Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.293
Filtrar
1.
PeerJ ; 12: e17461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952992

RESUMEN

Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).


Asunto(s)
Cromo , Grano Comestible , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Cromo/toxicidad , Cromo/efectos adversos , Cromo/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/efectos adversos , Grano Comestible/microbiología , Estrés Fisiológico/efectos de los fármacos , Hongos/efectos de los fármacos , Hongos/genética , Microbiota/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo
2.
J Environ Manage ; 365: 121632, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950506

RESUMEN

Hermetia illucens larvae showcases remarkable bioremediation capabilities for both antibiotics and heavy metal contaminants. However, the distinctions in larval intestinal microbiota arising from the single and combined effects of antibiotics and heavy metals remain poorly elucidated. In this study, we delved into the details of larval intestinal bacterial communities and microbial metabolites when exposed to single and combined contaminants of oxytetracycline (OTC) and hexavalent chromium (Cr(VI)). After conversion, single contaminant-spiked substrate showed 75.5% of OTC degradation and 95.2% of Cr(VI) reductiuon, while combined contaminant-spiked substrate exhibited 71.3% of OTC degradation and 93.4% of Cr(VI) reductiuon. Single and combined effects led to differences in intestinal bacterial communities, mainly reflected in the genera of Enterococcus, Pseudogracilibacillus, Gracilibacillus, Wohlfahrtiimonas, Sporosarcina, Lysinibacillus, and Myroide. Moreover, these effects also induced differences across various categories of microbial metabolites, which categorized into amino acid and its metabolites, benzene and substituted derivatives, carbohydrates and its metabolites, heterocyclic compounds, hormones and hormone-related compounds, nucleotide and its metabolites, and organic acid and its derivatives. In particular, the differences induced OTC was greater than that of Cr(VI), and combined effects increased the complexity of microbial metabolism compared to that of single contaminant. Correlation analysis indicated that the bacterial genera, Preudogracilibacillus, Enterococcus, Sporosarcina, Lysinibacillus, Wohlfahrtiimonas, Ignatzschineria, and Fusobacterium exhibited significant correlation with significant differential metabolites, these might be used as indicators for the resistance and bioremediation of OTC and Cr(VI) contaminants. These findings are conducive to further understanding that the metabolism of intestinal microbiota determines the resistance of Hermetia illucens to antibiotics and heavy metals.


Asunto(s)
Antibacterianos , Biodegradación Ambiental , Microbioma Gastrointestinal , Larva , Metales Pesados , Animales , Antibacterianos/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Cromo/metabolismo
3.
Curr Microbiol ; 81(8): 231, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896297

RESUMEN

Spirulina platensis, a photosynthetic cyanobacterium, has garnered attention for its potential role in environmental remediation due to its ability to absorb and metabolize toxic heavy metals. Understanding its response toward toxicity of one of the most common contaminants, Cr(VI) is crucial for assessing its efficacy in bioremediation efforts. This study aims to investigate the physiological and biochemical responses of Spirulina platensis to varying concentrations of Cr(VI) from 0.5 to 5 ppm, shedding light on its potential as a bioindicator for environmental contamination and its suitability for bioremediation purposes. The impact of Cr(VI) on cell density, biosorption, pigment levels, nutrient content, fluorescence response, and photosynthetic efficiency was examined. The study revealed a gradual reduction in cell density, biomass production, and biosorption efficiency with increasing Cr(VI) concentrations. Pigment levels, carbohydrate, protein, and lipid content showed significant decreases, indicating physiological stress. Fluorescence response and photosynthetic efficiency were also adversely affected, suggesting alterations in electron transfer dynamics. A threshold for chromium toxicity was observed at 0.5 ppm, beyond which significant physiological disturbances occurred. This investigation highlights the sensitivity of Spirulina platensis to Cr(VI) toxicity and its potential as a bioindicator for heavy metal contamination. Metal sorption was highest in 0.5 ppm Cr(VI) with 56.56% removal. Notably, at lower concentrations, Cr(VI) acted as an intermediate electron acceptor, enhancing the electron transport chain and potentially increasing biomass under controlled conditions. The findings underscore the importance of understanding the mechanisms underlying heavy metal stress in microalgae for effective environmental remediation strategies. The research highlights the dual role of chromium(VI) in influencing S. platensis, depending on the concentration, and underscores the importance of understanding metal ion interactions with photosynthetic organisms for potential applications in bioremediation.


Asunto(s)
Biodegradación Ambiental , Cromo , Fotosíntesis , Spirulina , Cromo/metabolismo , Cromo/toxicidad , Spirulina/metabolismo , Spirulina/crecimiento & desarrollo , Spirulina/efectos de los fármacos , Spirulina/química , Fotosíntesis/efectos de los fármacos , Biomasa , Adsorción
4.
Sci Rep ; 14(1): 14090, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890328

RESUMEN

Chromium (Cr) can interfere with plant gene expression, change the content of metabolites and affect plant growth. However, the molecular response mechanism of wetland plants at different time sequences under Cr stress has yet to be fully understood. In this study, Canna indica was exposed to 100 mg/kg Cr-contaminated soil for 0, 7, 14, and 21 days and analyzed using untargeted metabolomics (LC-MS) and transcriptomics. The results showed that Cr stress increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), the contents of glutathione (GSH), malondialdehyde (MDA), and oxygen free radical (ROS), and inhibited the biosynthesis of photosynthetic pigments, thus leading to changes in plant growth and biomass. Metabonomics analysis showed that Cr stress mainly affected 12 metabolic pathways, involving 38 differentially expressed metabolites, including amino acids, phenylpropane, and flavonoids. By transcriptome analysis, a total of 16,247 differentially expressed genes (DEGs, 7710 up-regulated genes, and 8537 down-regulated genes) were identified, among which, at the early stage of stress (Cr contaminate seven days), C. indica responds to Cr toxicity mainly through galactose, starch and sucrose metabolism. With the extension of stress time, plant hormone signal transduction and MAPK signaling pathway in C. indica in the Cr14 (Cr contaminate 14 days) treatment group were significantly affected. Finally, in the late stage of stress (Cr21), C. indica co-defuses Cr toxicity by activating its Glutathione metabolism and Phenylpropanoid biosynthesis. In conclusion, this study revealed the molecular response mechanism of C. indica to Cr stress at different times through multi-omics methods.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metabolómica , Estrés Fisiológico , Transcriptoma , Metabolómica/métodos , Estrés Fisiológico/genética , Cromo/metabolismo , Cromo/toxicidad , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Metaboloma
5.
J Hazard Mater ; 475: 134580, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865829

RESUMEN

In this research, a new material, chitosan/polypyrrole (CS/PPy), was synthesized and linked with the Cr(VI)-reducing bacterial strain YL3 to treat Cr(VI)-polluted soil. The findings demonstrated that the synergistic application of strain YL3 and CS/PPy achieved the greatest reduction (99.6 %). During the remediation process, CS/PPy served as a mass-storage and sustained release agent in the soil, which initially decreased the toxic effects of high concentrations of Cr(VI) on strain YL3, thereby enhancing the Cr(VI) reduction efficiency of strain YL3. These combined effects significantly mitigated Cr(VI) stress in the soil and restored enzyme activities. Furthermore, wheat growth in the treated soil also significantly improved. High-throughput sequencing of the microorganisms in the treated soil revealed that CS/PPy was not only effective at removing Cr(VI) but also at preserving the original microbial diversity of the soil. This suggests that the combined treatment using strain YL3 and CS/PPy could rehabilitate Cr(VI)-contaminated soil, positioning CS/PPy as a promising composite material for future bioremediation efforts in Cr(VI)-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Quitosano , Cromo , Microbacterium , Polímeros , Pirroles , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Cromo/metabolismo , Cromo/química , Quitosano/química , Polímeros/química , Polímeros/metabolismo , Pirroles/metabolismo , Pirroles/química , Microbacterium/metabolismo , Triticum/metabolismo
6.
J Hazard Mater ; 475: 134889, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878436

RESUMEN

Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.


