Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.175
Filtrar
1.
Methods Mol Biol ; 2775: 157-169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758317

RESUMEN

Monocyte/macrophage cells play a central role in innate immunity against C. neoformans and C. gattii, species known to cause human disease. Cryptococcus is the only fungal genus known to possess such a large extracellular polysaccharide capsule, which impacts interactions of innate cells with the yeast. This interaction results in different fates, such as phagocytosis and intracellular proliferation and, as the interaction progresses, vomocytosis, cell-to-cell transfer, lysis of macrophages, or yeast killing. Differentiating internalized versus external Cryptococcus cells is thus essential to evaluate monocyte-macrophage phagocytosis. We describe here a protocol that allows quantification of Cryptococcus spp. phagocytosis using quantitative flow cytometry in human monocytes and a murine macrophage cell line (J774).


Asunto(s)
Cryptococcus neoformans , Citometría de Flujo , Macrófagos , Monocitos , Fagocitosis , Cryptococcus neoformans/inmunología , Animales , Ratones , Humanos , Monocitos/inmunología , Monocitos/citología , Macrófagos/inmunología , Macrófagos/microbiología , Citometría de Flujo/métodos , Línea Celular , Criptococosis/inmunología , Criptococosis/microbiología
2.
Methods Mol Biol ; 2775: 171-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758318

RESUMEN

The interaction between macrophages and Cryptococcus neoformans is crucial in the pathogenesis of cryptococcosis. These phagocytes are important immune effectors, but also a niche in which facultative intracellular parasites, such as C. neoformans, thrive. Consequently, phagocytosis of cryptococcal cells and its outcomes are very frequently studied. One major issue with several of the tests used for this, however, is that macrophage-C. neoformans interaction does not always result in phagocytosis, as fungi may be attached to the external surface of the phagocyte. The most used methodologies to study phagocytosis of cryptococcal cells have varying degrees of precision in separating fungi that are truly internalized from those that are outside macrophages. Here we describe two assays to measure phagocytosis that can differentiate internal from external C. neoformans cells.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Macrófagos , Fagocitosis , Cryptococcus neoformans/inmunología , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Criptococosis/microbiología , Criptococosis/inmunología , Animales , Ratones , Humanos , Interacciones Huésped-Patógeno/inmunología
3.
Methods Mol Biol ; 2775: 307-328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758326

RESUMEN

The importance of humoral immunity to fungal infections remains to be elucidated. In cryptococcosis, patients that fail to generate antibodies against antigens of the fungus Cryptococcus neoformans are more susceptible to the disease, demonstrating the importance of these molecules to the antifungal immune response. Historically, antibodies against C. neoformans have been applied in diagnosis, therapeutics, and as important research tools to elucidate fungal biology. Throughout the process of generating monoclonal antibodies (mAbs) from a single B-cell clone and targeting a single epitope, several immunization steps might be required for the detection of responsive antibodies to the antigen of interest in the serum. This complex mixture of antibodies comprises the polyclonal antibodies. To obtain mAbs, B-lymphocytes are harvested (from spleen or peripheral blood) and fused with tumor myeloma cells, to generate hybridomas that are individually cloned and specifically screened for mAb production. In this chapter, we describe all the necessary steps, from the immunization to polyclonal antibody harvesting, hybridoma generation, and mAb production and purification. Additionally, we discuss new cutting-edge approaches for generating interspecies mAbs, such as humanized mAbs, or for similar species in distinct host backgrounds.


Asunto(s)
Anticuerpos Antifúngicos , Anticuerpos Monoclonales , Cryptococcus neoformans , Hibridomas , Cryptococcus neoformans/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Animales , Humanos , Hibridomas/inmunología , Anticuerpos Antifúngicos/inmunología , Anticuerpos Antifúngicos/aislamiento & purificación , Ratones , Linfocitos B/inmunología , Criptococosis/inmunología , Criptococosis/diagnóstico , Antígenos Fúngicos/inmunología , Inmunización
4.
Methods Mol Biol ; 2775: 239-255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758322

