digestion products with the advantages of high-resolution tandem mass spectrometry. The instrumentation includes ion pair reverse phase chromatography coupled to a time-of-flight mass spectrometer with a collision induced dissociation (CID) for sequence analysis. Utilizing this approach, we increased the sequence coverage from 23.3% for a direct CID-MS/MS experiment of a 100 nucleotide DNA molecule to 100% sequence coverage using the restriction enzyme mediated approach presented in this work. This approach is suitable for research and development and quality control purposes in a regulated environment, which makes it a versatile tool for drug development.


Asunto(s)
Enzimas de Restricción del ADN , ADN , Oligonucleótidos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , ADN/química , ADN/genética , Enzimas de Restricción del ADN/metabolismo , Oligonucleótidos/química , Nucleótidos/análisis , Nucleótidos/química , Cromatografía de Fase Inversa/métodos , Control de Calidad , Análisis de Secuencia de ADN/métodos
2.
J Chromatogr A ; 1726: 464950, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704964

RESUMEN

In this investigation, we successfully isolated and purified natural diarylheptanoids using an orthogonal offline two-dimensional RPLC × SFC approach, employing only the phenyl/tetrazole stationary phase. First, a styrene-divinylbenzene matrix medium pretreatment liquid chromatography system effectively processed chlorophyll-containing plant extract solution with a recovery rate of 33.8 %, obviating the need for concentration steps. Subsequently, an offline two-dimensional RPLC × SFC employing only the phenyl/tetrazole stationary phase achieved a remarkable 96.38 % orthogonality and was established and utilized in the preparative separation and purification of natural products. Finally, the constructed single stationary phase highly orthogonal RPLC × SFC system was successfully applied in the preparative separation and purification of natural diarylheptanoids from the Saxifraga tangutica target fraction and yielded four diarylheptanoids with purities exceeding 95 %.


Asunto(s)
Cromatografía de Fase Inversa , Cromatografía con Fluido Supercrítico , Diarilheptanoides , Tetrazoles , Diarilheptanoides/química , Diarilheptanoides/aislamiento & purificación , Cromatografía de Fase Inversa/métodos , Cromatografía con Fluido Supercrítico/métodos , Tetrazoles/química , Tetrazoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
3.
J Chromatogr A ; 1726: 464960, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718695

RESUMEN

Mass transport through the mesopore space of a reversed-phase liquid chromatography (RPLC) column depends on the properties of the chromatographic interface, particularly on the extent of the organic-solvent ditch that favors the analyte surface diffusivity. Through molecular dynamics simulations in cylindrical RPLC mesopore models with pore diameters between 6 and 12 nm we systematically trace the evolution of organic-solvent ditch overlap due to spatial confinement in the mesopore space of RPLC columns for small-molecule separations. Each pore model of a silica-based, endcapped, C18-stationary phase is equilibrated with two mobile phases of comparable elution strength, namely 70/30 (v/v) water/acetonitrile and 60/40 (v/v) water/methanol, to consider the influence of the mobile-phase composition on the onset of organic-solvent ditch overlap. The simulations show that, as the pore diameter decreases from 9 to 6 nm, the bonded-phase density extends and compacts towards the pore center, which leads to increased accumulation of organic-solvent excess and thus enhanced organic-solvent diffusivity in the ditch. Because the acetonitrile ditch is more pronounced than the methanol ditch, acetonitrile ditch overlap sets in at less severe spatial confinement than methanol ditch overlap. The pore-averaged methanol and acetonitrile diffusivities are considerably raised by ditch overlap in the 6 nm-diameter pore, but also benefit from the ditch (without overlap) in the 7 to 12 nm-diameter pores, whereby local and pore-averaged effects are generally larger for acetonitrile than methanol.