Asunto(s)
Biodegradación Ambiental , Cromatos , Dioxigenasas , Oxidorreductasas , Hidrocarburos Policíclicos Aromáticos , Sphingomonadaceae , Sphingomonadaceae/enzimología , Sphingomonadaceae/metabolismo , Dioxigenasas/metabolismo , Dioxigenasas/genética , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Cromatos/metabolismo , Oxidorreductasas/metabolismo , Cromo/metabolismo , Fenantrenos/metabolismo
7.
Water Sci Technol ; 89(9): 2384-2395, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747955

RESUMEN

Cr(VI) and phenol commonly coexist in wastewater, posing a great threat to the environment and human health. However, it is still a challenge for microorganisms to degrade phenol under high Cr(VI) stress. In this study, the phenol-degrading strain Bacillus cereus ZWB3 was co-cultured with the Cr(VI)-reducing strain Bacillus licheniformis MZ-1 to enhance phenol biodegradation under Cr(Ⅵ) stress. Compared with phenol-degrading strain ZWB3, which has weak tolerance to Cr(Ⅵ), and Cr(Ⅵ)-reducing strain MZ-1, which has no phenol-degrading ability, the co-culture of two strains could significantly increase the degraded rate and capacity of phenol. In addition, the co-cultured strains exhibited phenol degradation ability over a wide pH range (7-10). The reduced content of intracellular proteins and polysaccharides produced by the co-cultured strains contributed to the enhancement of phenol degradation and Cr(Ⅵ) tolerance. The determination coefficients R2, RMSE, and MAPE showed that the BP-ANN model could predict the degradation of phenol under various conditions, which saved time and economic cost. The metabolic pathway of microbial degradation of phenol was deduced by metabolic analysis. This study provides a valuable strategy for wastewater treatment containing Cr(Ⅵ) and phenol.


Asunto(s)
Biodegradación Ambiental , Cromo , Aprendizaje Automático , Fenol , Fenol/metabolismo , Cromo/metabolismo , Bacillus cereus/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacillus licheniformis/metabolismo
8.
J Hazard Mater ; 472: 134447, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692000

RESUMEN

Sulfur-based denitrification is a promising technology for efficient nitrogen removal in low-carbon wastewater, while it is easily affected by toxic substances. This study revealed the inhibitory mechanism of Cr(VI) on thiosulfate-based denitrification, including bio-toxicity and bio-electron characteristics response. The activity of nitrite reductase (NIR) was more sensitive to Cr(VI) than that of nitrate reductase (NAR), and NIR was inhibited by 21.32 % and 19.86 % under 5 and 10 mg/L Cr(VI), resulting in 10.12 and 15.62 mg/L of NO2--N accumulation. The biofilm intercepted 36.57 % of chromium extracellularly by increasing 25.78 % of extracellular polymeric substances, thereby protecting microbes from bio-toxicity under 5 mg/L Cr(VI). However, it was unable to resist 20-30 mg/L of Cr(VI) bio-toxicity as 19.95 and 14.29 mg Cr/(g volatile suspended solids) invaded intracellularly, inducing the accumulation of reactive oxygen species by 165.98 % and 169.12 %, which triggered microbial oxidative-stress and damaged the cells. In terms of electron transfer, S2O32- oxidation was inhibited, and parts of electrons were redirected intracellularly to maintain microbial activity, resulting in insufficient electron donors. Meanwhile, the contents of flavin adenine dinucleotide and cytochrome c decreased under 5-30 mg/L Cr(VI), reducing the electron acquisition rate of denitrification. Thermomonas (the dominant genus) possessed denitrification and Cr(VI) resistance abilities, playing an important role in antioxidant stress and biofilm formation. ENVIRONMENTAL IMPLICATION: Sulfur-based denitrification (SBD) is a promising method for nitrate removal in low-carbon wastewater, while toxic heavy metals such as Cr(VI) negatively impair denitrification. This study elucidated Cr(VI) inhibitory mechanisms on SBD, including bio-toxicity response, bio-electron characteristics, and microbial community structure. Higher concentrations Cr(VI) led to intracellular invasion and oxidative stress, evidenced by ROS accumulation. Moreover, Cr(VI) disrupted electron flow by inhibiting thiosulfate oxidation and affecting electron acquisition by denitrifying enzymes. This study provided valuable insights into Cr(VI) toxicity, which is of great significance for improving wastewater treatment technologies and maintaining efficient and stable operation of SBD in the face of complex environmental challenges.


Asunto(s)
Biopelículas , Cromo , Desnitrificación , Azufre , Cromo/toxicidad , Cromo/metabolismo , Cromo/química , Desnitrificación/efectos de los fármacos , Azufre/química , Azufre/metabolismo , Biopelículas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Nitrito Reductasas/metabolismo , Nitrato-Reductasa/metabolismo , Aguas Residuales/química , Especies Reactivas de Oxígeno/metabolismo , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Electrones , Estrés Oxidativo/efectos de los fármacos
9.
Sci Total Environ ; 935: 173413, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38788956

RESUMEN

Chromium pollution, particularly hexavalent chromium [Cr(VI)], may threaten the environment and human health. This study investigated the potential of Tagetes erecta L. (Aztec marigold) for phytoremediation of soil contaminated with Cr(VI), and focused on the effects of varying concentrations of Cr(VI) on both the physicochemical properties of soil and microbiome of Tagetes erecta L. We observed that Tagetes erecta L. showed tolerance to Cr(VI) stress and maintained normal growth under these conditions, as indicated by bioconcentration factors of 0.33-0.53 in shoots and 0.39-0.70 in roots. Meanwhile, the structure and diversity of bacterial communities were significantly affected by Cr(VI) pollution. Specifically, Cr(VI) had a more significant effect on the microbial community structure in the endophytic of Tagetes erecta L. than in the rhizosphere (p < 0.05). The genera Devosia and Methylobacillus were positively correlated with Cr(VI) concentrations. Biomarkers such as Bacilli and Pseudonocardia were identified under the different Cr(VI)-contaminated treatments using LEfSe. In addition, the interaction and stability of the endophytic microbiome were enhanced under Cr(VI) stress. This study explored the interactions between heavy metals, microorganisms, and plants, providing valuable insights for developing in situ bioremediation of Cr(VI)-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Cromo , Microbiota , Microbiología del Suelo , Contaminantes del Suelo , Tagetes , Cromo/metabolismo , Tagetes/metabolismo , Contaminantes del Suelo/metabolismo , Rizosfera
10.
Chemosphere ; 359: 142389, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777191

RESUMEN

Bacillus nitratireducens was isolated from textile effluent and showed high tolerance to chromium (Cr), reaching up to a 1000 mg/L MIC value. This research was aimed at utilizing biosorbents from live and dead cells of B. nitratireducens to remove Cr from an aqueous solution. A batch biosorption test was performed, and mechanisms analysis was approached by an adsorption-desorption test, SEM-EDS, and FTIR analysis. Cr removal by dead cells in 25, 50, and 100 mg/L of Cr were 58.99 ± 0.7%, 69.8 ± 0.2%, and 82.87 ± 0.11%, respectively, while that by live cells was 73.08 ± 1.9%, 80.27 ± 6.33%, and 86.17 ± 1.93%, respectively. Live cells showed significantly higher Cr removal and adsorption capacities as compared to dead cells. In all concentrations, absorption contributed more than adsorption to the Cr removal by both live and dead cells. Absorption of Cr was subjected to occur due to passive mechanisms in dead cells while involving some active mechanisms in live cells. SEM-EDS confirmed the detection of Cr on the cell surface, while FTIR revealed the shifting of some peaks after the biosorption test, suggesting interactions between Cr and functional groups. Further TEM analysis is suggested to be conducted as a future approach to reveal the inner structure of cells and confirm the involvement of absorption mechanisms.


Asunto(s)
Bacillus , Biodegradación Ambiental , Cromo , Contaminantes Químicos del Agua , Cromo/metabolismo , Bacillus/metabolismo , Adsorción , Contaminantes Químicos del Agua/metabolismo , Textiles , Eliminación de Residuos Líquidos/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Industria Textil , Aguas Residuales/química , Aguas Residuales/microbiología
11.
J Hazard Mater ; 473: 134590, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762990

RESUMEN

Phytoremediation, an eco-friendly approach for mitigating heavy metal contamination, is reliant on hyperaccumulators. This study focused on Leersia hexandra Swart, a known chromium (Cr) hyperaccumulator with demonstrated tolerance to multiple heavy metals. Our objective was to investigate its response to simultaneous Cr and nickel (Ni) stress over 12 days. Results from physiological experiments demonstrated a significant increase in the activities of antioxidant enzymes (APX, SOD, CAT) and glutathione (GSH) content under Cr and Ni stress, indicating enhanced antioxidant mechanisms. Transcriptome analysis revealed that stress resulted in the differential expression of 27 genes associated with antioxidant activity and metal binding, including APX, SOD, CAT, GSH, metallothionein (MT), and nicotinamide (NA). Among them, twenty differentially expressed genes (DEGs) related to GSH metabolic cycle were identified. Notably, GSTU6, GND1, and PGD were the top three related genes, showing upregulation with fold changes of 4.57, 6.07, and 3.76, respectively, indicating their crucial role in metal tolerance. The expression of selected DEGs was validated by quantitative real-time PCR, confirming the reliability of RNA-Seq data. Metabolomic analysis revealed changes in 1121 metabolites, with amino acids, flavonoids, and carbohydrates being the most affected. Furthermore, glucosinolate biosynthesis and amino acid biosynthesis pathways were represented in the KEGG pathway of differentially expressed metabolites (DEMs). This study provides insights into the tolerance mechanisms of L. hexandra under the co-stress of Cr and Ni, offering a new perspective for enhancing its remediation performance.


Asunto(s)
Cromo , Metaboloma , Níquel , Transcriptoma , Níquel/metabolismo , Níquel/toxicidad , Cromo/toxicidad , Cromo/metabolismo , Transcriptoma/efectos de los fármacos , Metaboloma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Glutatión/metabolismo , Antioxidantes/metabolismo
12.
Environ Sci Process Impacts ; 26(6): 1064-1076, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38721825

RESUMEN

Cr(VI) has been a carcinogen for organisms and a hazard to human health throughout the food chain. To explore a cost-effective and efficient method for removing Cr(VI), a Cr-resistant strain named LBA108 was isolated from the soil of a molybdenum-lead mining area. It was identified as Microbacterium through biochemical tests and 16S rDNA sequence analysis. Following 48 hours of incubation in LB culture medium containing 60 mg L-1 Cr(VI), the LBA108 strain exhibited reduction and adsorption rates for Cr(VI) at 96.64% and 15.86%, respectively. The removal mechanism was subsequently confirmed through Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis. In an experimental setup, radish seedlings were cultivated as test crops under varying levels of Cr stress (ranging from 0 to 7 mg L-1) in a hydroponic experiment. With the inoculation of the LBA108 strain, the fresh weight of radish seedlings increased by 2.05 times and plant length increased by 34.5% under 7 mg L-1 Cr stress. In addition, the plant produced more antioxidant enzymes/enhanced antioxidant enzyme activities such as superoxide dismutase and catalase to prevent oxidative stress. Under Cr stress (6 mg L-1), the accumulation of Cr in rhizomes of radish seedlings increased compared to the control group by 91.44%, while the absorption of Cr by leaves decreased by 52.10%. These findings suggest that the LBA108 strain possesses bioremediation capabilities as a microbial-phytoremediation option for Cr-contaminated soil.


Asunto(s)
Biodegradación Ambiental , Cromo , Raphanus , Microbiología del Suelo , Contaminantes del Suelo , Raphanus/microbiología , Contaminantes del Suelo/metabolismo , Cromo/metabolismo
13.
J Hazard Mater ; 470: 134304, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615650

RESUMEN

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Asunto(s)
Benzopiranos , Chlorella vulgaris , Cromo , Microalgas , Peso Molecular , Contaminantes Químicos del Agua , Cromo/metabolismo , Cromo/química , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Chlorella vulgaris/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo , Microalgas/metabolismo , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Benzopiranos/química , Benzopiranos/metabolismo
14.
Chemosphere ; 356: 141927, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593954

RESUMEN

Numerous animal studies have demonstrated the toxicity of hexavalent chromium [Cr(VI)] and the bioremediative effects of probiotics on the composition and functions of gut microbiota. Since the precise mechanisms of Cr(VI) detoxification and its interactions with human gut microbiota were unknown, a novel dual-chamber simulated intestinal (DCSI) system was developed to maintain both the stability of the simulated system and the composition of the gut microbiota. Probiotic GR-1 was found to regulate intestinal gut microbiota, thereby reducing the toxicity of Cr(VI) within the DCSI system. The results indicate that Cr(VI) levels were reduced from 2.260 ± 0.2438 µg/g to 1.7086 ± 0.1950 µg/g in the gut microbiota cell pellet, and Cr(VI) permeability decreased from 0.5521 ± 0.1132 µg/L to 0.3681 ± 0.0178 µg/L after 48 h in simulated gut fluid. Additionally, the removal rate of 1,1-Diphenyl-2-picrylhydrazyl (DPPH), reducibility (Vitamin C), and total antioxidant capacity (T-AOC) increased by 50.83%, 31.70%, and 27.56%, respectively, following probiotic treatment. The increase in antioxidant capacity correlated with total Cr removal (P < 0.05, r from -0.80 to 0.73). 16S rRNA sequencing analysis showed that gut microbiota composition was reshaped by the addition of probiotics, which regulated the recovery of the functional gut microbiota to normal levels, rather than restoring the entire gut microbiota composition for community function. Thus, this study not only demonstrates the feasibility and stability of culturing gut microbiota but also offers a new biotechnological approach to synthesizing functional communities with functional strains for environmental risk management.


Asunto(s)
Cromo , Microbioma Gastrointestinal , Pediococcus acidilactici , Probióticos , Cromo/toxicidad , Cromo/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Biodegradación Ambiental
15.
Bioresour Technol ; 400: 130699, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615966

RESUMEN

Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.


Asunto(s)
Cromo , Desnitrificación , Azufre , Cromo/metabolismo , Azufre/farmacología , Azufre/química , Transporte de Electrón , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Thiobacillus/metabolismo , Antraquinonas/farmacología , Cisteína/farmacología , Cisteína/metabolismo
16.
J Environ Manage ; 358: 120870, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640757

RESUMEN

Bacterium with high Cr(VI) detoxification capability belonged to the genus Bacillus have been largely explored, yet their reduction strategies are still in debate. Cr(VI) removal performance and mechanism of Bacillus sp. HL1 isolated from tailings a site was comprehensively investigated in this study. Approximately 88.31% of 100 mg/L Cr(VI) was continuously removed within 72 h, while it could resist up to 300 mg/L Cr(VI). Metal ions Mn2+ and Cu2+ could effectively improve the Cr(VI) removal performance to 14.41% and 3.41% under the optimal conditions, respectively. Cr(VI) removal performances by subcellular extracts showed that nearly 45.28% of 100 mg/L extracellular Cr(VI) was efficaciously reduced to Cr(III), while only 14.27%, 6.40%, and 2.73% of the cell-free extract, resting cells, and cell debris were reduced, respectively. This suggested that extracellular bioreduction was the primary Cr(VI) detoxification strategy despite a small part of Cr(VI) reduction took place intracellularly. In particular, the reduction products of the intracellular and extracellular compounds significantly differed, with organo-Cr(III) complex outside the cell and crystalline Cr(III) precipitate inside. Such observation was also evidenced by the intracellular black precipitate observed in the TEM image. XRD, XPS, and EPR analysis showed different Cr(III) compositions of intracellular and extracellular products. This study deepens our insights into the different fates of microorganisms that reduce Cr(VI) intracellularly and extracellularly.


Asunto(s)
Bacillus , Biodegradación Ambiental , Cromo , Bacillus/metabolismo , Cromo/metabolismo , Oxidación-Reducción
17.
Sci Total Environ ; 931: 172507, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657818

RESUMEN

Dumped Chromium Ore Processing Residue (COPR) at legacy sites poses a threat to health through leaching of toxic Cr(VI) into groundwater. Previous work implicates microbial activity in reducing Cr(VI) to less mobile and toxic Cr(III), but the mechanism has not been explored. To address this question a combined metagenomic and geochemical study was undertaken. Soil samples from below the COPR waste were used to establish anaerobic microcosms which were challenged with Cr(VI), with or without acetate as an electron donor, and incubated for 70 days. Cr was rapidly reduced in both systems, which also reduced nitrate, nitrite then sulfate, but this sequence was accelerated in the acetate amended microcosms. 16S rRNA gene sequencing revealed that the original soil sample was diverse but both microcosm systems became less diverse by the end of the experiment. A high proportion of 16S rRNA gene reads and metagenome-assembled genomes (MAGs) with high completeness could not be taxonomically classified, highlighting the distinctiveness of these alkaline Cr impacted systems. Examination of the coding capacity revealed widespread capability for metal tolerance and Fe uptake and storage, and both populations possessed metabolic capability to degrade a wide range of organic molecules. The relative abundance of genes for fatty acid degradation was 4× higher in the unamended compared to the acetate amended system, whereas the capacity for dissimilatory sulfate metabolism was 3× higher in the acetate amended system. We demonstrate that naturally occurring in situ bacterial populations have the metabolic capability to couple acetate oxidation to sequential reduction of electron acceptors which can reduce Cr(VI) to less mobile and toxic Cr(III), and that microbially produced sulfide may be important in reductive precipitation of chromate. This capability could be harnessed to create a Cr(VI) trap-zone beneath COPR tips without the need to disturb the waste.


Asunto(s)
Cromo , ARN Ribosómico 16S , Microbiología del Suelo , Cromo/metabolismo , Metagenoma , Oxidación-Reducción , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Agua Subterránea/microbiología , Agua Subterránea/química , Bacterias/metabolismo
18.
Plant Physiol Biochem ; 210: 108624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636254

RESUMEN

Heavy metals are one of the most damaging environmental toxins that hamper growth of plants. These noxious chemicals include lead (Pb), arsenic (As), nickel (Ni), cadmium (Cd) and chromium (Cr). Chromium is one of the toxic metal which induces various oxidative processes in plants. The emerging role of nanoparticles as pesticides, fertilizers and growth regulators have attracted the attention of various scientists. Current study was conducted to explore the potential of zinc oxide nanoparticles (ZnONPs) alone and in combination with plant growth promoting rhizobacteria (PGPR) Klebsiella sp. SBP-8 in Cr stress alleviation in Brassica juncea (L.). Chromium stress reduced shoot fresh weight (40%), root fresh weight (28%), shoot dry weight (28%) and root dry weight (34%) in B. juncea seedlings. Chromium stressed B. juncea plants showed enhanced levels of malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide ion (O2• -). However, co-supplementation of ZnONPs and Klebsiella sp. SBP-8 escalated the activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) in B. juncea grown in normal and Cr-toxic soil. It is further proposed that combined treatment of ZnONPs and Klebsiella sp. SBP-8 may be useful for alleviation of other abiotic stresses in plants.


Asunto(s)
Antioxidantes , Cromo , Klebsiella , Planta de la Mostaza , Óxido de Zinc , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/microbiología , Planta de la Mostaza/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Antioxidantes/metabolismo , Klebsiella/metabolismo , Klebsiella/efectos de los fármacos , Óxido de Zinc/farmacología , Adsorción , Nanopartículas del Metal/química , Nanopartículas/química , Contaminantes del Suelo/toxicidad
19.
J Microbiol ; 62(5): 355-365, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38587592

RESUMEN

Chromium is a prevalent toxic heavy metal, and chromate [Cr(VI)] exhibits high mutagenicity and carcinogenicity. The presence of the Cr(VI) efflux protein ChrA has been identified in strains exhibiting resistance to Cr(VI). Nevertheless, certain strains of bacteria that are resistant to Cr(VI) lack the presence of ChrB, a known regulatory factor. Here, a PadR family transcriptional repressor, ChrN, has been identified as a regulator in the response of Enterobacter sp. Z1(CCTCC NO: M 2019147) to Cr(VI). The chrN gene is cotranscribed with the chrA gene, and the transcriptional expression of this operon is induced by Cr(VI). The binding capacity of the ChrN protein to Cr(VI) was demonstrated by both the tryptophan fluorescence assay and Ni-NTA purification assay. The interaction between ChrN and the chrAN operon promoter was validated by reporter gene assay and electrophoretic mobility shift assay. Mutation of the conserved histidine residues His14 and His50 resulted in loss of ChrN binding with the promoter of the chrAN operon. This observation implies that these residues are crucial for establishing a DNA-binding site. These findings demonstrate that ChrN functions as a transcriptional repressor, modulating the cellular response of strain Z1 to Cr(VI) exposure.


Asunto(s)
Proteínas Bacterianas , Cromatos , Enterobacter , Regulación Bacteriana de la Expresión Génica , Operón , Regiones Promotoras Genéticas , Proteínas Represoras , Cromatos/metabolismo , Enterobacter/genética , Enterobacter/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transcripción Genética , Cromo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Sitios de Unión , Unión Proteica
20.
Environ Res ; 252(Pt 1): 118882, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582426

RESUMEN

The concentration of trace elements (chromium, lead, zinc, copper, manganese, and iron) was determined in water, sediment and tissues of two Cyprinidae fish species - Labeo rohita and Tor putitora - collected from the eight sampling stations of Indus River in 2022 for four successive seasons (autumn, winter, spring, summer), and also study the present condition of macroinvertebrates after the construction of hydraulic structure. The obtained results of trace element concentrations in the Indus River were higher than the acceptable drinking water standards by WHO. The nitrate concentration ranges from 5.2 to 59.6 mg l-1, turbidity ranges from 3.00 to 63.9 NTU, total suspended solids and ammonium ions are below the detection limit (<0.05). In the liver, highest dry wt trace elements (µg/g) such as Cr (4.32), Pb (7.07), Zn (58.26), Cu (8.38), Mn (50.27), and Fe (83.9) for the Labeo rohita; and Tor Putitora has significantly greater accumulated concentration (Cr, Pb, Zn, Cu, Mn, Fe) in muscle and liver than did Labeo rohita species. Additionally, lower number of macroinvertebrates were recorded during the monsoonal season than pre-monsoon and post-monsoon. Local communities surrounded by polluted environments are more probably to consume more fish and expose them to higher concentrations of toxic trace elements (lead and copper). The findings also provide a basis for broader ecological management of the Indus River, which significantly influenced human beings and socioeconomic disasters, particularly in the local community.


Asunto(s)
Cyprinidae , Monitoreo del Ambiente , Oligoelementos , Contaminantes Químicos del Agua , Oligoelementos/análisis , Oligoelementos/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Ríos/química , Pakistán , Invertebrados , Biodiversidad , Cromo/análisis , Cromo/metabolismo , Plomo/agonistas , Plomo/metabolismo , Zinc/análisis , Zinc/metabolismo , Cobre/análisis , Cobre/metabolismo , Manganeso/análisis , Manganeso/metabolismo , Hierro/análisis , Hierro/metabolismo , Estaciones del Año , Cyprinidae/metabolismo , Humanos , Animales , Hígado/metabolismo , Contaminación Química del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...