RESUMEN

One of the standard assays for the fungal pathogen Cryptococcus neoformans is the glucuronoxylomannan (GXM) ELISA. This assay utilizes monoclonal antibodies targeted against the critical virulence factor, the polysaccharide (PS) capsule. GXM ELISA is one of the most used assays in the field used for diagnosis of cryptococcal infection, quantification of PS content, and determination of binding specificity for antibodies. Here we present three variations of the GXM ELISA used by our group-indirect, capture, and competition ELISAs. We have also provided some history, perspective, and notes on these methods, which we hope will help the reader choose, and implement, the best assay for their research.While it has long been referred to as the GXM ELISA, we also suggest a name update to better reflect our updated understanding of the polysaccharide antigens targeted by this assay. The Cryptococcal PS ELISA is a more accurate description of this set of methodologies and the antigens they measure. Finally, we discuss the limitations of this assay and put forth future plans for expanding the antigens assayed by ELISA.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Ensayo de Inmunoadsorción Enzimática , Polisacáridos , Ensayo de Inmunoadsorción Enzimática/métodos , Cryptococcus neoformans/inmunología , Criptococosis/diagnóstico , Criptococosis/microbiología , Criptococosis/inmunología , Polisacáridos/análisis , Polisacáridos/inmunología , Humanos , Antígenos Fúngicos/inmunología , Antígenos Fúngicos/análisis , Polisacáridos Fúngicos/inmunología , Polisacáridos Fúngicos/análisis , Anticuerpos Monoclonales/inmunología , Anticuerpos Antifúngicos/inmunología
5.
Methods Mol Biol ; 2775: 411-422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758334

RESUMEN

Cryptococcus neoformans infections are a major worldwide concern as current treatment strategies are becoming less effective in alleviating the infection. The most extreme and fatal cases are those of immunocompromised individuals. Clinical treatments for cryptococcosis are limited to a few classes of approved drugs, and due to a rise in drug resistance, these drugs are becoming less effective. Therefore, it is essential to develop innovative ways to control this infection. Vaccinations have emerged as a safe, viable, and cost-effective solution to treat a number of diseases over the years. Currently, there are no clinically available vaccines to treat cryptococcal infections, but a number of studies have shown promising results in animal models. Here, we present step-by-step experimental protocols using live-attenuated or heat-killed C. neoformans cells as a vaccination strategy in a preventive or in a therapeutic murine model of cryptococcosis.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Modelos Animales de Enfermedad , Vacunas Fúngicas , Cryptococcus neoformans/inmunología , Criptococosis/inmunología , Criptococosis/prevención & control , Animales , Vacunas Fúngicas/inmunología , Ratones , Vacunación/métodos , Vacunas Atenuadas/inmunología , Humanos
6.
Methods Mol Biol ; 2775: 393-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758333

RESUMEN

Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.


Asunto(s)
Quitosano , Criptococosis , Cryptococcus neoformans , Vacunas Fúngicas , Animales , Quitosano/química , Ratones , Vacunas Fúngicas/inmunología , Vacunas Fúngicas/genética , Vacunas Fúngicas/administración & dosificación , Criptococosis/inmunología , Criptococosis/prevención & control , Criptococosis/microbiología , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Vacunación/métodos , Femenino , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética
7.
Int Immunopharmacol ; 132: 111995, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581993

RESUMEN

Elevation of arginase enzyme activity in the lung contributes to the pathogenesis of various chronic inflammatory diseases and infections. Inhibition of arginase expression and activity is able to alleviate those effects. Here, we investigated the immunomodulatory effect of arginase inhibitor in C. neoformans infection. In the pulmonary cryptococcosis model that was shown to recapitulate human infection, we found arginase expression was excessively induced in the lung during the late stage of infection. To inhibit the activity of arginase, we administered a specific arginase inhibitor, nor-NOHA, during C. neoformans infection. Inhibition of arginase reduced eosinophil infiltration and level of IL-13 secretion in the lungs. Whole lung transcriptome RNA-sequencing analysis revealed that treatment with nor-NOHA resulted in shifting the Th2-type gene expression patterns induced by C. neoformans infection to the Th1-type immune profile, with higher expression of cytokines Ifng, Il6, Tnfa, Csf3, chemokines Cxcl9 and Cxcl10 and transcription factor Stat1. More importantly, mice treated with arginase inhibitor had more infiltrating brain leukocytes and enhanced gene expression of Th1-associated cytokines and chemokines that are known to be essential for protection against C. neoformans infection. Inhibition of arginase dramatically attenuated spleen and brain infection, with improved survival. Taken together, these studies demonstrated that inhibiting arginase activity induced by C. neoformans infection can modulate host immune response by enhancing protective type-1 immune response during C. neoformans infection. The inhibition of arginase activity could be an immunomodulatory target to enhance protective anti-cryptococcal immune responses.