Asunto(s)
Acetonitrilos , Cromatografía de Fase Inversa , Metanol , Simulación de Dinámica Molecular , Solventes , Cromatografía de Fase Inversa/métodos , Acetonitrilos/química , Solventes/química , Metanol/química , Porosidad , Difusión , Dióxido de Silicio/química , Agua/química
4.
J Chromatogr A ; 1726: 464973, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38729044

RESUMEN

Hydrophilic interaction chromatography (HILIC) offers different selectivity than reversed-phase liquid chromatography (RPLC). However, our knowledge of the driving force for selectivity is limited and there is a need for a better understanding of the selectivity in HILIC. Quantitative assessment of retention mechanisms makes it possible to investigate selectivity based on understanding the underlying retention mechanisms. In this study, selected model compounds from the Ikegami selectivity tests were evaluated on different polar stationary phases. The study results revealed significant insights into the selectivity in HILIC. First, hydroxy and methylene selectivity is driven by hydrophilic partitioning; but surface adsorption for 2-deoxyuridine or 5-methyluridine reduces the selectivity factor. Furthermore, the retention of 2-deoxyuridine or 5-methyluridine by surface adsorption in combination with the phase ratio explain the difference in hydroxy or methylene selectivity observed among different stationary phases. Investigations on xanthine positional isomers (1-methylxanthine/3-methylxanthine, theophylline/theobromine) indicate that isomeric selectivity is controlled by surface adsorption; however, hydrophilic partitioning may contribute to resolution by enhancing overall retention. In addition, two pairs of nucleoside isomers (adenosine/vidarabine, 2'-deoxy and 3'-deoxyguanosine) provide an example that isomeric selectivity can also be controlled by hydrophilic partitioning if their partitioning coefficients are significantly different in HILIC. Although more data is needed, the current study provides a mechanistic based understanding of the selectivity in HILIC and potentially a new way to design selectivity tests.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Adsorción , Cromatografía Liquida/métodos , Isomerismo , Nucleósidos/química , Nucleósidos/análisis , Cromatografía de Fase Inversa/métodos , Xantinas/química
5.
J Chromatogr A ; 1726: 464966, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735116

RESUMEN

Chromatographic behavior of novel chiral stationary phases with bonded selectors based on Cinchona alkaloids modified with dipeptides was studied using dipeptides as probe molecules. Buffer-free and salt containing hydro-organic solutions were used as the mobile phases. The selectors exhibit pseudoenantiomeric behavior with respect to the L/D or LL/DD enantiomers and do not behave so with respect to the LD/DL enantiomers. The alkaloid part of the selectors is the driver of enantioselectivity, while the dipeptide substituent plays a modulating role. The quinidine-based selectors demonstrate stronger adsorption affinity and higher enantioselectivity as compared to the quinine-based selectors. The dipeptide analytes containing a glycyl fragment are weaker retained and their enantiomers are worse separated comparing to dipeptides with both units being larger amino acids. Moreover, a phenyl group in the structure of a dipeptide analyte facilitates enantioseparation. The effect of the mobile phase composition on retention depends on the hydrophobicity of an analyte. Hydrophobic dipeptides are better eluted by methanol-rich solvents, hydrophilic dipeptides are better eluted with water-rich solvents, and dipeptides with an intermediate hydrophobicity demonstrate a U-shaped or more complicated dependence of the retention factor on the percentage of methanol. Even a small buffer addition to the mobile phase decreases retention, but the ion-exchange mechanism was not confirmed. The effect of an electrolyte is rather due to the shielding of the charged groups of the selector reducing thereby electrostatic interaction between the selector and analyte. Efficiency of the novel columns is comparable to that of other brush-type chiral columns, the highest achieved number of the theoretical plates per 1 m varying between 30,000 and 40,000.


Asunto(s)
Cromatografía de Fase Inversa , Alcaloides de Cinchona , Dipéptidos , Interacciones Hidrofóbicas e Hidrofílicas , Alcaloides de Cinchona/química , Dipéptidos/química , Dipéptidos/aislamiento & purificación , Estereoisomerismo , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida de Alta Presión/métodos , Quinina/química , Quinina/aislamiento & purificación
6.
Chirality ; 36(5): e23672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693625

RESUMEN

Hydroxychloroquine (HCQ), 2-([4-([7-Chloro-4-quinolyl]amino)pentyl]ethylamino)ethanol, exhibited significant biological activity, while its side effects cannot be overlooked. The RP-HPLC enantio-separation was investigated for cost-effective and convenient optical purity analysis of HCQ. The thermodynamic resolution of Rac-HCQ, driven by enthalpy and entropy, was achieved on the C18 column using Carboxymethyl-ß-cyclodextrin (CM-ß-CD) as the chiral mobile phase agent (CMPA). The effects of CCM-ß-CD, pH, and triethylamine (TEA) V% on the enantio-separation process were explored. Under the optimum conditions at 24°C, the retention times for the two enantiomers were t R 1 = 29.39 min $$ {t}_{R1}=29.39\ \min $$ and t R 2 = 32.42 min $$ {t}_{R2}=32.42\ \min $$ , resulting in R s = 1.87 $$ {R}_s=1.87 $$ . The resolution via diastereomeric salt formation of Rac-HCQ was developed to obtain the active pharmaceutical ingredient of single enantiomer S-HCQ. Di-p-Anisoyl-L-Tartaric Acid (L-DATA) was proved effective as the resolution agent for Rac-HCQ. Surprisingly, it was found that refluxing time was a key fact affecting the resolution efficiency, which meant the kinetic dominate during the process of the resolution. Four factors-solvent volume, refluxing time, filtration temperature, and molar ratio-were optimized using the single-factor method and the response surface method. Two cubic models were established, and the reliability was subsequently verified. Under the optimal conditions, the less soluble salt of 2L-DATA:S-HCQ was obtained with a yield of 96.9% and optical purity of 63.0%. The optical purity of this less soluble salt increases to 99.0% with a yield of 74.2% after three rounds recrystallization.


Asunto(s)
Hidroxicloroquina , Hidroxicloroquina/química , Estereoisomerismo , Cromatografía Líquida de Alta Presión/métodos , Concentración de Iones de Hidrógeno , beta-Ciclodextrinas/química , Cromatografía de Fase Inversa/métodos , Etilaminas/química , Termodinámica , Sales (Química)/química
7.
Sci Rep ; 14(1): 10360, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710733

RESUMEN

An experimental design and response surface methodologies using Plackett-Burman and Box-Behnken designs were applied for selecting and optimizing the most appropriate parameters which significantly affect the separation and quantitative estimation of five skeletal muscle relaxants and four analgesic drugs (baclofen, methocarbamol, dantrolene sodium, orphenadrine citrate, cyclobenzaprine hydrochloride, ketoprofen, etoricoxib, ibuprofen, and mefenamic acid) with a relatively short duration of analysis in a single run. For the separation of the nine drugs, an INERTSIL ODS-V3-5 µm C18 column (250 × 4.6 mm I.D.) was used with the optimum mobile phase conditions (45.15 mM ammonium acetate buffer pH 5.56 adjusted with acetic acid, acetonitrile, and methanol in a ratio of 30.5:29.5:40, v/v/v with a flow rate of 1.5 mL/min) and UV-detection at 220 nm. The optimized method was successfully subjected to the validation steps as described in ICH guidelines for linearity, precision, accuracy, robustness, and sensitivity. The optimized and validated method was effectively applied to determine the content of the studied drugs in their pharmaceutical preparations and to expand its applicability to the counterfeit estimation of etoricoxib in different brands of tablet dosage forms.


Asunto(s)
Analgésicos , Cromatografía Líquida de Alta Presión/métodos , Analgésicos/análisis , Fármacos Neuromusculares/análisis , Reproducibilidad de los Resultados , Cromatografía de Fase Inversa/métodos , Proyectos de Investigación
8.
Anal Methods ; 16(19): 3081-3087, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38685882

RESUMEN

Determination of PEGylated proteins' intact mass by mass spectrometry is challenging due to the molecules' large size, excessive charges, and instrument limitations. Previous efforts have been reported. However, signal variability, ion coalescence, and a generally low degree of robustness have been observed. In this work, we have explored the capabilities of post-column infusion of dimethyl sulfoxide (DMSO) following reversed-phase liquid chromatography-mass spectrometry (RP-LCMS) to determine PEG-filgrastim' intact mass, and to characterize its PEG moiety. The method was optimized around reproducibility (six preparations, and three injection replicates) with an in-house prepared PEG-filgrastim standard. The method showed a mass accuracy of ≤1.2 Da. The average molecular weight (MWEO=483) was 40 147.9 Da. The number average molecular weight (Mn) and the weight average molecular weight (Mw) were observed to be 40 101.1 and 40 113.9 Da, respectively, both with an RSD of 0.03%. The molecular weight distribution of ethylene oxide (EO), the polydispersity index (PDI), was 1.0003 for all preparations with a minimum and maximum number of EO units of 448 ± 2 and 516 ± 2, respectively. The method was finally applied to commercially available Neulasta® lots where the Mn and Mw were 39 995.8 and 40 008.8 Da, respectively, both with an RSD of 0.1%. The minimum and maximum EO units across the lots were observed to be 444.5 ± 1.5 and 514 ± 3, respectively. The PDI for all Neulasta® lots was 1.0003. This study provides an insightful characterization of Neulasta® and describes a robust LC-MS methodology for the characterization of the PEGylated proteins.


Asunto(s)
Dimetilsulfóxido , Peso Molecular , Polietilenglicoles , Dimetilsulfóxido/química , Polietilenglicoles/química , Espectrometría de Masas/métodos , Cromatografía de Fase Inversa/métodos , Proteínas/análisis , Proteínas/química , Reproducibilidad de los Resultados , Gases/química , Gases/análisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-38640792

RESUMEN

The aim of this study was to improve analysis of nonpolar lipidomics sample extracts using reversed phase (RP) chromatography. A 4/3/3 (v/v/v) mixture of methanol/methyl tert-butyl ether/chloroform (MeOH/MTBE/CHCl3, MMC) was chosen for sample extraction solvent based on its proven extraction capability for several lipid classes. To avoid carry over, loss of analytes and peak distortion the loops and all capillaries of the presented LC system were flushed and filled up with methanol until the analytical column. The choice of methanol was due to its weak elution strength and being infinitely miscible with MMC and several other nonpolar solvents. This allowed injection of a 100 µl sample that was 20 µl nonpolar extraction solvent diluted fivefold with methanol. All lipids of 25 lipid classes were transferred quantitatively to the column head where the online dilution of methanol was carried out with aqueous eluent for focusing the lipid analytes. The weak elution strength of methanol prevented peak distortions. The consecutive reversed phase elution resulted in remarkably narrow peaks (full width at half maximum was 0.07-0.08 min typically) and enhanced sensitivity (limit of detection usually in sub nM region) because of increased sample injection volume and narrow peaks. Calibration and quality control samples made by diluting commercial lipid standards 200-50000 times confirmed the applicability of this approach both for targeted lipid quantification and for untargeted quantitative comparison of lipids from different sources.


Asunto(s)
Lípidos , Lípidos/química , Límite de Detección , Animales , Metanol/química , Espectrometría de Masas/métodos , Lipidómica/métodos , Reproducibilidad de los Resultados , Cromatografía de Fase Inversa/métodos , Cloroformo/química , Éteres Metílicos/química , Éteres Metílicos/análisis , Cromatografía Liquida/métodos , Modelos Lineales , Cromatografía Líquida con Espectrometría de Masas
10.
J Pharm Biomed Anal ; 245: 116144, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636193

RESUMEN

Modified messenger RNA (mRNA) represents a rapidly emerging class of therapeutic drug product. Development of robust stability indicating methods for control of product quality are therefore critical to support successful pharmaceutical development. This paper presents an ion-pair reversed-phase liquid chromatography (IP-RPLC) method to characterise modified mRNA exposed to a wide set of stress-inducing conditions, relevant for pharmaceutical development of an mRNA drug product. The optimised method could be used for separation and analysis of large RNA, sized up to 1000 nucleotides. Column temperature, mobile phase flow rate and ion-pair selection were each studied and optimised. Baseline separations of the model RNA ladder sample were achieved using all examined ion-pairing agents. We established that the optimised method, using 100 mM Triethylamine, enabled the highest resolution separation for the largest fragments in the RNA ladder (750/1000 nucleotides), in addition to the highest overall resolution for the selected modified mRNA compound (eGFP mRNA, 996 nucleotides). The stability indicating power of the method was demonstrated by analysing the modified eGFP mRNA, upon direct exposure to heat, hydrolytic conditions and treatment with ribonucleases. Our results showed that the formed degradation products, which appeared as shorter RNA fragments in front of the main peak, could be well monitored, using the optimised method, and the relative stability of the mRNA under the various stressed conditions could be assessed.


Asunto(s)
Cromatografía de Fase Inversa , ARN Mensajero , Cromatografía de Fase Inversa/métodos , ARN Mensajero/genética , Estabilidad del ARN , Proteínas Fluorescentes Verdes/genética , Etilaminas/química
11.
J Pharm Biomed Anal ; 245: 116154, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657367

RESUMEN

Malaria remains a major health concern, aggravated by emerging resistance of the parasite to existing treatments. The World Health Organization recently endorsed the use of artesunate-pyronaridine to treat uncomplicated malaria. However, there is a lack of clinical pharmacokinetic (PK) data of pyronaridine, particularly in special populations such as children and pregnant women. Existing methods for the quantification of pyronaridine in biological matrices to support PK studies exhibit several drawbacks. These include limited sensitivity, a large sample volume required, and extensive analysis time. To overcome these limitations, an ultra-performance reversed-phase liquid chromatography tandem-mass spectrometry method to determine pyronaridine was developed and validated according to international guidelines. The method enabled fast and accurate quantification of pyronaridine in whole blood across a clinically relevant concentration range of 0.500-500 ng/mL (r2 ≥ 0.9963), with a required sample volume of 50 µL. Pyronaridine was extracted from whole blood using liquid-liquid extraction, effectively eliminating the matrix effect and preventing ion enhancement or suppression. The method achieved a satisfactory reproducible sample preparation recovery of 77%, accuracy (as bias) and precision were within ±8.2% and ≤5.3%, respectively. Stability experiments demonstrated that pyronaridine was stable for up to 315 days when stored at -70°C. Adjustments to the chromatographic system substantially reduced carry-over and improved sensitivity compared to prior methods. The method was successfully applied to quantify pyronaridine in whole blood samples from a selection of pregnant malaria patients participating in the PYRAPREG clinical trial (PACTR202011812241529) in the Democratic Republic of the Congo, demonstrating its suitability to support future PK studies. Furthermore, the enhanced sensitivity allows for the determination of pyronaridine up to 42 days post-treatment initiation, enabling assessment of the terminal elimination half-life.


Asunto(s)
Antimaláricos , Naftiridinas , Espectrometría de Masas en Tándem , Humanos , Antimaláricos/sangre , Antimaláricos/farmacocinética , Antimaláricos/análisis , Espectrometría de Masas en Tándem/métodos , Naftiridinas/sangre , Naftiridinas/farmacocinética , Naftiridinas/análisis , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Femenino , Extracción Líquido-Líquido/métodos , Embarazo , Malaria/tratamiento farmacológico , Malaria/sangre , Cromatografía de Fase Inversa/métodos
12.
Eur J Pharm Biopharm ; 199: 114301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677563

RESUMEN

Oxidation is one of the most common degradation pathways of biopharmaceutics, potentially leading to altered product stability, pharmacokinetics, reduced biological activity and/or an increased immunogenicity. However, it is often insufficiently assessed in early development stages, leaving potential molecule liabilities undiscovered. Aim of the present work was the development of a high throughput oxidation profiling strategy, applicable throughout various stages of biopharmaceutical development. The study demonstrates that the combination of multiple stress assays, including peroxide-based, visible light, and metal-catalyzed oxidation (MCO), enables a comprehensive understanding of a mAb's oxidation susceptibility. The most effective parameters to evaluate oxidation in a high-throughput screening workflow are aggregation, tryptophan oxidation and changes in the hydrophobicity profile of the Fc and Fab subunit measured via Size Exclusion Chromatography, Intrinsic Tryptophan Fluorescence Emission spectroscopy and Reversed-Phase Chromatography subunit analysis, respectively. This oxidation profiling approach is valuable tool to systematically characterize the oxidation susceptibility under relevant conditions, time effective and with minimal sample consumption.


Asunto(s)
Anticuerpos Monoclonales , Ensayos Analíticos de Alto Rendimiento , Oxidación-Reducción , Anticuerpos Monoclonales/química , Ensayos Analíticos de Alto Rendimiento/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Cromatografía en Gel/métodos , Triptófano/química , Espectrometría de Fluorescencia/métodos , Cromatografía de Fase Inversa/métodos
13.
Methods Mol Biol ; 2788: 67-79, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656509

RESUMEN

Derivatization of monosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) introduces two chromophores per sugar molecule. Their separation on a superficially porous C18 reverse-phase column, using common liquid chromatography equipment, results in short analysis times (under 20 min) and high sensitivity (limit of quantitation 1 nmol). This method allows for complex monosaccharide mixtures to be separated and quantified using a reasonably simple and safe derivatization procedure.


Asunto(s)
Cromatografía de Fase Inversa , Monosacáridos , Cromatografía de Fase Inversa/métodos , Monosacáridos/química , Monosacáridos/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrofotometría Ultravioleta/métodos , Edaravona/química , Antipirina/análogos & derivados , Antipirina/química
14.
J Chromatogr A ; 1722: 464843, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38574599

RESUMEN

Reversed-phase high performance liquid chromatography (RP-HPLC) is the most widely used chromatographic method. In addition to hydrophobic interactions, additional interactions such as electrostatic interactions may participate in the retention behaviour of an analyte. This makes it possible to use RP-HPLC for many types of analyte. We describe a simple method for separating inorganic anions on a C18 column, in which retention of inorganic anions is almost entirely due to electrostatic interactions. This leads to rapid separations as well as higher theoretical plate numbers. We used 2 mM phosphoric acid containing a low concentration of disodium molybdate as the mobile phase, which allows UV detection of non-UV-absorbing anions. With this method, we determined eight inorganic anions including several non-UV-absorbing anions photometrically at 220 nm. The detection limits of the examined eight inorganic anions calculated at a signal-to-noise ratio of 3 were between 0.3 and 10 µM. The detector response was linear over three orders of magnitude of inorganic anion concentration. The proposed RP-HPLC/UV method was successfully applied to determine inorganic anions in some water samples.


Asunto(s)
Aniones , Cromatografía de Fase Inversa , Molibdeno , Ácidos Fosfóricos , Aniones/química , Molibdeno/química , Ácidos Fosfóricos/química , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección
15.
J Chromatogr A ; 1722: 464856, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38579610

RESUMEN

Complex mixture analysis requires high-efficiency chromatography columns. Although reversed phase liquid chromatography (RPLC) is the dominant approach for such mixtures, hydrophilic interaction liquid chromatography (HILIC) is an important complement to RPLC by enabling the separation of polar compounds. Chromatography theory predicts that small particles and long columns will yield high efficiency; however, little work has been done to prepare HILIC columns longer than 25 cm packed with sub-2 µm particles. In this work, we tested the slurry packing of 75 cm long HILIC columns with 1.7 µm bridged-ethyl-hybrid amide HILIC particles at 2,100 bar (30,000 PSI). Acetonitrile, methanol, acetone, and water were tested as slurry solvents, with acetonitrile providing the best columns. Slurry concentrations of 50-200 mg/mL were assessed, and while 50-150 mg/mL provided comparable results, the 150 mg/mL columns provided the shortest packing times (9 min). Columns prepared using 150 mg/mL slurries in acetonitrile yielded a reduced minimum plate height (hmin) of 3.3 and an efficiency of 120,000 theoretical plates for acenaphthene, an unretained solute. Para-toluenesulfonic acid produced the lowest hmin of 1.9 and the highest efficiency of 210,000 theoretical plates. These results identify conditions for producing high-efficiency HILIC columns with potential applications to complex mixture analysis.


Asunto(s)
Acetonitrilos , Bencenosulfonatos , Interacciones Hidrofóbicas e Hidrofílicas , Acetonitrilos/química , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Cromatografía de Fase Inversa/instrumentación , Metanol/química , Solventes/química , Acetona/química , Tamaño de la Partícula , Presión , Agua/química
16.
J Chromatogr A ; 1722: 464828, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581973

RESUMEN

The linkages of disulfide bond (DSB) play important roles in protein stability and activity. Mass spectrometry-based (MS-based) techniques become accepted tools for DSB analysis in the recent decade. In the bottom-up approach, after enzyme digestion, the neighbouring amino acids of cysteines have great impacts on the physicochemical properties of resulting disulfide bond peptides, determining their retention behaviour on liquid chromatography (LC) and their MS ionization efficiency. In this study, the addition of supercharging reagent in LC mobile phase was used to examine the impact of supercharging reagent on the charge states of disulfide-bond peptides. The results showed that 0.1 % m-nitrobenzyl alcohol (m-NBA) in LC mobile phase increased the sensitivity and charge states of DSB peptides from our model protein, equine Interleukin-5 (eIL5), as well as the resolution of reversed-phase chromatography. Notably, also the sensitivity of C-terminal peptide with His-tag significantly improved. Our findings highlight the effectiveness of employing m-NBA as a supercharging reagent when investigating disulfide-linked peptides and the C-terminal peptide with a His-tag through nano-liquid chromatography mass spectrometry.


Asunto(s)
Alcoholes Bencílicos , Disulfuros , Péptidos , Disulfuros/química , Alcoholes Bencílicos/química , Alcoholes Bencílicos/aislamiento & purificación , Péptidos/química , Péptidos/aislamiento & purificación , Animales , Caballos , Histidina/química , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida de Alta Presión/métodos
17.
J Chromatogr A ; 1722: 464871, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593520

RESUMEN

Mixed-mode reversed-phase/anion-exchange chromatography (RP/AEX) is an effective method for the chromatographic analysis of acidic drugs because it combines reversed-phase chromatography (RP) with anion-exchange chromatography (AEX). However, the result repeatability for the RP/AEX analysis of acidic drugs is frequently compromised by the detrimental effects of residual silanol groups in an RP/AEX stationary phase on peak separation and analyte retention. In this study, an RP/weak-AEX stationary phase with amino anion-exchange groups, Sil-AA, was prepared. Subsequently, an RP/strong-AEX stationary phase, Sil-PBQA, was prepared by replacing the amino groups in Sil-AA with a benzene ring and a benzyl-containing quaternary ammonium salt. The chromatographic behaviors of Sil-PBQA and Sil-AA were compared, and the effect of residual silanol groups on the chromatographic behavior of an RP/AEX stationary phase was evaluated. Residual silanol groups not only caused additional electrostatic interactions for acidic analytes, but also competed with the analytes for the anion-exchange sites in an RP/AEX stationary phase. The effects of different salt-containing mobile-phase systems on the analyte-retention behavior of Sil-PBQA were investigated to develop a method that enhanced the repeatability of the RP/AEX acidic-analyte-analysis results obtained using Sil-PBQA and facilitated the separation of nonsteroidal anti-inflammatory drugs on Sil-PBQA. The ideas presented in this paper can improve the separation of peaks and repeatability of results in the RP/AEX analysis of acidic drugs.


Asunto(s)
Antiinflamatorios no Esteroideos , Cromatografía de Fase Inversa , Cromatografía de Fase Inversa/métodos , Cromatografía por Intercambio Iónico/métodos , Antiinflamatorios no Esteroideos/análisis , Antiinflamatorios no Esteroideos/química , Aniones/química , Aniones/análisis , Reproducibilidad de los Resultados , Silanos/química , Concentración de Iones de Hidrógeno , Cromatografía Líquida de Alta Presión/métodos
18.
J Chromatogr A ; 1722: 464889, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598894

RESUMEN

In this paper, three imidazole- and C18- bifunctional silica stationary phases (Sil-Im-C18) were prepared by adjusting introduction interval of octadecyltrichlorosilane (ODS) and 3-imidazol-1-ylpropyl(trimethoxy)silane (TMPImS), which can be used for reversed-phase liquid chromatography (RPLC) and ion exchange chromatography (IEC) with adjustable performance. The successful preparation of Sil-Im-C18 were confirmed by the characterizations of elemental analysis, infrared spectroscopy (FTIR) and contact angle (CA). Chromatographic performance of Sil-Im-C18 were evaluated by the separation of Tanaka test mixture, alkylbenzenes, linear PAHs and a set of analytes with different properties (uracil, phenol, 1,2-dinitrobenzene and naphthalene), and compared with commonly used C18 column. It was found that the chromatographic performance of Sil-Im-C18 changed significantly with the difference in bonding amount of imidazole and C18. Sil-Im-C18 demonstrated the excellent separation performance towards polycyclic aromatic hydrocarbons (PAHs), phenylesters, phenylamines, phenols and inorganic anions, and notably, nucleobases and nucleosides can be separated using pure water as mobile phases. The van Deemter plot showed that the column efficiency of Sil-Im-C18-3 was 64,933 plate·m-1 for naphthalene, indicated that Sil-Im-C18 was reasonably chromatographic columns. The RSD values of retention time were 0.22 %-0.61 % for 10 needles alkylbenzenes injected continuously at 50 °C to investigate thermal stability and repeatability, all the fluctuations of k of naphthalene were less than 2.3 % for Sil-Im-C18-1 during flushing 24 h with the mobile phase at different pH values (pH = 3 and 8), the retention time of alkylbenzenes were almost same for Sil-Im-C18-1 at different time, the RSD values of retention time of alkylbenzenes were 0.45 %-2.28 % for two batches Sil-Im-C18-1, revealing the excellent repeatability, thermal stability, durability and reproducibility of Sil-Im-C18, and implying a commercial prospect.


Asunto(s)
Cromatografía de Fase Inversa , Imidazoles , Hidrocarburos Policíclicos Aromáticos , Dióxido de Silicio , Imidazoles/química , Dióxido de Silicio/química , Cromatografía de Fase Inversa/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/química , Silanos/química , Cromatografía por Intercambio Iónico/métodos
19.
Anal Chem ; 96(15): 5860-5868, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567987

RESUMEN

Supramolecular hydrogels formed through polymer-nanoparticle interactions are promising biocompatible materials for translational medicines. This class of hydrogels exhibits shear-thinning behavior and rapid recovery of mechanical properties, providing desirable attributes for formulating sprayable and injectable therapeutics. Characterization of hydrogel composition and loading of encapsulated drugs is critical to achieving the desired rheological behavior as well as tunable in vitro and in vivo payload release kinetics. However, quantitation of hydrogel composition is challenging due to material complexity, heterogeneity, high molecular weight, and the lack of chromophores. Here, we present a label-free approach to simultaneously determine hydrogel polymeric components and encapsulated payloads by coupling a reversed phase liquid chromatographic method with a charged aerosol detector (RPLC-CAD). The hydrogel studied consists of modified hydroxypropylmethylcellulose, self-assembled PEG-b-PLA nanoparticles, and a therapeutic compound, bimatoprost. The three components were resolved and quantitated using the RPLC-CAD method with a C4 stationary phase. The method demonstrated robust performance, applicability to alternative cargos (i.e., proteins) and was suitable for composition analysis as well as for evaluating in vitro release of cargos from the hydrogel. Moreover, this method can be used to monitor polymer degradation and material stability, which can be further elucidated by coupling the RPLC method with (1) a multi-angle light scattering detector (RPLC-MALS) or (2) high resolution mass spectrometry (RPLC-MS) and a Fourier-transform based deconvolution algorithm. We envision that this analytical strategy could be generalized to characterize critical quality attributes of other classes of supramolecular hydrogels, establish structure-property relationships, and provide rational design guidance in hydrogel drug product development.


Asunto(s)
Hidrogeles , Nanopartículas , Hidrogeles/química , Cromatografía de Fase Inversa/métodos , Polietilenglicoles/química , Aerosoles
20.
Metabolomics ; 20(3): 49, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689195

RESUMEN

INTRODUCTION: Untargeted metabolomics studies are expected to cover a wide range of compound classes with high chemical diversity and complexity. Thus, optimizing (pre-)analytical parameters such as the analytical liquid chromatography (LC) column is crucial and the selection of the column depends primarily on the study purpose. OBJECTIVES: The current investigation aimed to compare six different analytical columns. First, by comparing the chromatographic resolution of selected compounds. Second, on the outcome of an untargeted toxicometabolomics study using pooled human liver microsomes (pHLM), rat plasma, and rat urine as matrices. METHODS: Separation and analysis were performed using three different reversed-phase (Phenyl-Hexyl, BEH C18, and Gold C18), two hydrophilic interaction chromatography (HILIC) (ammonium-sulfonic acid and sulfobetaine), and one porous graphitic carbon (PGC) columns coupled to high-resolution mass spectrometry (HRMS). Their impact was evaluated based on the column performance and the size of feature count, amongst others. RESULTS: All three reversed-phase columns showed a similar performance, whereas the PGC column was superior to both HILIC columns at least for polar compounds. Comparing the size of feature count across all datasets, most features were detected using the Phenyl-Hexyl or sulfobetaine column. Considering the matrices, most significant features were detected in urine and pHLM after using the sulfobetaine and in plasma after using the ammonium-sulfonic acid column. CONCLUSION: The results underline that the outcome of this untargeted toxicometabolomic study LC-HRMS metabolomic study was highly influenced by the analytical column, with the Phenyl-Hexyl or sulfobetaine column being the most suitable. However, column selection may also depend on the investigated compounds as well as on the investigated matrix.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Metabolómica , Microsomas Hepáticos , Ratas , Animales , Humanos , Metabolómica/métodos , Microsomas Hepáticos/metabolismo , Cromatografía de Fase Inversa/métodos , Grafito/química , Plasma/química , Plasma/metabolismo , Cromatografía Liquida/métodos , Porosidad , Metaboloma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA