Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 22(1): 279, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579774

RESUMEN

BACKGROUND: Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. RESULTS: Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a "bookmark" mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. CONCLUSIONS: Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.


Asunto(s)
Diferenciación Celular/genética , Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Inactivación del Cromosoma X , Alelos , Animales , Ciclo Celular , Línea Celular , Núcleo Celular/genética , Femenino , Genoma , Masculino , Ratones , RNA-Seq , Análisis de la Célula Individual , Cromosoma X/química
2.
Methods Mol Biol ; 2329: 237-247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085227

RESUMEN

Posttranslational histone modifications are critical for the regulation of genome function. The levels of histone modifications oscillate during the cell cycle. Most modifications are diluted after DNA replication and then their levels are restored during the rest of the cell cycle with different kinetics depending on the modification. Some modifications, like histone H4 Lys20 monomethylation (H4K20me1), exhibit cell cycle-dependent dynamic changes. To track histone modifications in living cells, we have developed genetically encoded probes termed modification specific intracellular antibodies, or "mintbodies." As mintbodies shuttle between the cytoplasm and nucleus by diffusion, their nuclear concentration depends on the target modification level. By measuring the nuclear to cytoplasmic intensity ratio of H4K20me1-specific mintbody, we have monitored the increase of H4K20me1 in the G2 phase. Here we describe how the mintbody-based methods can be applied to track a specific chromosome, such as the inactive X chromosome (Xi), on which genes are repressed through histone H3 Lys27 trimethylation (H3K27me3). When H3K27me3-specific mintbodies are expressed in cells that harbor Xi, the mintbodies are concentrated on Xi and the dynamic behavior of Xi can be tracked using a confocal microscope. After acquiring 3D time-lapse images, an image analysis allows measuring the volume, shape and H3K27me3 level of Xi during the cell cycle.


Asunto(s)
Colorantes Fluorescentes/química , Histonas/metabolismo , Inactivación del Cromosoma X , Cromosoma X/genética , Animales , Ciclo Celular , Línea Celular Tumoral , Células HeLa , Código de Histonas , Histonas/química , Humanos , Metilación , Ratones , Microscopía Confocal , Imagen de Lapso de Tiempo , Cromosoma X/química
3.
Annu Rev Biochem ; 89: 255-282, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32259458

RESUMEN

Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong trans activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox (Hox) gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription (Hox clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Heterocromatina/metabolismo , Proteínas del Grupo Polycomb/genética , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Femenino , Silenciador del Gen , Heterocromatina/química , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Oocitos/citología , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Espermatozoides/citología , Espermatozoides/crecimiento & desarrollo , Espermatozoides/metabolismo , Cromosoma X/química
4.
Nat Struct Mol Biol ; 27(3): 297-304, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32157249

RESUMEN

Understanding the targeting and spreading patterns of long non-coding RNAs (lncRNAs) on chromatin requires a technique that can detect both high-intensity binding sites and reveal genome-wide changes in spreading patterns with high precision and confidence. Here we determine lncRNA localization using biotinylated locked nucleic acid (LNA)-containing oligonucleotides with toehold architecture capable of hybridizing to target RNA through strand-exchange reaction. During hybridization, a protecting strand competitively displaces contaminating species, leading to highly specific RNA capture of individual RNAs. Analysis of Drosophila roX2 lncRNA using this approach revealed that heat shock, unlike the unfolded protein response, leads to reduced spreading of roX2 on the X chromosome, but surprisingly also to relocalization to sites on autosomes. Our results demonstrate that this improved hybridization capture approach can reveal previously uncharacterized changes in the targeting and spreading of lncRNAs on chromatin.


Asunto(s)
Cromatina/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Oligonucleótidos/química , ARN Largo no Codificante/química , Proteínas de Unión al ARN/genética , Cromosoma X/química , Animales , Emparejamiento Base , Sitios de Unión , Biotinilación , Cromatina/metabolismo , Mapeo Cromosómico , Cromosomas de Insectos/química , Cromosomas de Insectos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Respuesta al Choque Térmico , Nanotecnología/métodos , Hibridación de Ácido Nucleico , Oligonucleótidos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Cromosoma X/metabolismo
5.
Nat Commun ; 10(1): 2950, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270318

RESUMEN

X-chromosome inactivation triggers fusion of A/B compartments to inactive X (Xi)-specific structures known as S1 and S2 compartments. SMCHD1 then merges S1/S2s to form the Xi super-structure. Here, we ask how S1/S2 compartments form and reveal that Xist RNA drives their formation via recruitment of Polycomb repressive complex 1 (PRC1). Ablating Smchd1 in post-XCI cells unveils S1/S2 structures. Loss of SMCHD1 leads to trapping Xist in the S1 compartment, impairing RNA spreading into S2. On the other hand, depleting Xist, PRC1, or HNRNPK precludes re-emergence of S1/S2 structures, and loss of S1/S2 compartments paradoxically strengthens the partition between Xi megadomains. Finally, Xi-reactivation in post-XCI cells can be enhanced by depleting both SMCHD1 and DNA methylation. We conclude that Xist, PRC1, and SMCHD1 collaborate in an obligatory, sequential manner to partition, fuse, and direct self-association of Xi compartments required for proper spreading of Xist RNA.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de los Mamíferos/genética , Complejo Represivo Polycomb 1/metabolismo , ARN Largo no Codificante/metabolismo , Cromosoma X/química , Cromosoma X/genética , Animales , Metilación de ADN/genética , Histonas/metabolismo , Lisina/metabolismo , Ratones , Modelos Genéticos , Inactivación del Cromosoma X/genética
6.
Stem Cells ; 37(7): 876-887, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30895693

RESUMEN

In spite of the progress in gene editing achieved in recent years, a subset of genetic diseases involving structural chromosome abnormalities, including aneuploidies, large deletions and complex rearrangements, cannot be treated with conventional gene therapy approaches. We have previously devised a strategy, dubbed chromosome transplantation (CT), to replace an endogenous mutated chromosome with an exogenous normal one. To establish a proof of principle for our approach, we chose as disease model the chronic granulomatous disease (CGD), an X-linked severe immunodeficiency due to abnormalities in CYBB (GP91) gene, including large genomic deletions. We corrected the gene defect by CT in induced pluripotent stem cells (iPSCs) from a CGD male mouse model. The Hprt gene of the endogenous X chromosome was inactivated by CRISPR/Cas9 technology thus allowing the exploitation of the hypoxanthine-aminopterin-thymidine selection system to introduce a normal donor X chromosome by microcell-mediated chromosome transfer. X-transplanted clones were obtained, and diploid XY clones which spontaneously lost the endogenous X chromosome were isolated. These cells were differentiated toward the myeloid lineage, and functional granulocytes producing GP91 protein were obtained. We propose the CT approach to correct iPSCs from patients affected by other X-linked diseases with large deletions, whose treatment is still unsatisfactory. Stem Cells 2019;37:876-887.


Asunto(s)
Cromosomas de los Mamíferos , Terapia Genética/métodos , Granulocitos/metabolismo , Enfermedad Granulomatosa Crónica/terapia , Hipoxantina Fosforribosiltransferasa/genética , Células Madre Pluripotentes Inducidas/metabolismo , NADPH Oxidasa 2/genética , Aminopterina/metabolismo , Aminopterina/farmacología , Animales , Secuencia de Bases , Sistemas CRISPR-Cas , Diferenciación Celular , Células Clonales , Medios de Cultivo/química , Modelos Animales de Enfermedad , Edición Génica/métodos , Granulocitos/citología , Granulocitos/efectos de los fármacos , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/metabolismo , Enfermedad Granulomatosa Crónica/patología , Humanos , Hipoxantina/metabolismo , Hipoxantina/farmacología , Hipoxantina Fosforribosiltransferasa/deficiencia , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Masculino , Ratones , NADPH Oxidasa 2/deficiencia , Prueba de Estudio Conceptual , Eliminación de Secuencia , Tioguanina/metabolismo , Tioguanina/farmacología , Timidina/metabolismo , Timidina/farmacología , Cromosoma X/química , Cromosoma X/metabolismo
7.
Adv Biosyst ; 3(9): e1900079, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-32648656

RESUMEN

Successful fertilization in mammals requires spermatozoa to efficiently traverse the female reproductive tract to meet the egg. This process naturally selects high quality sperm cells for fertilization, but when artificial reproductive technologies are used such as in vitro fertilization, intracytoplasmic sperm injection, or intrauterine insemination, other methods of sperm selection are required. Currently, technology enables sperm sorting based on motility, maturity as defined by zeta potential or hyaluronic acid binding site expression, absence of apoptotic factors, appropriate morphology, and even sex. This review summarizes current knowledge on all known methods of sperm cell sorting, compares their efficiency, and discusses the advantages and limitations of each technique. Scope for further refinement and improvement of current methods are discussed as is the potential to utilize a variety of materials to innovate new methods of sperm separation.


Asunto(s)
Separación Celular/métodos , Fertilización In Vitro/métodos , Inseminación Artificial/métodos , Preselección del Sexo/métodos , Espermatozoides/fisiología , Animales , Bioquímica/instrumentación , Bioquímica/métodos , Separación Celular/instrumentación , Centrifugación por Gradiente de Densidad/métodos , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Masculino , Ciencia de los Materiales/instrumentación , Ciencia de los Materiales/métodos , Ácidos Siálicos/química , Espermatozoides/ultraestructura , Cromosoma X/química , Cromosoma Y/química
8.
Am J Trop Med Hyg ; 99(6): 1485-1488, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30328409

RESUMEN

The genus Psammolestes within the subfamily Triatominae and tribe Rhodniini comprises the species Psammolestes arthuri, Psammolestes coreodes, and Psammolestes tertius, all potential vectors of Chagas disease. A feature of Psammolestes is their close association with birds, which makes them an interesting model for evolutionary studies. We analyzed cytogenetically Psammolestes spp., with the aim of contributing to the genetic and evolutionary knowledge of these vectors. All species of the Psammolestes showed the same chromosomal characteristics: chromocenter formed only by sex chromosomes X and Y, karyotype 2n = 22 and constitutive heterochromatin, and AT base pairs restricted to the sex chromosome Y. These results corroborate the monophyly of the genus and lead to the hypothesis that during the derivation of P. tertius, P. coreodes, and P. arthuri from their common ancestor, there was no reorganization in the number or structure of chromosomes.


Asunto(s)
Enfermedad de Chagas/transmisión , Cromosomas de Insectos/química , Especiación Genética , Insectos Vectores/genética , Filogenia , Triatominae/genética , Animales , Emparejamiento Base , Aves/parasitología , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Cromosomas de Insectos/ultraestructura , Heterocromatina/química , Heterocromatina/ultraestructura , Humanos , Insectos Vectores/clasificación , Insectos Vectores/parasitología , Cariotipo , América Latina/epidemiología , Triatominae/clasificación , Triatominae/parasitología , Trypanosoma cruzi/patogenicidad , Cromosoma X/química , Cromosoma X/ultraestructura , Cromosoma Y/química , Cromosoma Y/ultraestructura
9.
Genome Biol ; 19(1): 91, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30056805

RESUMEN

BACKGROUND: The extent to which selection determines interspecific patterns of genetic exchange enlightens the role of adaptation in evolution and speciation. Often reported extensive interspecific introgression could be selection-driven, but also result from demographic processes, especially in cases of invasive species replacements, which can promote introgression at their invasion front. Because invasion and selective sweeps similarly mold variation, population genetics evidence for selection can only be gathered in an explicit demographic framework. The Iberian hare, Lepus granatensis, displays in its northern range extensive mitochondrial DNA introgression from L. timidus, an arctic/boreal species that it replaced locally after the last glacial maximum. We use whole-genome sequencing to infer geographic and genomic patterns of nuclear introgression and fit a neutral model of species replacement with hybridization, allowing us to evaluate how selection influenced introgression genome-wide, including for mtDNA. RESULTS: Although the average nuclear and mtDNA introgression patterns contrast strongly, they fit a single demographic model of post-glacial invasive replacement of timidus by granatensis. Outliers of elevated introgression include several genes related to immunity, spermatogenesis, and mitochondrial metabolism. Introgression is reduced on the X chromosome and in low recombining regions. CONCLUSIONS: General nuclear and mtDNA patterns of introgression can be explained by purely demographic processes. Hybrid incompatibilities and interplay between selection and recombination locally modulate levels of nuclear introgression. Selection promoted introgression of some genes involved in conflicts, either interspecific (parasites) or possibly cytonuclear. In the latter case, nuclear introgression could mitigate the potential negative effects of alien mtDNA on mitochondrial metabolism and male-specific traits.


Asunto(s)
Migración Animal , ADN Mitocondrial/genética , Genoma , Hibridación Genética , Lagomorpha/genética , Adaptación Biológica/genética , Animales , Núcleo Celular/genética , Europa (Continente) , Genética de Población , Lagomorpha/clasificación , Mitocondrias/genética , Modelos Genéticos , Filogenia , Recombinación Genética , Selección Genética , Secuenciación Completa del Genoma , Cromosoma X/química
10.
Cell ; 171(1): 85-102.e23, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28867287

RESUMEN

Chromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We have discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression. The structure and the activity of the dosage compensation complex (DCC) subunit DPY-21 define a Jumonji demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Selective inactivation of demethylase activity eliminates H4K20me1 enrichment in somatic cells, elevates X-linked gene expression, reduces X chromosome compaction, and disrupts X chromosome conformation by diminishing the formation of topologically associating domains (TADs). Unexpectedly, DPY-21 also associates with autosomes of germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Our findings demonstrate the direct link between chromatin modification and higher-order chromosome structure in long-range regulation of gene expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Cromosoma X/química , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Compensación de Dosificación (Genética) , Embrión no Mamífero/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Modelos Moleculares , Mutación , Piperidinas/metabolismo , Alineación de Secuencia , Tiofenos/metabolismo
11.
Nat Rev Genet ; 18(6): 377-389, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28479596

RESUMEN

Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.


Asunto(s)
Cromosoma X/química , Animales , Expresión Génica , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X
12.
Nat Commun ; 8: 14251, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139647

RESUMEN

Sex chromosomes evolve once recombination is halted between a homologous pair of chromosomes. The dominant model of sex chromosome evolution posits that recombination is suppressed between emerging X and Y chromosomes in order to resolve sexual conflict. Here we test this model using whole genome and transcriptome resequencing data in the guppy, a model for sexual selection with many Y-linked colour traits. We show that although the nascent Y chromosome encompasses nearly half of the linkage group, there has been no perceptible degradation of Y chromosome gene content or activity. Using replicate wild populations with differing levels of sexually antagonistic selection for colour, we also show that sexual selection leads to greater expansion of the non-recombining region and increased Y chromosome divergence. These results provide empirical support for longstanding models of sex chromosome catalysis, and suggest an important role for sexual selection and sexual conflict in genome evolution.


Asunto(s)
Genoma , Poecilia/genética , Recombinación Genética , Diferenciación Sexual , Cromosoma X/química , Cromosoma Y/química , Animales , Evolución Biológica , Color , Femenino , Masculino , Pigmentación/genética , Polimorfismo Genético , Selección Genética
13.
Curr Opin Cell Biol ; 46: 54-61, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28236732

RESUMEN

To ensure X-linked gene dosage compensation between females (XX) and males (XY), one X chromosome undergoes X chromosome inactivation (XCI) in female cells. This process is tightly regulated throughout development by many different factors, with Xist as a key regulator, encoding a long non-coding RNA, involved in establishment of several layers of repressive epigenetic modifications. Several recent studies on XCI focusing on identification and characterization of Xist RNA-protein interactors, revealed new factors involved in gene silencing, genome topology and nuclear membrane attachment, amongst others. Also, new insights in higher order chromatin organization have been presented, revealing differences between the topological organization of active and inactive X chromosomes (Xa and Xi), with associated differences in gene expression. Finally, further evidence indicates that the inactive state of the Xi can be (partially) reversed, and that this X chromosome reactivation (XCR) might be associated with disease.


Asunto(s)
Inactivación del Cromosoma X , Animales , Epigénesis Genética , Femenino , Silenciador del Gen , Genes Ligados a X , Humanos , Masculino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Activación Transcripcional , Cromosoma X/química , Cromosoma X/genética , Cromosoma X/metabolismo
14.
Nature ; 535(7613): 575-9, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27437574

RESUMEN

X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions,remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes indifferent neural progenitor clones are associated with the presence of different TAD-like structures after XCI. These findings suggest a key role for transcription and CTCF in the formation of TADs in the context of the Xi chromosome in neural progenitors.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Alelos , Animales , Sitios de Unión , Factor de Unión a CCCTC , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/genética , Células Madre Embrionarias/metabolismo , Femenino , Silenciador del Gen , Masculino , Ratones , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Análisis de Secuencia , Transcripción Genética , Cromosoma X/química , Cromosoma X/genética , Inactivación del Cromosoma X/genética
15.
Mol Cell ; 60(3): 487-99, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26545078

RESUMEN

The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. We identified a stable MLE core comprising the DExH helicase module and two auxiliary domains: a dsRBD and an OB-like fold. MLEcore is an unusual DExH helicase that can unwind blunt-ended RNA duplexes and has specificity for uridine nucleotides. We determined the 2.1 Å resolution structure of MLEcore bound to a U10 RNA and ADP-AlF4. The OB-like and dsRBD folds bind the DExH module and contribute to form the entrance of the helicase channel. Four uridine nucleotides engage in base-specific interactions, rationalizing the conservation of uridine-rich sequences in critical roX substrates. roX2 binding is orchestrated by MLE's auxiliary domains, which is prerequisite for MLE localization to the male X chromosome. The structure visualizes a transition-state mimic of the reaction and suggests how eukaryotic DEAH/RHA helicases couple ATP hydrolysis to RNA translocation.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Cromosómicas no Histona/química , ADN Helicasas/química , Proteínas de Drosophila/química , ARN Helicasas/química , ARN/química , Factores de Transcripción/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Masculino , Estructura Terciaria de Proteína , ARN/genética , ARN/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromosoma X/química , Cromosoma X/genética , Cromosoma X/metabolismo
16.
Genome Biol ; 16: 152, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26248554

RESUMEN

BACKGROUND: In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. RESULTS: We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. CONCLUSIONS: By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.


Asunto(s)
Inactivación del Cromosoma X , Cromosoma X/química , Animales , Factor de Unión a CCCTC , Línea Celular , Nucléolo Celular/metabolismo , Células Cultivadas , Cromosomas Humanos X/química , Femenino , Impresión Genómica , Humanos , Masculino , Ratones , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Cromosoma X/metabolismo
17.
Science ; 349(6245)2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26089354

RESUMEN

The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform "identification of direct RNA interacting proteins" (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors-including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers-that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist, the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Células Cultivadas , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Ratones , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Proteómica , ARN Helicasas/metabolismo , Cromosoma X/química , Cromosoma X/genética , Cohesinas
18.
PLoS One ; 10(6): e0128497, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26038842

RESUMEN

DNA replication initiates at specific positions termed replication origins. Genome-wide studies of human replication origins have shown that origins are organized into replication initiation zones. However, only few replication initiation zones have been described so far. Moreover, few origins were mapped in other mammalian species besides human and mouse. Here we analyzed pattern of short nascent strands in the X inactivation center (XIC) of vole Microtus levis in fibroblasts, trophoblast stem cells, and extraembryonic endoderm stem cells and confirmed origins locations by ChIP approach. We found that replication could be initiated in a significant part of XIC. We also analyzed state of XIC chromatin in these cell types. We compared origin localization in the mouse and vole XIC. Interestingly, origins associated with gene promoters are conserved in these species. The data obtained allow us to suggest that the X inactivation center of M. levis is one extended replication initiation zone.


Asunto(s)
Arvicolinae/genética , Mapeo Cromosómico , Replicación del ADN , Origen de Réplica , Inactivación del Cromosoma X , Cromosoma X/química , Animales , Cromatina/química , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Endodermo/citología , Endodermo/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Regiones Promotoras Genéticas , Células Madre/citología , Células Madre/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Cromosoma X/metabolismo
19.
Curr Opin Genet Dev ; 31: 57-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26004255

RESUMEN

X-chromosome inactivation (XCI) is a developmentally associated process that evolved in mammals to enable gene dosage compensation between XX and XY individuals. In placental mammals, it is triggered by the long noncoding RNA Xist, which is produced from a complex regulatory locus, the X-inactivation centre (Xic). Recent insights into the regulatory landscape of the Xic, including its partitioning into topological associating domains (TADs) and its genetic dissection, have important implications for the monoallelic regulation of Xist. Here, we present some of the latest studies on X inactivation with a special focus on the regulation of Xist, its various functions and the putative role of chromosome conformation in regulating the dynamics of this locus during development and differentiation.


Asunto(s)
Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Humanos , Transcripción Genética , Cromosoma X/química , Cromosoma X/genética
20.
BMC Res Notes ; 8: 69, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25870930

RESUMEN

BACKGROUND: The "four core genotypes" (FCG) mouse model has emerged as a major model testing if sex differences in phenotypes are caused by sex chromosome complement (XX vs. XY) or gonadal hormones or both. The model involves deletion of the testis-determining gene Sry from the Y chromosome and insertion of an Sry transgene onto an autosome. It produces XX and XY mice with testes, and XX and XY mice with ovaries, so that XX and XY mice with the same type of gonad can be compared to assess phenotypic effects of sex chromosome complement in cells and tissues. FINDINGS: We used PCR to amplify the Sry transgene and adjacent genomic sequences, to resolve the location of the Sry transgene to chromosome 3 and confirmed this location by fluorescence in situ hybridization (FISH) of the Sry construct to metaphase chromosomes. Using quantitative PCR, we estimate that 12-14 copies of the transgene were inserted. The anogenital distance (AGD) of FCG pups at 27-29 days after birth was not different in XX vs. XY males, or XX vs. XY females, suggesting that differences between XX and XY mice with the same type of gonad are not caused by difference in prenatal androgen levels. CONCLUSION: The Sry transgene in FCG mice is present in multiple copies at one locus on chromosome 3, which does not interrupt known genes. XX and XY mice with the same type of gonad do not show evidence of different androgen levels prenatally.


Asunto(s)
Andrógenos/metabolismo , Bioensayo , Genes sry , Caracteres Sexuales , Cromosoma X/química , Cromosoma Y/química , Andrógenos/genética , Animales , Femenino , Dosificación de Gen , Genotipo , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Transgénicos , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Fenotipo , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA