Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.304
Filtrar
4.
PeerJ ; 12: e16812, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436034

RESUMEN

Fatty acid desaturases (FADs) play pivotal roles in determining plant stress tolerance. Barley is the most salt-tolerant cereal crop. In this study, we performed genome-wide identification and characterization analysis of the FAD gene family in barley (Hordeum vulgare). A total of 24 HvFADs were identified and divided into four subfamilies based on their amino acid sequence similarity. HvFADs unevenly distributed on six of seven barley chromosomes, and three clusters of HvFADs mainly occurred on the chromosome 2, 3 and 6. Segmental duplication events were found to be a main cause for the HvFAD gene family expansion. The same HvFAD subfamily showed the relatively consistent exon-intron composition and conserved motifs of HvFADs. Cis-element analysis in HvFAD promoters indicated that the expression of HvFADs may be subject to complex regulation, especially stress-responsive elements that may involve in saline-alkaline stress response. Combined transcriptomic data with quantitative experiments, at least five HvFADs highly expressed in roots under salt or alkali treatment, suggesting they may participate in saline or alkaline tolerance in barley. This study provides novel and valuable insights for underlying salt/alkali-tolerant mechanisms in barley.


Asunto(s)
Hordeum , Humanos , Hordeum/genética , Álcalis , Secuencia de Aminoácidos , Cromosomas Humanos Par 2 , Grano Comestible , Solución Salina
5.
Cancer Genet ; 284-285: 1-4, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460349

RESUMEN

Chromosomal translocation serves as a crucial diagnostic marker in the classification of acute myeloid leukemia. Among the most prevalent cytogenetic abnormalities is t(8;21)(q22;q22), typically associated with the FAB subtype AML-M2. On occasion, alternative forms of t(8;21) have been observed. This report presents a case of AML with RUNX1::RUNX1T1, wherein the karyotype revealed t(2;2;21;8)(p21;q37;q22;q22), representing the first instance of a variant t(8;21) involving both chromosomes 2. The combination of routine karyotype analysis and fluorescence in situ hybridization proves to be an effective method for identifying complex translocations of t(8;21).


Asunto(s)
Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia Mieloide Aguda , Translocación Genética , Humanos , Leucemia Mieloide Aguda/genética , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 8/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Hibridación Fluorescente in Situ , Masculino , Cromosomas Humanos Par 2/genética , Proteína 1 Compañera de Translocación de RUNX1/genética , Cariotipificación , Femenino , Adulto , Proteínas de Fusión Oncogénica/genética
6.
Chin J Dent Res ; 27(1): 29-38, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546517

RESUMEN

Non-syndromic orofacial clefts (NSOCs) are the most common craniofacial malformation. In the complex aetiology and pathogenesis of NSOCs, genetic factors play a crucial role and IRF6, located at chromosome 1q32.2, is the best documented NSOC susceptibility gene. IRF6 is a key factor in oral maxillofacial development and known to contribute the most in NSOCs. It is essential to conduct a complete review of the existing results on IRF6 to further understand its role in the pathogenesis of NSOCs. Thus, the present authors summarised the research progress on the mechanism of IRF6 in NSOCs from both genetic and functional perspectives in this review.


Asunto(s)
Labio Leporino , Fisura del Paladar , Humanos , Labio Leporino/genética , Fisura del Paladar/genética , Cromosomas Humanos Par 2 , Desarrollo Maxilofacial , Factores Reguladores del Interferón/genética
7.
Endocrine ; 85(1): 331-340, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38393510

RESUMEN

BACKGROUND: 2q37 microdeletion syndrome is a rare clinical condition characterized by a series of physical abnormalities. Its Albright hereditary osteodystrophy (AHO)-like manifestations and possible complication of biochemical abnormalities indicating PTH resistance greatly increased the likelihood of misdiagnosis with classic pseudohypoparathyroidism (PHP) caused by GNAS mutation or methylation alteration, even though there have only been six reports of such clinical occasions. PURPOSE: to investigate the underlying genetic defect in a male patient presenting hypocalcemia, elevated PTH and with a history of kyphosis. METHOD: clinical information was collected, while the DNA was extracted from peripheral blood and subjected to methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and exome sequencing. RESULT: Physical characteristics featuring short stature, obesity, round face, short neck, and shortened 4th metacarpal and laboratory examination of the patient suggested the presence of PTH resistance, which is indicative of PHP. MS-MLPA did not reveal methylation alterations or deletions of GNAS, STX16 or other monogenetic alterations responsible for iPPSDs, but WES revealed a long-range deletion of approximately 4.18 Mb of the 2q37 region that spanned AGAP1 to NDUFA10, indicating that the patient had 2q37 microdeletion syndrome with PTH resistance. CONCLUSION: After undergoing MS-MLPA and exome sequencing, a novel deletion spanning 4.18 Mb on the 2q37 region was identified in one male patient, clarifying the diagnosis of 2q37 microdeletion syndrome with PTH resistance. The new genetic discovery added to our understanding of the molecular defects that cause inactivating PTH/PTH-related protein signaling disorders (iPPSDs).


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 2 , Seudohipoparatiroidismo , Humanos , Masculino , Cromosomas Humanos Par 2/genética , Seudohipoparatiroidismo/genética , Trastornos de los Cromosomas/genética , Hormona Paratiroidea/sangre , China , Pueblos del Este de Asia
8.
Biotechnol J ; 19(2): e2300407, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403434

RESUMEN

Monitoring the stability of recombinant Chinese Hamster Ovary (CHO) cell lines is essential to ensure the selection of production cell lines suitable for biomanufacturing. It has been frequently observed that recombinant CHO cell lines develop phenotypic changes upon aging, such as accelerated cell growth in late generation cultures. However, the mechanism responsible for age-correlated changes is poorly understood. In this study, we investigated the molecular mechanisms underlying the age-correlated cell growth improvement in Pfizer's platform fed-batch production process, by examining multiple cell lines derived from different CHO expression systems, expressing a variety of monoclonal antibodies (mAbs). Comprehensive whole-genome resequencing analysis revealed duplication of a continuous 50.2 Mbp segment in chromosome 2 (Chr2) specific to clones that showed age-correlated growth change as compared to clones that did not exhibit age-correlated growth change. Moreover, such age- and growth-related Chr2 duplication was independent of the presence or type of recombinant monoclonal antibody expression. When we compared transcriptome profiles from low-growth and high-growth cell lines, we found that >95% of the genes overexpressed in high-growth cell lines were in the duplicated Chr2 segment. To the best of our knowledge, this is the first report of large genomic duplication, specific to Chr2, being associated with age-correlated growth change. Investigation of the cause-and-effect relationship between the genes identified in the duplicated regions and age-correlated growth change is underway. We are confident that this effort will lead to improved cell line screening and targeted rational cell line engineering efforts to develop cell lines with improved stability performance.


Asunto(s)
Anticuerpos Monoclonales , Cromosomas Humanos Par 2 , Cricetinae , Humanos , Animales , Cricetulus , Células CHO , Cromosomas Humanos Par 2/metabolismo , Proteínas Recombinantes/metabolismo , Anticuerpos Monoclonales/genética
9.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255945

RESUMEN

The determination of the soybean branch number plays a pivotal role in plant morphogenesis and yield components. This polygenic trait is subject to environmental influences, and despite its significance, the genetic mechanisms governing the soybean branching number remain incompletely understood. To unravel these mechanisms, we conducted a comprehensive investigation employing a genome-wide association study (GWAS) and bulked sample analysis (BSA). The GWAS revealed 18 SNPs associated with the soybean branch number, among which qGBN3 on chromosome 2 emerged as a consistently detected locus across two years, utilizing different models. In parallel, a BSA was executed using an F2 population derived from contrasting cultivars, Wandou35 (low branching number) and Ruidou1 (high branching number). The BSA results pinpointed a significant quantitative trait locus (QTL), designated as qBBN1, located on chromosome 2 by four distinct methods. Importantly, both the GWAS and BSA methods concurred in co-locating qGBN3 and qBBN1. In the co-located region, 15 candidate genes were identified. Through gene annotation and RT-qPCR analysis, we predicted that Glyma.02G125200 and Glyma.02G125600 are candidate genes regulating the soybean branch number. These findings significantly enhance our comprehension of the genetic intricacies regulating the branch number in soybeans, offering promising candidate genes and materials for subsequent investigations aimed at augmenting the soybean yield. This research represents a crucial step toward unlocking the full potential of soybean cultivation through targeted genetic interventions.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Humanos , Glycine max/genética , Cromosomas Humanos Par 2 , Ingeniería Genética , Anotación de Secuencia Molecular
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1461-1465, 2023 Dec 10.
Artículo en Chino | MEDLINE | ID: mdl-37994124

RESUMEN

OBJECTIVE: To carry out genetic analysis for a fetus with confined placental mosaicism (CPM) for trisomy 2 (T2) in conjunct with fetal uniparental disomy (UPD). METHODS: Amniocentesis and chromosomal karyotyping was carried out for a pregnant woman with a high risk for chromosome 2 anomalies indicated by non-invasive prenatal testing (NIPT). Single nucleotide polymorphism array (SNP-array) and trio-whole exome sequencing (Trio-WES) were carried out. Ultrasonography was used to closely monitor the fetal growth. Multifocal sampling of the placenta was performed after delivery for copy number variation sequencing (CNV-seq). RESULTS: The fetus was found to have a normal chromosomal karyotype. SNP-array has revealed multiple regions with loss of heterozygosity (LOH) on chromosome 2. Trio-WES confirmed the presence of maternal UPD for chromosome 2. Ultrasonography has revealed intrauterine growth restriction and oligohydramnios. Intrauterine fetal demise had occurred at 23+4 weeks of gestation. Pathological examination had failed to find salient visceral abnormality. The placenta was proved to contain complete T2 by CNV-seq. CONCLUSION: T2 CPM can cause false positive result for NIPT and may be complicated with fetal UPD, leading to adverse obstetric outcomes such as intrauterine growth restriction, oligohydramnios and intrauterine fetal demise.


Asunto(s)
Oligohidramnios , Placenta , Femenino , Humanos , Embarazo , Amniocentesis , Cromosomas Humanos Par 2/genética , Variaciones en el Número de Copia de ADN , Muerte Fetal , Retardo del Crecimiento Fetal/genética , Feto , Mosaicismo , Trisomía/genética , Disomía Uniparental/genética
13.
Taiwan J Obstet Gynecol ; 62(4): 571-576, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407197

RESUMEN

OBJECTIVE: We present low-level mosaic trisomy 2 at amniocentesis in a pregnancy associated with positive non-invasive prenatal testing (NIPT) and chorionic villus sampling (CVS) results for trisomy 2, maternal uniparental disomy (UPD) 2, perinatal progressive decrease of the aneuploid cell line, cytogenetic discrepancy between cultured amniocytes and uncultured amniocytes, intrauterine growth restriction (IUGR) and a favorable fetal outcome. CASE REPORT: A 35-year-old, primigravid woman underwent amniocentesis at 16 weeks of gestation because both NIPT at 9 weeks of gestation and CVS at 11 weeks of gestation revealed trisomy 2. This pregnancy was conceived by in vitro fertilization (IVF) and embryo transfer (ET). Amniocentesis revealed a karyotype of 47,XY,+2[11]/46,XY[19]. Prenatal ultrasound findings were normal. She was referred to the hospital for genetic counseling at 20 weeks of gestation, and repeat amniocentesis performed at 24 weeks of gestation revealed a karyotype of 46,XY (22/22 colonies). The parental karyotypes were normal. Quantitative fluorescent polymerase chain reaction (QF-PCR) analysis on the DNA extracted from uncultured amniocytes and parental bloods revealed maternal uniparental heterodisomy of chromosome 2. Simultaneous molecular cytogenetic analysis on uncultured amniocytes showed the results of arr 2p25.3q37.3 × 2.4 with a log2 ratio = 0.26, consistent with 40% mosaicism for trisomy 2 by array comparative genomic hybridization (aCGH), and 28% (28/100 cells) mosaicism for trisomy 2 by interphase fluorescence in situ hybridization (FISH). Despite IUGR on fetal ultrasound, the woman was advised to continue the pregnancy, and a 2252-g phenotypically normal male baby was delivered at 38 weeks of gestation. The karyotypes of cord blood, umbilical cord and placenta were 46,XY (40/40 colonies), 46,XY (40/40 colonies) and 47,XY,+2[9]/46,XY[31], respectively. QF-PCR analysis on cord blood, umbilical cord and placenta confirmed uniparental heterodisomy of chromosome 2 in the cord blood and umbilical cord, and maternal origin of trisomy 2 in the placenta. FISH analysis on buccal mucosal cells at age 1.5 months revealed 8.7% (9/104 cells) mosaicism for trisomy 2. When follow-up at age four months, the neonate manifested a normal phenotype except intermittent hypoventilation. Molecular analysis of the PHOX2B gene revealed a normal result. When follow-up at age one year, he manifested normal development. CONCLUSION: Mosaic trisomy 2 at prenatal diagnosis should alert the possibility of UPD 2 and include a UPD 2 testing. Low-level mosaic trisomy 2 at amniocentesis can be associated with perinatal progressive decrease of the aneuploid cell line and a favorable fetal outcome.


Asunto(s)
Amniocentesis , Muestra de la Vellosidad Coriónica , Embarazo , Femenino , Masculino , Humanos , Amniocentesis/métodos , Disomía Uniparental/genética , Trisomía/diagnóstico , Trisomía/genética , Retardo del Crecimiento Fetal/diagnóstico , Retardo del Crecimiento Fetal/genética , Hibridación Genómica Comparativa , Hibridación Fluorescente in Situ , Cromosomas Humanos Par 2/genética , Análisis Citogenético/métodos , Aberraciones Cromosómicas , Mosaicismo
14.
Cytogenet Genome Res ; 163(1-2): 14-23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497920

RESUMEN

Chromosome 2p (chr2p) duplication, also known as trisomy 2p, is a rare chromosome abnormality associated with developmental delay, intellectual disability, behavioral problems, and distinctive facial features. Most of the reported cases involving trisomy 2p include additional copy number variants (CNVs) in other regions of the genome and are usually small in size. Little is known about the clinical outcomes of large duplications of chr2p as the sole cytogenetic abnormality. In this study, 193 samples at the Greenwood Genetic Center (GGC) with CNVs involving chr2p were evaluated, out of which 86 had chr2p duplications. Among them, 8 patients were identified with large chr2p duplications ranging in size from 9.3 Mb to 89 Mb, and no deletions or duplications involving other chromosomes were identified in those patients. These duplications were associated with inverted duplication, tandem duplication, and duplication as the result of translocation, with no additional CNVs identified by microarray analysis. Confirmation by conventional cytogenetics was performed in 7 of the 8 patients, and the translocations were confirmed by fluorescence in situ hybridization. Interestingly, 1 patient was found to have mosaic complete trisomy 2p as the result of an unbalanced de novo (X;2) chromosomal translocation. X-inactivation was skewed toward the derivative X chromosome, yet it did not appear to extend into the chromosome 2 material. Various shared clinical manifestations were observed in the individuals in this study, including developmental delay, hemifacial hypoplasia, cleft palate, and short stature, and they also have distinct features such as hypotonia, cerebellar hypogenesis, and corpus callosum agenesis, which might result from a gene dosage effect of the duplication. In conclusion, single-event large chr2p duplications can result from different mechanisms, including inverted or tandem duplications within chromosome 2, or translocations involving chromosome 2 and other chromosomes. Partial or complete trisomy 2p is commonly associated with developmental delay, and additional clinical features may be related to gene dosage effects.


Asunto(s)
Duplicación Cromosómica , Trisomía , Humanos , Hibridación Fluorescente in Situ , Trisomía/genética , Duplicación Cromosómica/genética , Aberraciones Cromosómicas , Cromosomas Humanos Par 2/genética , Translocación Genética
15.
Genes (Basel) ; 14(4)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37107637

RESUMEN

Microtia is a congenital malformation characterized by a small, abnormally shaped auricle (pinna) ranging in severity. Congenital heart defect (CHD) is one of the comorbid anomalies with microtia. However, the genetic basis of the co-existence of microtia and CHD remains unclear. Copy number variations (CNVs) of 22q11.2 contribute significantly to microtia and CHD, respectively, thus suggesting a possible shared genetic cause embedded in this genomic region. In this study, 19 sporadic patients with microtia and CHD, as well as a nuclear family, were enrolled for genetic screening of single nucleotide variations (SNVs) and CNVs in 22q11.2 by target capture sequencing. We detected a total of 105 potential deleterious variations, which were enriched in ear- or heart-development-related genes, including TBX1 and DGCR8. The gene burden analysis also suggested that these genes carry more deleterious mutations in the patients, as well as several other genes associated with cardiac development, such as CLTCL1. Additionally, a microduplication harboring SUSD2 was validated in an independent cohort. This study provides new insights into the underlying mechanisms for the comorbidity of microtia and CHD focusing on chromosome 22q11.2, and suggests that a combination of genetic variations, including SNVs and CNVs, may play a crucial role instead of single gene mutation.


Asunto(s)
Microtia Congénita , Cardiopatías Congénitas , MicroARNs , Humanos , Microtia Congénita/genética , Variaciones en el Número de Copia de ADN/genética , Proteínas de Unión al ARN/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/diagnóstico , Pruebas Genéticas , Cromosomas Humanos Par 2
16.
Genes (Basel) ; 14(4)2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37107671

RESUMEN

We report on the case of prenatal detection of trisomy 2 in placental biopsy and further algorithm of genetic counseling and testing. A 29-year-old woman with first-trimester biochemical markers refused chorionic villus sampling and preferred targeted non-invasive prenatal testing (NIPT), which showed low risk for aneuploidies 13, 18, 21, and X. A series of ultrasound examinations revealed increased chorion thickness at 13/14 weeks of gestation and fetal growth retardation, a hyperechoic bowel, challenging visualization of the kidneys, dolichocephaly, ventriculomegaly, increase in placental thickness, and pronounced oligohydramnios at 16/17 weeks of gestation. The patient was referred to our center for an invasive prenatal diagnosis. The patient's blood and placenta were sampled for whole-genome sequencing-based NIPT and array comparative genomic hybridization (aCGH), respectively. Both investigations revealed trisomy 2. Further prenatal genetic testing in order to confirm trisomy 2 in amniocytes and/or fetal blood was highly questionable because oligohydramnios and fetal growth retardation made amniocentesis and cordocentesis technically unfeasible. The patient opted to terminate the pregnancy. Pathological examination of the fetus revealed internal hydrocephalus, atrophy of brain structure, and craniofacial dysmorphism. Conventional cytogenetic analysis and fluorescence in situ hybridization revealed chromosome 2 mosaicism with a prevalence of trisomic clone in the placenta (83.2% vs. 16.8%) and a low frequency of trisomy 2, which did not exceed 0.6% in fetal tissues, advocating for low-level true fetal mosaicism. To conclude, in pregnancies at risk of fetal chromosomal abnormalities that refuse invasive prenatal diagnosis, whole-genome sequencing-based NIPT, but not targeted NIPT, should be considered. In prenatal cases of trisomy 2, true mosaicism should be distinguished from placental-confined mosaicism using cytogenetic analysis of amniotic fluid cells or fetal blood cells. However, if material sampling is impossible due to oligohydramnios and/or fetal growth retardation, further decisions should be based on a series of high-resolution fetal ultrasound examinations. Genetic counseling for the risk of uniparental disomy in a fetus is also required.


Asunto(s)
Oligohidramnios , Trisomía , Embarazo , Femenino , Humanos , Adulto , Trisomía/diagnóstico , Trisomía/genética , Placenta , Asesoramiento Genético , Oligohidramnios/diagnóstico , Hibridación Fluorescente in Situ , Hibridación Genómica Comparativa , Retardo del Crecimiento Fetal/genética , Cromosomas Humanos Par 2
17.
Mol Genet Genomic Med ; 11(2): e2110, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464789

RESUMEN

BACKGROUND: Dysferlinopathies are autosomal recessive muscular dystrophies resulting from defects in DYSF (MIM: 603009), which is located on chromosome 2p13 and encodes the dysferlin protein. METHODS: We performed exome sequencing and subsequent trio-based analysis in a family with dysferlinopathy. RESULTS: We report a young patient presenting with hyperCKemia and mild muscle weakness of the lower limbs. Exome sequencing of the proband revealed a homozygous frameshift mutation, NM_001130987.2:c.1471dupA(p.M491Nfs*15), in DYSF. The father was heterozygous for the mutation and the mother did not carry the mutation, as determined by genetic analyses, exome sequencing of parental samples, and a trio-based analysis. Further analysis revealed that the DYSF gene was not deleted; instead, the entire chromosome 2 of the proband was inherited from the father. Thus, the child had paternal uniparental isodisomy for chromosome 2 (uniparental disomy [UPD]2 pat). CONCLUSION: We report the first case of dysferlinopathy caused by paternal isodisomy for chromosome 2. Furthermore, our findings highlight the importance of exome sequencing of the proband and parents and trio analyses in clinical settings, particularly when Mendelian inheritance cannot be confirmed, to identify the presence of UPD and to rule out large pathogenic deletions.


Asunto(s)
Cromosomas Humanos Par 2 , Disomía Uniparental , Masculino , Niño , Humanos , Secuenciación del Exoma , Padre
18.
Int J Clin Oncol ; 28(2): 240-254, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36396885

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a serious threat to human physical and mental health. Due to the novelty of the open reading frame (ORF), ORF has shown a wide range of new genetic associations in cancer. The purpose of this study was to explore the association between the C2orf71 SNPs and CRC susceptibility. METHODS: We recruited 1419 participants to perform an association analysis between C2orf71 SNPs and CRC risk through SNPStats online solftware. Genotyping was completed by the AgenaMassARRAY. In addition, we used false-positive report probability analysis to detect whether the positive findings were noteworthy observations. We also used Haploview 4.2 software and SNPStats online software to conduct the haplotype analysis and analysis of linkage disequilibrium (LD). Finally, the interaction of SNP-SNP in CRC risk was evaluated by multi-factor dimensionality reduction (MDR). RESULTS: The overall analysis showed thatC2orf71-rs17744093, -rs10200693, and -rs13385188 were significantly associated with the CRC susceptibility. C2orf71-rs17744093 was associated with CRC risk under dominant model (OR = 1.25, p = 0.048). -rs10200693 was associated with CRC risk under allele (OR = 1.17, p = 0.041) and log-additive model (OR = 1.16, p = 0.045). -rs13385188 had significant association with CRC risk under multiple genetic models (allele: OR = 1.19, p = 0.023; log-additive: OR = 1.18, p = 0.026). Multiple stratified analyses showed that except for the three candidate SNPS mentioned above, -rs10166913 (age < 60 years and drinking) and -RS17007544 (< 60 years) were associated with increased CRC risk. CONCLUSION: C2orf71-rs17744093, -rs10200693, -rs10166913, -rs17007544, and -rs13385188 were associated with CRC susceptibility.


Asunto(s)
Neoplasias Colorrectales , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Cromosomas Humanos Par 2 , Sistemas de Lectura Abierta/genética , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple/genética , Genotipo
19.
Cytogenet Genome Res ; 162(5): 237-243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36516793

RESUMEN

Brachydactyly mental retardation syndrome (BDMR) typically results from large deletions (>2-9 Mb) in distal 2q37. Haploinsufficiency of HDAC4 with incomplete penetrance has been proposed as the primary genetic cause of BDMR. To date, pure 2q37 deletions distal to HDAC4 were reported only in a limited number of individuals who share a subset of the clinical manifestations seen in cases with 2q37 deletions encompassing HDAC4. Here, we present a 4-year-old African American male who carries the smallest established 2q37.3 deletion distal to HDAC4 (827.1 kb; 16 OMIM genes). His clinical features that overlap with BDMR phenotypes include expressive-receptive language delay, behavioral issues, mild facial dysmorphism such as frontal bossing, and bilateral 5th finger brachydactyly and clinodactyly. The deletion was inherited from his mother with a history of learning difficulties and similar facial dysmorphism. This case provides important genotype-phenotype correlation information and suggests a 2q37 region distal to HDAC4 encompassing the HDLBP gene may contribute to a subset of clinical features overlapping with those seen in individuals with BDMR.


Asunto(s)
Braquidactilia , Discapacidad Intelectual , Masculino , Humanos , Discapacidad Intelectual/genética , Braquidactilia/genética , Deleción Cromosómica , Estudios de Asociación Genética , Fenotipo , Cromosomas Humanos Par 2
20.
Zhonghua Er Ke Za Zhi ; 60(11): 1140-1146, 2022 Nov 02.
Artículo en Chino | MEDLINE | ID: mdl-36319147

RESUMEN

Objective: To summarize the genetics and clinical phenotypes of epilepsy children with 2q24.3 microdeletion. Methods: All the patients with 2q24.3 microdeletion were retrospectively collected at the Pediatric Department of Peking University First Hospital from March 2017 to July 2022. The features of clinical manifestations, electroencephalogram (EEG), and neuroimaging were analyzed. Results: There were 13 patients with 2q24.3 microdeletion were included. All 13 patients had de novo copy number variation (CNV) with a deletion size ranged 0.18-7.31 Mb. The main pathogenic genes in the region were SCN3A, SCN2A, TTC21B, SCN1A and SCN9A genes. Among the 13 patients, 7 were boys, and 6 were girls. The onset age of epilepsy was 3.3(2.5, 6.0) months. Multiple seizure types were observed, including focal seizures in 13 patients, generalized tonic-clonic seizures (GTCS) in 6 patients, myoclonic seizures in 3 patients, epileptic spasm in 2 patients, and tonic seizures in 2 patients. Seizures were fever sensitivity in 9 patients. Status epilepticus was observed in 6 patients. One case had normal mental motor development and 12 cases had different degrees of developmental delay. Six patients had craniofacial abnormality, 1 had six-finger deformity of the right thumb, and 1 had multiple system abnormalities. EEG showed focal discharge in 3 cases, multifocal discharges in 5 cases, multifocal and generalized discharges in 1 case. Brain magnetic resonance imaging (MRI) showed enlargement of subarachnoid spaces in the frontal and temporal region in 4 patients, enlargement of lateral ventricle in 4 patients and delayed myelination of white matter in 1 patient. Dravet syndrome was diagnosed in 5 cases. The age at the last follow-up were 2.5(1.4,5.5) years, 1 patient was seizure free longer than 1 year, and 12 patients still had seizures. Conclusions: The epilepsy associated with 2q24.3 microdeletion is mainly induced by the deletion of SCN3A, SCN2A and SCN1A genes. The seizure onset age of 2q24.3 microdeletion related epilepsy was in infancy. Multiple seizure types are observed and the common seizure types include focal seizures and GTCS. Most patients have fever sensitivity and status epilepticus. Most patients have developmental delay. The phenotype of patients with deletion of SCN3A and SCN2A gene is more severe than that of patients with deletion of SCN1A gene only.


Asunto(s)
Anomalías Múltiples , Epilepsias Mioclónicas , Epilepsia , Estado Epiléptico , Humanos , Cromosomas , Variaciones en el Número de Copia de ADN , Fiebre , Canal de Sodio Activado por Voltaje NAV1.7 , Fenotipo , Estudios Retrospectivos , Convulsiones , Cromosomas Humanos Par 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...