Asunto(s)
Arginasa , Arginina/análogos & derivados , Criptococosis , Cryptococcus neoformans , Ratones Endogámicos C57BL , Animales , Arginasa/metabolismo , Arginasa/antagonistas & inhibidores , Arginasa/genética , Criptococosis/inmunología , Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/efectos de los fármacos , Ratones , Pulmón/inmunología , Pulmón/patología , Pulmón/efectos de los fármacos , Citocinas/metabolismo , Citocinas/inmunología , Femenino , Modelos Animales de Enfermedad , Enfermedades Pulmonares Fúngicas/inmunología , Enfermedades Pulmonares Fúngicas/tratamiento farmacológico , Humanos , Células Th2/inmunología , Células Th2/efectos de los fármacos , Células TH1/inmunología , Células TH1/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
8.
Clin Microbiol Infect ; 30(5): 660-665, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38295989

RESUMEN

OBJECTIVES: To explore the seroprevalence of anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies in non-HIV cryptococcal meningitis (CM) and assess its predictive value for survival. METHODS: This is a retrospective study of 12 years of non-HIV CM. We detected serum anti-GM-CSF autoantibodies, and evaluated the clinical features and outcomes, together with the exploration of prognostic factors for 2-week and 1-year survival. RESULTS: A total of 584 non-HIV CM cases were included. 301 of 584 patients (51.5%) were phenotypically healthy. 264 Cryptococcus isolates were obtained from cerebrospinal fluid (CSF) culture, of which 251 were identified as C. neoformans species complex and 13 as C. gattii species complex. Thirty-seven of 455 patients (8.1%) tested positive for serum anti-GM-CSF autoantibodies. Patients with anti-GM-CSF autoantibodies were more susceptible to C. gattii species complex infection (66.7% vs. 6.3%; p < 0.001) and more likely to develop pulmonary mass lesions with a diameter >3 centimetres (42.9% vs. 6.5%; p 0.001). Of 584 patients 16 (2.7%) died within 2 weeks, 77 of 563 patients (13.7%) died at 1 year, and 93 of 486 patients (19.1%) lived with disabilities at 1 year. Univariant Cox regression analysis found that anti-GM-CSF autoantibodies were associated with lower 1-year survival (HR, 2.66; 95% CI, 1.34-5.27; p 0.005). Multivariable Cox proportional hazards modelling revealed that CSF cryptococcal antigen titres ≥1:1280 were associated with both, reduced 2-week and 1-year survival rates (HR, 5.44; 95% CI, 1.23-24.10; p 0.026 and HR, 5.09; 95% CI, 1.95-13.26; p 0.001). DISCUSSION: Presence of serum anti-GM-CSF autoantibodies is predictive of poor outcomes, regardless of host immune status and the causative Cryptococcus species complex.


Asunto(s)
Autoanticuerpos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Meningitis Criptocócica , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Autoanticuerpos/sangre , Autoanticuerpos/líquido cefalorraquídeo , Cryptococcus gattii/inmunología , Cryptococcus neoformans/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Meningitis Criptocócica/mortalidad , Meningitis Criptocócica/inmunología , Meningitis Criptocócica/diagnóstico , Pronóstico , Estudios Retrospectivos , Estudios Seroepidemiológicos
9.
Nature ; 608(7921): 161-167, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896747

RESUMEN

Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Proteínas Fúngicas , Hipersensibilidad , Inflamación , Receptor Toll-Like 4 , Factores de Virulencia , Animales , Criptococosis/inmunología , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/patogenicidad , Citocinas/inmunología , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/metabolismo , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Inmunidad Innata , Inflamación/inmunología , Inflamación/microbiología , Lipopolisacáridos/inmunología , Pulmón/inmunología , Pulmón/microbiología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Virulencia , Factores de Virulencia/inmunología
10.
Immunology ; 165(2): 143-157, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716931

RESUMEN

Cryptococcus neoformans is an opportunistic fungal pathogen that can cause lethal cryptococcal meningitis in immunocompromised individuals such as those with HIV/AIDS. In addition, cryptococcal infections occasionally arise in immunocompetent individuals or those with previously undiagnosed immunodeficiencies. The course of cryptococcosis is highly variable in both patient groups, and there is rapidly growing evidence that genetic polymorphisms may have a significant impact on the trajectory of disease. Here, we review what is currently known about the nature of these polymorphisms and their impact on host response to C. neoformans infection. Thus far, polymorphisms in Fc gamma receptors, mannose-binding lectin, Dectin-2, Toll-like receptors and macrophage colony-stimulating factor have been associated with susceptibility to cryptococcal disease. Notably, however, in some cases the impact of these polymorphisms depends on the genetic background of the population; for example, the FCGR3A 158 F/V polymorphism was associated with an increased risk of cryptococcal disease in both HIV-positive and HIV-negative white populations, but not in Han Chinese patients. In most cases, the precise mechanism by which the identified polymorphisms influence disease progression remains unclear, although impaired fungal recognition and phagocytosis by innate immune cells appears to play a major role. Finally, we highlight outstanding questions in the field and emphasize the need for future research to include more diverse populations in their genetic association studies.


Asunto(s)
Criptococosis/etiología , Cryptococcus neoformans/inmunología , Susceptibilidad a Enfermedades/inmunología , Predisposición Genética a la Enfermedad , Huésped Inmunocomprometido , Fenómenos Inmunogenéticos , Polimorfismo Genético , Inmunidad Adaptativa , Animales , Biomarcadores , Criptococosis/metabolismo , Regulación de la Expresión Génica , Variación Genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Transducción de Señal
11.
Immunology ; 165(1): 110-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34458991

RESUMEN

Decades of studies on antibody structure led to the tenet that the V region binds antigens while the C region interacts with immune effectors. In some antibodies, however, the C region affects affinity and/or specificity for the antigen. One example is the 3E5 monoclonal murine IgG family, in which the mIgG3 isotype has different fine specificity to the Cryptococcus neoformans capsule polysaccharide than the other mIgG isotypes despite their identical variable sequences. Our group serendipitously found another pair of mIgG1/mIgG3 antibodies based on the 2H1 hybridoma to the C. neoformans capsule that recapitulated the differences observed with 3E5. In this work, we report the molecular basis of the constant domain effects on antigen binding using recombinant antibodies. As with 3E5, immunofluorescence experiments show a punctate pattern for 2H1-mIgG3 and an annular pattern for 2H1-mIgG1; these binding patterns have been associated with protective efficacy in murine cryptococcosis. Also as observed with 3E5, 2H1-mIgG3 bound on ELISA to both acetylated and non-acetylated capsular polysaccharide, whereas 2H1-mIgG1 only bound well to the acetylated form, consistent with differences in fine specificity. In engineering hybrid mIgG1/mIgG3 antibodies, we found that switching the 2H1-mIgG3 hinge for its mIgG1 counterpart changed the immunofluorescence pattern to annular, but a 2H1-mIgG1 antibody with an mIgG3 hinge still had an annular pattern. The hinge is thus necessary but not sufficient for these changes in binding to the antigen. This important role for the constant region in antigen binding could affect antibody biology and engineering.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Cápsulas Bacterianas/química , Cápsulas Bacterianas/inmunología , Cryptococcus neoformans/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos , Células CHO , Línea Celular , Cricetulus , Criptococosis/inmunología , Epítopos/química , Epítopos/inmunología , Ratones , Proteínas Recombinantes de Fusión , Relación Estructura-Actividad
12.
J. venom. anim. toxins incl. trop. dis ; 28: e20210124, 2022. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1386128

RESUMEN

Triatomines are blood-feeding arthropods belonging to the subfamily Triatominae (Hemiptera; Reduviidae), capable of producing immunomodulatory and water-soluble molecules in their hemolymph, such as antimicrobial peptides (AMPs). In this work, we evaluated the antifungal and immunomodulatory activity of the hemolymph of Meccus pallidipennis (MPH) and Rhodnius prolixus (RPH) against Cryptococcus neoformans. Methods: We assessed the activity of the hemolymph of both insects on fungal growth by a minimum inhibitory concentration (MIC) assay. Further, RAW 264.7 macrophages were cultivated with hemolymph and challenged with C. neoformans. Then, their phagocytic and killing activities were assessed. The cytokines MCP-1, IFN-γ, TNF-α, IL-10, IL-12, and IL-6 were measured in culture supernatants 4- and 48-hours post-infection. Results: Both hemolymph samples directly affected the growth rate of the fungus in a dose-dependent manner. Either MPH or RPH was capable of inhibiting fungal growth by at least 70%, using the lowest dilution (1:20). Treatment of RAW 264.7 macrophages with hemolymph of both insects was capable of increasing the production of MCP-I and TNF-α. In addition, when these cells were stimulated with hemolymph in the presence of C. neoformans, a 2- and a 4-fold increase in phagocytic rate was observed with MPH and RPH, respectively, when compared to untreated cells. For the macrophage killing activity, MPH decreased in approximately 30% the number of viable yeasts inside the cells compared to untreated control; however, treatment with RPH could not reduce the total number of viable yeasts. MPH was also capable of increasing MHC-II expression on macrophages. Regarding the cytokine production, MCP-I and TNF-α, were increased in the supernatant of macrophages treated with both hemolymphs, 4 and 48 hours after stimulation. Conclusion: These results suggested that hemolymph of triatomines may represent a source of molecules capable of presenting antifungal and immunomodulatory activity in macrophages during fungal infection.(AU)


Asunto(s)
Animales , Hemolinfa/química , Triatominae/microbiología , Criptococosis/terapia , Cryptococcus neoformans/inmunología , Antifúngicos/uso terapéutico , Inmunomodulación/fisiología
13.
Front Immunol ; 12: 722500, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650554

RESUMEN

With over 220,000 cases and 180,000 deaths annually, Cryptococcus neoformans is the most common cause of fungal meningitis and a leading cause of death in HIV/AIDS patients in Sub-Saharan Africa. Either C. neoformans can be killed by innate airway phagocytes, or it can survive intracellularly. Pulmonary murine macrophage and dendritic cell (DC) subsets have been identified in the naïve lung, and we hypothesize that each subset has different interactions with C. neoformans. For these studies, we purified murine pulmonary macrophage and DC subsets from naïve mice - alveolar macrophages, Ly6c- and Ly6c+ monocyte-like macrophages, interstitial macrophages, CD11b+ and CD103+ DCs. With each subset, we examined cryptococcal association (binding/internalization), fungicidal activity, intracellular fungal morphology, cytokine secretion and transcriptional profiling in an ex vivo model using these pulmonary phagocyte subsets. Results showed that all subsets associate with C. neoformans, but only female Ly6c- monocyte-like macrophages significantly inhibited growth, while male CD11b+ DCs significantly enhanced fungal growth. In addition, cytokine analysis revealed that some subsets from female mice produced increased amounts of cytokines compared to their counterparts in male mice following exposure to C. neoformans. In addition, although cells were analyzed ex vivo without the influence of the lung microenviroment, we did not find evidence of phagocyte polarization following incubation with C. neoformans. Imaging flow cytometry showed differing ratios of cryptococcal morphologies, c-shaped or budding, depending on phagocyte subset. RNA sequencing analysis revealed the up- and down-regulation of many genes, from immunological pathways (including differential regulation of MHC class I in the antigen processing pathway and the cell adhesion pathway) and pathways relating to relating to metabolic activity (genes in the Cytochrome P450 family, genes related to actin binding, calcium voltage channels, serine proteases, and phospholipases). Future studies gaining a more in-depth understanding on the functionality of individual genes and pathways specific to permissive and non-permissive pulmonary phagocytes will allow identification of key targets when developing therapeutic strategies to prevent cryptococcal meningitis.


Asunto(s)
Criptococosis/etiología , Cryptococcus neoformans/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Fagocitos/inmunología , Fagocitos/metabolismo , Transcripción Genética , Animales , Plasticidad de la Célula , Criptococosis/metabolismo , Criptococosis/patología , Citocinas/metabolismo , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Masculino , Redes y Vías Metabólicas , Ratones , Pronóstico , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
14.
J Immunol Res ; 2021: 9921620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471644

RESUMEN

INTRODUCTION: Cryptococcosis is a ubiquitous opportunistic fungal disease caused by Cryptococcus neoformans var. grubii. It has high global morbidity and mortality among HIV patients and non-HIV carriers with 99% and 95%, respectively. Furthermore, the increasing prevalence of undesired toxicity profile of antifungal, multidrug-resistant organisms and the scarcity of FDA-authorized vaccines were the hallmark in the present days. This study was undertaken to design a reliable epitope-based peptide vaccine through targeting highly conserved immunodominant heat shock 70 kDa protein of Cryptococcus neoformans var. grubii that covers a considerable digit of the world population through implementing a computational vaccinology approach. MATERIALS AND METHODS: A total of 38 sequences of Cryptococcus neoformans var. grubii's heat shock 70 kDa protein were retrieved from the NCBI protein database. Different prediction tools were used to analyze the aforementioned protein at the Immune Epitope Database (IEDB) to discriminate the most promising T-cell and B-cell epitopes. The proposed T-cell epitopes were subjected to the population coverage analysis tool to compute the global population's coverage. Finally, the T-cell projected epitopes were ranked based on their binding scores and modes using AutoDock Vina software. Results and Discussion. The epitopes (ANYVQASEK, QSEKPKNVNPVI, SEKPKNVNPVI, and EKPKNVNPVI) had shown very strong binding affinity and immunogenic properties to B-cell. (FTQLVAAYL, YVYDTRGKL) and (FFGGKVLNF, FINAQLVDV, and FDYALVQHF) exhibited a very strong binding affinity to MHC-I and MHC-II, respectively, with high population coverage for each, while FYRQGAFEL has shown promising results in terms of its binding profile to MHC-II and MHC-I alleles and good strength of binding when docked with HLA-C∗12:03. In addition, there is massive global population coverage in the three coverage modes. Accordingly, our in silico vaccine is expected to be the future epitope-based peptide vaccine against Cryptococcus neoformans var. grubii that covers a significant figure of the entire world citizens.


Asunto(s)
Cryptococcus neoformans/inmunología , Proteínas Fúngicas/inmunología , Vacunas Fúngicas/inmunología , Proteínas HSP70 de Choque Térmico/inmunología , Biología Computacional , Diseño Asistido por Computadora , Criptococosis/inmunología , Criptococosis/microbiología , Cryptococcus neoformans/genética , Mapeo Epitopo , Epítopos de Linfocito B , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Proteínas Fúngicas/genética , Vacunas Fúngicas/administración & dosificación , Vacunas Fúngicas/genética , Antígenos HLA-C/inmunología , Antígenos HLA-C/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Humanos , Inmunogenicidad Vacunal , Simulación del Acoplamiento Molecular , Desarrollo de Vacunas/métodos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología
15.
J Extracell Vesicles ; 10(10): e12129, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34377375

RESUMEN

Whereas extracellular vesicle (EV) research has become commonplace in different biomedical fields, this field of research is still in its infancy in mycology. Here we provide a robust set of data regarding the structural and compositional aspects of EVs isolated from the fungal pathogenic species Cryptococcus neoformans, C. deneoformans and C. deuterogattii. Using cutting-edge methodological approaches including cryogenic electron microscopy and cryogenic electron tomography, proteomics, and flow cytometry, we revisited cryptococcal EV features and suggest a new EV structural model, in which the vesicular lipid bilayer is covered by mannoprotein-based fibrillar decoration, bearing the capsule polysaccharide as its outer layer. About 10% of the EV population is devoid of fibrillar decoration, adding another aspect to EV diversity. By analysing EV protein cargo from the three species, we characterized the typical Cryptococcus EV proteome. It contains several membrane-bound protein families, including some Tsh proteins bearing a SUR7/PalI motif. The presence of known protective antigens on the surface of Cryptococcus EVs, resembling the morphology of encapsulated virus structures, suggested their potential as a vaccine. Indeed, mice immunized with EVs obtained from an acapsular C. neoformans mutant strain rendered a strong antibody response in mice and significantly prolonged their survival upon C. neoformans infection.


Asunto(s)
Cryptococcus neoformans/inmunología , Cryptococcus neoformans/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Vacunas/inmunología , Secuencias de Aminoácidos , Animales , Antígenos Fúngicos/inmunología , Antígenos Fúngicos/metabolismo , Microscopía por Crioelectrón , Criptococosis/inmunología , Vesículas Extracelulares/microbiología , Femenino , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteoma , Proteómica/métodos
16.
Eur J Immunol ; 51(9): 2206-2209, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34396521

RESUMEN

Cryptococcus neoformans and C. gattii complexes are the main causative agents of cryptococcosis, a neglected disease with high lethality. The capsule, composed predominantly of the capsular polysaccharide (CP) GXM, is the main virulence factor of this pathogen. The role of CP is well described for C. neoformans and; however, there is a scarcity of studies focused on C. gattii, especially in the context of the fungal-host interaction. Understanding how the immune system recognizes C. gattii can generate meaningful information for diagnosing, preventing, and treating cryptococcosis. In the current issue of the European Journal of Immunology [Eur. J. Immunol. 2021. 51: 2281-2295], Ueno et al. demonstrate that CP inhibits C. gattii recognition by CD11b. In this commentary, we highlight the importance of deeply understanding the role of C. gattii CP during infection and how this knowledge would influence the strategies to develop new vaccines against cryptococcosis.


Asunto(s)
Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Vacunas , Cryptococcus neoformans/inmunología , Humanos , Polisacáridos
17.
Front Immunol ; 12: 709695, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367172

RESUMEN

Cryptococcus neoformans, an opportunistic fungal pathogen ubiquitously present in the environment, causes cryptococcal meningitis (CM) mainly in immunocompromised patients, such as AIDS patients. We aimed to identify disease-associated cryptococcal protein antigens targeted by the human humoral immune response. Therefore, we used sera from Colombian CM patients, with or without HIV infection, and from healthy individuals living in the same region. Serological analysis revealed increased titers of anti-cryptococcal IgG in HIV-negative CM patients, but not HIV-positive CM patients, compared to healthy controls. In contrast, titers of anti-cryptococcal IgM were not affected by CM. Furthermore, we detected pre-existing IgG and IgM antibodies even in sera from healthy individuals. The observed induction of anti-cryptococcal IgG but not IgM during CM was supported by analysis of sera from C. neoformans-infected mice. Stronger increase in IgG was found in wild type mice with high lung fungal burden compared to IL-4Rα-deficient mice showing low lung fungal burden. To identify the proteins targeted by human anti-cryptococcal IgG antibodies, we applied a quantitative 2D immunoproteome approach identifying cryptococcal protein spots preferentially recognized by sera from CM patients or healthy individuals followed by mass spectrometry analysis. Twenty-three cryptococcal proteins were recombinantly expressed and confirmed to be immunoreactive with human sera. Fourteen of them were newly described as immunoreactive proteins. Twelve proteins were classified as disease-associated antigens, based on significantly stronger immunoreactivity with sera from CM patients compared to healthy individuals. The proteins identified in our screen significantly expand the pool of cryptococcal proteins with potential for (i) development of novel anti-cryptococcal agents based on implications in cryptococcal virulence or survival, or (ii) development of an anti-cryptococcal vaccine, as several candidates lack homology to human proteins and are localized extracellularly. Furthermore, this study defines pre-existing anti-cryptococcal immunoreactivity in healthy individuals at a molecular level, identifying target antigens recognized by sera from healthy control persons.


Asunto(s)
Anticuerpos Antifúngicos/inmunología , Cryptococcus neoformans/inmunología , Proteínas Fúngicas/inmunología , Inmunoglobulina G/sangre , Meningitis Criptocócica/inmunología , Adolescente , Adulto , Anciano , Animales , Anticuerpos Antifúngicos/sangre , Antígenos Fúngicos/inmunología , Niño , Femenino , Infecciones por VIH/inmunología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Adulto Joven
18.
Sci Rep ; 11(1): 13619, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193926

RESUMEN

Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.


Asunto(s)
Antifúngicos/inmunología , Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Células Dendríticas/inmunología , Lisosomas/inmunología , Proteínas/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Fagocitosis
19.
Infect Immun ; 89(10): e0012821, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34228504

RESUMEN

Microbial penetration of the blood-brain barrier, a prerequisite for the development of central nervous system (CNS) infection, involves microbial invasion, intracellular traversal, and exocytosis. Microbial invasion of the blood-brain barrier has been investigated, but the molecular basis for microbial traversal and exit from the blood-brain barrier remains unknown. We performed transcriptome analysis of human brain microvascular endothelial cells (HBMEC) infected with Escherichia coli and Cryptococcus neoformans, representative bacterial and fungal pathogens common in CNS infections. Among the targets upregulated in response to E. coli and C. neoformans infection, PDLIM2 was knocked down by small hairpin RNA (shRNA) in HBMEC for further investigation. We demonstrated that Pdlim2 specifically regulated microbial traversal and exit from HBMEC by assessing microbial invasion, transcytosis, intracellular multiplication, and egression. Additionally, the defective exocytosis of internalized E. coli cells from the PDLIM2 shRNA knockdown cells was restored by treatment with a calcium ionophore (ionomycin). Moreover, we performed proximity-dependent biotin labeling with the biotin ligase BioID2 and identified 210 potential Pdlim2 interactors. Among the nine Pdlim2 interactors enriched in response to both E. coli and C. neoformans infection, we selected MPRIP and showed that HBMEC with knockdown of MPRIP mimicked the phenotype of PDLIM2 knockdown cells. These results suggest that the CNS-infecting microbes hijack Pdlim2 and Mprip for intracellular traversal and exocytosis in the blood-brain barrier.


Asunto(s)
Barrera Hematoencefálica/inmunología , Infecciones del Sistema Nervioso Central/inmunología , Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Exocitosis/inmunología , Proteínas con Dominio LIM/metabolismo , Proteínas de Microfilamentos/metabolismo , Transporte Biológico/inmunología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/microbiología , Células Cultivadas , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/microbiología , Infecciones del Sistema Nervioso Central/metabolismo , Infecciones del Sistema Nervioso Central/microbiología , Criptococosis/metabolismo , Criptococosis/microbiología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Humanos , Proteínas con Dominio LIM/inmunología , Proteínas de Microfilamentos/inmunología , Fosforilación/inmunología
20.
PLoS One ; 16(5): e0251749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34048463

RESUMEN

Existing evidence revealed grave prognosis for cryptococcal meningitis (CM), particularly its short-term mortality. However, its long-term survival and prognostic factors remained unknown. This study investigated 3-year mortality and analyzed its predictive factors in patients with CM. This retrospective cohort study with 83 cerebrospinal fluid culture-confirmed CM patients was conducted at China Medical University Hospital from 2003 to 2016. The 3-year mortality rate in patients with CM was 54% (45 deaths among 83 patients). Advanced age, human immunodeficiency virus (HIV) seronegative state, low Glasgow Coma Scale score on admission, decreased hemoglobin and hyperglycemia on diagnosis were associated with 3-year mortality. After multivariate adjustment in the Cox proportional hazard model, only severe hyperglycemia (serum glucose ≥200 mg/dL) on diagnosis could predict 3-year mortality.


Asunto(s)
Seronegatividad para VIH/inmunología , Hiperglucemia/epidemiología , Meningitis Criptocócica/mortalidad , Adulto , Factores de Edad , Anciano , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/aislamiento & purificación , Femenino , Estudios de Seguimiento , Escala de Coma de Glasgow , Humanos , Hiperglucemia/diagnóstico , Hiperglucemia/inmunología , Hiperglucemia/microbiología , Masculino , Meningitis Criptocócica/complicaciones , Meningitis Criptocócica/diagnóstico , Meningitis Criptocócica/inmunología , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA